The infinity quantifier \exists^{∞} 000

modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Automatic structures Lecture 2: First-order logic and beyond

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

First-order logic

Definable relations and quotients Interpretations

The infinity quantifier \exists^{∞}

modulo-quantifiers $\exists^{(p)}$

First-order	logic
0.	
0000	
000	

The infinity quantifier \exists^{∞} 000

modulo-quantifiers $\exists^{(p)}$ 00000

Second-order quantifiers

Definitions

Let $\mathcal{A} = (V, (R_i)_{1 \le i \le n})$ be a relational structure with $R_i \subseteq V^{k_i}$.

Syntax of FO:

- if $1 \le i \le n$ and x_1, \ldots, x_{k_i} are first-order variables, then $R_i(x_1, \ldots, x_{k_i})$ is a formula of FO
- if x and y are first-order variables, then x = y is a formula
- if α and β are formulas, then so are $\alpha \lor \beta$ and $\neg \alpha$.
- if α is a formula and x a first-order variable, then ∃x : α is a formula.

free variables:

$$\operatorname{var}(R_i(x_1, \dots, x_{k_i})) = \{x_1, \dots, x_{k_i}\}$$
$$\operatorname{var}(x = y) = \{x, y\}$$
$$\operatorname{var}(\alpha \lor \beta) = \operatorname{var}(\alpha) \cup \operatorname{var}(\beta)$$
$$\operatorname{var}(\neg \alpha) = \operatorname{var}(\alpha)$$

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

First-order logic

Definable relations and quotients

Interpretations

The infinity quantifier \exists^∞

modulo-quantifiers $\exists^{(p)}$

The infinity quantifier ∃[∞] 000 modulo-quantifiers ∃⁽*p*) 00000

Second-order quantifiers

FO-definable relations are effectively automatic

Main theorem for FO

From a presentation $P = (M, (M_i)_{1 \le i \le n})$ of a regular structure \mathcal{A} and a first-order formula α , one can compute a synchronous multitape-automaton M^{α} such that $R(M^{\alpha}) = \alpha^{\mathcal{A}}$.

Proof

Fix a list of variables \overline{x} containing all variables that appear in α and interprete $\beta^{\mathcal{A}}$ wrt. this list.

Proof

Fix a list of variables \overline{x} containing all variables that appear in α and interprete $\beta^{\mathcal{A}}$ wrt. this list.

By induction on construction of α using closure properties of automatic relations:

$$R_i(y_1, \dots, y_{k_i})^{\mathcal{A}}$$
 is cylindrification of $R_i = R(M_i)$

First-order	logic
00	
0000	
000	

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Quotients

Let $\mathcal{A} = (V; (R_i)_{1 \le i \le n})$ be a relational structure and $\sim \subseteq V^2$ an equivalence relation. \sim is a congruence if $(u_1, \ldots, u_{k_i}) \in R_i$ and $u_j \sim v_j$ imply $(v_1, \ldots, v_{k_i}) \in R_i$.

$$egin{aligned} R_i/\sim &:= \{([u_1]_\sim,\ldots,[u_{k_i}]_\sim) \mid (u_1,\ldots,u_{k_i}) \in R_i\} \ \mathcal{A}/\sim &:= (V/\sim;(R_i/\sim)_{1 \leq i \leq n}) ext{ is the quotient of } \mathcal{A} ext{ wrt.} \sim \end{aligned}$$

The infinity quantifier \exists^{∞} 000

modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Quotients are automatic

Theorem

From a presentation P of a regular structure \mathcal{A} and an automatic congruence \sim , one can compute a presentation of (a regular structure isomorphic to) the quotient \mathcal{A}/\sim .

Proof

The structure $\mathcal{B} = (\mathcal{A}, \leq_{\text{llex}}, \sim)$ is effectively regular. The set $\{u \in \mathcal{A} \mid \forall v \in \mathcal{A} : u \sim v \rightarrow u \leq_{\text{llex}} v\}$

- is first-order definable in $\mathcal B$ and hence (effectively) regular
- contains precisely one element from every equivalence class of $\sim\!\!.$

Hence the restriction of \mathcal{A} to this set is isomorphic to \mathcal{A}/\sim .

The infinity quantifier \exists^{∞} 000

modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

First-order logic

Definable relations and quotients Interpretations

The infinity quantifier \exists^∞

modulo-quantifiers $\exists^{(p)}$

The infinity quantifier \exists^{∞} 000 modulo-quantifiers ∃^(p) 00000 Second-order quantifiers

First-order interpretations

An n-dimensional first-order interpretation consists of

- a structure \mathcal{A} ,
- a formula ν with *n* free variables,
- a formula η with 2n free variables,
- and formulas ρ_i with $k_i \cdot n$ free variables

such that $\eta^{\mathcal{A}}$ is a congruence of $(\nu^{\mathcal{A}}; (\rho_i^{\mathcal{A}})_{1 \leq i \leq m})$.

The structure

$$(\nu^{\mathcal{A}};(\rho^{\mathcal{A}}_{i})_{1\leq i\leq m})/\eta^{\mathcal{A}}$$

is said to be interpreted in \mathcal{A} via $(\nu, \eta, (\rho_i)_{1 \le i \le m})$.

Examples

quotients, direct powers, expansion by definable relations,...

First-order logic ○○ ○○○ ○○ ○○ The infinity quantifier \exists^{∞} 000 modulo-quantifiers ∃^(p) 00000 Second-order quantifiers

First-order interpretations

Corollary

From a presentation P of a regular structure A and a first-order interpretation I in A, one can compute a presentation of (a regular structure isomorphic to) the structure interpreted in A via I.

Proof

clear by previous theorems (effective closure under definable expansions and quotients)

Theorem (Blumensath '99)

A structure is automatic if and only if it can be interpreted in

$$(\{a,b\}^*,\{(u,uv) \mid u,v \in \{a,b\}^*\},\{(u,v) \mid |u| = |v|\})$$

The infinity quantifier \exists^{∞}

modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

First-order logic

Definable relations and quotients Interpretations

The infinity quantifier \exists^∞

modulo-quantifiers $\exists^{(p)}$

The infinity quantifier $\exists^{\infty} \\ \circ \bullet \circ$

modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Infinity quantifier

Let $\mathcal{A} = (V, (R_i)_{1 \le i \le n})$ be a relational structure with $R_i \subseteq V^{k_i}$.

Syntax of FO^{∞} :

- if $1 \le i \le n$ and x_1, \ldots, x_{k_i} are first-order variables, then $R_i(x_1, \ldots, x_{k_i})$ is a formula of FO
- if x and y are first-order variables, then x = y is a formula
- if α and β are formulas, then so are $\alpha \lor \beta$ and $\neg \alpha$.
- if α is a formula and x a first-order variable, then $\exists x : \alpha$ and $\exists^{\infty}x : \alpha$ are formulas.

free variables:

$$\operatorname{var}(R_i(x_1, \dots, x_{k_i})) = \{x_1, \dots, x_{k_i}\}$$
$$\operatorname{var}(x = y) = \{x, y\}$$
$$\operatorname{var}(\alpha \lor \beta) = \operatorname{var}(\alpha) \cup \operatorname{var}(\beta)$$
$$\operatorname{var}(\neg \alpha) = \operatorname{var}(\alpha)$$
$$^{12/2}$$

The infinity quantifier \exists^{∞}

modulo-quantifiers ∃⁽*p*) 00000

Second-order quantifiers

FO^{∞} -definable relations are effectively automatic

Main theorem for FO^{∞} (Blumensath '99)

From a presentation $P = (M, (M_i)_{1 \le i \le n})$ of a regular structure \mathcal{A} and a FO^{∞}-formula α , one can compute a synchronous multitape-automaton M^{α} such that $R(M^{\alpha}) = \alpha^{\mathcal{A}}$.

Proof

 $(\mathcal{A}, \leq_{\text{llex}})$ is effectively automatic and $\mathcal{A} \models \exists^{\infty} y : \alpha(y) \iff (\mathcal{A}, \leq_{\text{llex}}) \models \forall x \exists y : (x \leq_{\text{llex}} y \land \alpha(y))$ hence result follows from Main Theorem for FO

Consequences

The FO^ ∞ -theory of every automatic structure is decidable, automatic structures are closed under FO $^{\infty}$ -interpretations.

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$

Second-order quantifiers

First-order logic

Definable relations and quotients Interpretations

The infinity quantifier \exists^∞

modulo-quantifiers $\exists^{(p)}$

The infinity quantifier $\exists^\infty \\ 000$

modulo-quantifiers $\exists^{(p)}$ $0 \bullet 0 0 0$

Second-order quantifiers

modulo-quantifiers

Let $\mathcal{A} = (V, (R_i)_{1 \le i \le n})$ be a relational structure with $R_i \subseteq V^{k_i}$.

Syntax of FOX:

- formation rules for FO^∞
- if α is a formula, x a first-order variable, and 1 < p, then $\exists^{(p)}x : \alpha$ is a formula.

free variables:

$$\operatorname{var}(\exists^{(p)}x:\alpha) = \operatorname{var}(\alpha) \setminus \{x\}$$

semantics of FOX: let $var(\alpha) \subseteq \{x_1, \ldots, x_n\}$ and $u_1, \ldots, u_n \in V$. $(\mathcal{A}, (u_1, \ldots, u_{n-1})) \models \exists^{(p)}x : \alpha$ if and only if $|\{v \in V \mid (\mathcal{A}, (u_1, \ldots, u_{n-1}, v)) \models \alpha\}|$ is finite and divisible by p.

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000

Second-order quantifiers

FOX-definable relations are effectively automatic

Main theorem for FOX (Khoussainov, Rubin, Stephan '04)

From a presentation $P = (M, (M_i)_{1 \le i \le n})$ of a regular structure \mathcal{A} and a FOX-formula α , one can compute a synchronous multitape-automaton M^{α} such that $R(M^{\alpha}) = \alpha^{\mathcal{A}}$.

Lemma

If $R\subseteq (\Sigma^*)^n$ is automatic and p>1, then the set of tuples $\overline{u}\in (\Sigma^*)^{n-1}$ satisfying

 $|\{v \in \Sigma^* \mid (\overline{u}, v) \in R\}|$ is finite and divisible by p

is effectively automatic.

Proof of Main Theorem for FOX equals proof for FO

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$

Second-order quantifiers

Proof of Lemma for n = 2

 (Σ^*, R) is automatic $\Rightarrow R' = \{(u, v) \mid \exists^{\infty} w : (u, w) \in R\}$ effectively automatic let $M = \{(Q, \{v\}) \mid \exists^{\infty} b \in A$ deterministic finite automaton

let $M = (Q, {\iota}, T, F)$ be deterministic finite automaton accepting $\otimes R'$

•
$$Q' = \{0, 1, ..., p - 1\}^Q$$

• $\iota'(p) = \begin{cases} 1 & \text{for } p = \iota \\ 0 & \text{otherwise} \end{cases}$
• $(f, a, g) \in T' \text{ iff}$
 $g(q) = \sum_{p \in Q} f(p) \cdot |\{b \in \Sigma \mid (p, (a, b), q) \in T\}| \mod p \text{ for all } q \in Q$

•
$$f \in F'$$
 iff $\sum_{p \in Q} f(p) = 0 \mod p$

Then $(Q', \{\iota'\}, T', F')$ accepts "something like" the set required.

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$

Second-order quantifiers

FOX-definable relations are effectively automatic

Main theorem for FOX (Khoussainov, Rubin, Stephan '04) From a presentation $P = (M, (M_i)_{1 \le i \le n})$ of a regular structure \mathcal{A} and a FOX-formula α , one can compute a synchronous multitape-automaton M^{α} such that $R(M^{\alpha}) = \alpha^{\mathcal{A}}$.

Consequences

The FOX-theory of every automatic structure is decidable, automatic structures are closed under FOX-interpretations.

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers •••••••

First-order logic

Definable relations and quotients Interpretations

The infinity quantifier \exists^{∞}

modulo-quantifiers $\exists^{(p)}$

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Second-order logic

For a change $(\mathbb{N}\times\mathbb{N},\leq) \text{ is automatic and its second-order theory is undecidable.}$

Let $\mathcal{A} = (V, (R_i)_{1 \le i \le n})$ be a relational structure with $R_i \subseteq V^{k_i}$.

Syntax of our fragment FSO of second-order logic:

- formation rules for FOX
- if X is an n-ary relation variable and x₁,..., x_n are first-order variables, then X(x₁,..., x_n) is a formula.

.

• if X is a relation variable and α a formula s.t. $\forall Y, Z : \alpha(Y \cup Z) \rightarrow \alpha(Y)$ is a tautology, then $\exists X \text{ infinite} : \alpha(X) \text{ is a formula}$

free variables:

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Effectiveness results for FSO

Theorem (K, Lohrey '10)

- (1) The set of pairs (P, α) with P a presentation of some regular structure \mathcal{A} and α some sentence from FSO s.t. $\mathcal{A} \models \alpha$ is decidable.
- (2) From a presentation P of some regular structure A and a sentence ∃X infinite : α valid in A, one can compute a synchronous multitape automaton M such that R(M) is infinite and (A, R(M)) ⊨ α.

Proof strategy for (1)

- second-order quantifications can be restricted to "combs"
- ${\mathcal A}$ together with all "combs" is an " ω -automatic structure"
- these ω-automatic structures share all the nice properties of automatic structures that we learnt to love

The infinity quantifier ∃[∞] 000 modulo-quantifiers ∃^(p) 00000 Second-order quantifiers

Combs

comb: set $\{u_0u_1u_2\ldots u_{n-1}v_n \mid n \in \mathbb{N}\} \subseteq \Sigma^+$ with $|v_i| < |u_i|$ f.a. $i \in \mathbb{N}$

Lemma $X \subseteq \Sigma^+$ infinite, Σ finite $\Longrightarrow \exists C \subseteq X$ comb

Proof

The infinity quantifier ∃° 000 modulo-quantifiers ∃^(p) 00000 Second-order quantifiers

2nd order quantification over combs

Consequence

2nd-order quantification in FSO-sentences can be restricted to combs.

Proof

let $\exists X$ infinite : α be formula from FSO then $\forall C, R : C \subseteq R \land \alpha(R) \rightarrow \alpha(C)$ is a tautology hence: $\mathcal{A} \models \exists X$ infinite : α \iff there is an infinite set R s.t. $(\mathcal{A}, R) \models \alpha$

 $\iff \text{ there is an infinite comb } \mathcal{C} \text{ s.t. } (\mathcal{A},\mathcal{C}) \models \alpha$

Interim result

from $\alpha \in FSO$, we can construct $\overline{\alpha} \in FOX$ s.t. $\mathcal{A} \models \alpha$ if and only if $\overline{\alpha}$ holds in

$$\overline{\mathcal{A}} = \begin{pmatrix} V \cup \text{ set of combs.} & \text{all relations of } \mathcal{A}. \end{pmatrix}$$

23 / 26

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Combs as ω -words

coding of comb $C = \{u_1 u_2 \dots u_{n-1} v_n \mid n \in \mathbb{N}\}$: ω -word c over $(\Sigma \cup \{\#\})^2$ of form

$v_0 \# \dots \#$	$V_1 \# \dots \#$	$v_2 \# \dots \#$	<i>V</i> ₃ ##	<i>V</i> ₄#…#	
u ₀	<i>u</i> ₁	<i>u</i> ₂	U ₃	<i>u</i> 4	

hence \overline{A} is " ω -automatic" and validity of $\overline{\alpha}$ is decidable by Blumensath '99 and Bárány, Kaiser, Rubin '08

The infinity quantifier ∃[∞] 000 modulo-quantifiers $\exists^{(p)}$ 00000 Second-order quantifiers

Summary

Theorem (K, Lohrey '10)

- (1) The set of pairs (P, α) with P a presentation of some regular structure \mathcal{A} and α some sentence from FSO s.t. $\mathcal{A} \models \alpha$ is decidable.
- (2) From a presentation P of some regular structure A and a sentence ∃X infinite : α valid in P, one can compute a synchronous multitape automaton M such that R(M) is infinite and (A, R(M)) ⊨ α.
- (3) The class of automatic structures is closed under FSO-interpretations.

The infinity quantifier \exists^{∞} 000

modulo-quantifiers $\exists^{(p)}$

Second-order quantifiers

See you tomorrow!