Refutation complexity of relativized spectra.

Moritz Müller

joint with Albert Atserias and Sergi Oliva

Given a first-order sentence ϕ and a positive natural number n it is straightforward to write down a propositional formula $\langle \phi \rangle_n$ in CNF that is satisfiable if and only if ϕ has a model of cardinality n. In particular, $\langle \phi \rangle_n$ is unsatisfiable if and only if n does not belong to the spectrum of ϕ .

We are interested in the refutation complexity of the formulas $\langle \phi \rangle_n$ for $n \notin \operatorname{spec}(\phi)$ - generally in arbitrary refutation systems and especially in Resolution based refutation systems.

Riis' Gap Theorem gives an exponential lower bound on the refutation sizes in treelike Resolution in case ϕ has an infinite model. For relativized such sentences ϕ^R Dantchev and Riis establish an exponential lower bound even in daglike Resolution (and treelike R(k) for each fixed k). For a different translation into propositional logic we give an exponential lower bound in daglike R(k) (for each fixed k).