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VC dimension
Definition

e Foraset V, we call £ C 2" a concept class.
e ForUCVietK | U:={XNnU|XeK}
U is shattered by IC, if £ | U = 2Y.
¢ The Vapnik-Chervonenkis (VC) dimension of K is
max {|U| | U C V shattered by K }, if max exists,

VC(K) =
() {oo, otherwise.

VC ()23
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PAC learning

e Successful learning of an unknown target concept X € K:
Obtain with high probability a hypothesis H € K that is a good
approximation of X.

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 4/37



PAC learning

e Successful learning of an unknown target concept X € K:
Obtain with high probability a hypothesis H € K that is a good
approximation of X. PAC: Probably Approximately Correct.

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 4/37



PAC learning

e Successful learning of an unknown target concept X € K:
Obtain with high probability a hypothesis H € K that is a good
approximation of X. PAC: Probably Approximately Correct.

e How to obtain H?

Draw random examples e € V labeled ‘+’ if e € X and *—’
otherwise, and produce a consistent hypothesis.
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PAC learning

e Successful learning of an unknown target concept X € K:
Obtain with high probability a hypothesis H € K that is a good
approximation of X. PAC: Probably Approximately Correct.

e How to obtain H?

Draw random examples e € V labeled ‘+’ if e € X and *—’
otherwise, and produce a consistent hypothesis.

Definition
Let0 <¢e,6 < 1. «e:error, 1 — 4: confidence.
K is PAC-learnable with sample size s = s(1/¢,1/0), if:

3 algorithm that, given ¢ and §, draws s random examples of an
unknown target concept X € K according to distribution D on V,
produces a hypothesis H € K such that

Prp(Prp(XAH) <e) >1-4.
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PAC learning

2ecov

Prp(Prp(XAH) <e) >1-4.
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PAC learning

2ecov

Pro(Pro(XAH) <€) >1—4.

Theorem (Blumer et al., Vapnik and Cervonenkis)
The sample size of a PAC algorithm for K is characterized by VC(K).

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 5/37



Outline

VC dimension

VC dimension of definable sets
Nowhere dense graph classes
Stability & bounded VC dimension
Conclusion

LR BN~

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 6/37



Preliminaries

we consider first-order logic (FO) and monadic second-order
logic (MSO)

MSO = FO + quantificaton over subsets of the universe
relational structures, mostly undirected graphs
Free variables are always individual variables
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Free variables are always individual variables

Definition

o For formula ¢(X, ¥), structure M and elements b of M let
¢(M,b) .= {ae M| M= y(a b)}

be the set defined by ¢ in M with parameters b.
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Preliminaries

we consider first-order logic (FO) and monadic second-order
logic (MSO)

MSO = FO + quantificaton over subsets of the universe
relational structures, mostly undirected graphs

Free variables are always individual variables

Definition
o For formula ¢(X, ¥), structure M and elements b of M let
#(M.B) = {&€M|M = (a b)}

be the set defined by ¢ in M with parameters b.

o Let K(p, M) := {o(M,b) | b € M} be the concept class of all
p-definable subsets of M.
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!rap!!s are . ..

undirected and simple.

V(G) := vertex set of G

E(G) :=setofedges e C V(G), |[e| =2

We encode undirected graphs as { E}-structures, where E is a
symmetric, irreflexive binary relation

Graph H is a subgraph of G, if V(H) C V(G) and E(H) C E(G).
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Formulas of bounded VC dimension

Let £ € {FO,MSO}. Let C be a class of structures of a fixed
signature.
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Formulas of bounded VC dimension

Let £ € {FO,MSO}. Let C be a class of structures of a fixed
signature.

Definition
A formula ¢(X, ¥) € £ has bounded VC dimension on C, if there is a
d such that for every M € C we have VC((K(¢, M)) < d.
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Formulas of bounded VC dimension

Let £ € {FO,MSO}. Let C be a class of structures of a fixed
signature.

Definition
A formula ¢(X, ¥) € £ has bounded VC dimension on C, if there is a
d such that for every M € C we have VC((K(¢, M)) < d.

Definition

Logic £ has bounded VC dimension on C, if every formula in £ has
bounded VC dimension on C.
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Formula ¢ has unbounded VC dimension

M= o(a3,b)) «— icJ
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Example

Example (Grohe, Turdn 2004)

MSO has unbounded VC dimension on the class of all square grid
graphs {Gn«n | n € N}.
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Example

Example (Grohe, Turdn 2004)

MSO has unbounded VC dimension on the class of all square grid
graphs {Gn«n | n € N}.

e Define o(x; y1, y2) € MSO such that for all n > 1:
VC(K(g, Gnxn)) = log(n).
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Example (Grohe, Turdn 2004)
MSO has unbounded VC dimension on the class of all square grid
graphs {Gn«n | n € N}.
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Example

Example (Grohe, Turdn 2004)
MSO has unbounded VC dimension on the class of all square grid
graphs {Gn«n | n € N}.
e Define o(x; y1, y2) € MSO such that for all n > 1:
VC(K(g, Gnxn)) = log(n).
e Forie{1,...,n} formula ¢ satisfies:
(0,)) € ©(Gnxn, (0,0),(i,0)) <
the jth bit in the binary representation of j is 1.
e Then: K(p, Gnhxn) shatters {(0,/) | 0 <j < log(n)}
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ISOLDE ADLER

Example, cont’d
Forie {1,...,n} the MSO-formula ©(x; y1, y2) satisfies:
(Ov.l) € @(annv (07 0)7 (’7 0)) —
the jth bit in the binary representation of i is 1.

k0 bbb L2 Ly bity
(01) o)  (03) con)
{0,0)
Bi“(’ﬂ (1.0)(\
bn(2) (20) ©
beald) (3.0)65—Tr
biw (4) (4,9) ‘ & J
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(0,/) € ©(Gnxn, (0,0), (i,0))

Example, cont’d
Forie {1,...,n} the MSO-formula ©(x; y1, y2) satisfies:

—

the jth bit in the binary representation of i is 1.

 says:

1. I'set X suchthatall p,q € {0,...,n} satisfy
(p,q) € X <= the gth bit of the binary representation of pis 1.

bk bk L2 Ly bty
(01) o)  (03) con)
{0,0)
hi“(’ﬂ (1.0)(\
bwn(2) (20) ©
bealy) (3.0)65—Tr
biw (4] («,0) | & J
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Example, cont’d
Forie {1,...,n} the MSO-formula ©(x; y1, y2) satisfies:
(071) € SD(GHXIH (07 0)7 (’7 0)) —
the jth bit in the binary representation of i is 1.
 says:
1. I'set X suchthatall p,q € {0,...,n} satisfy
(p,q) € X <= the gth bit of the binary representation of pis 1.

For this, we say that the (p + 1)st row is one plus the pth row (for
pe{l,...,n—1}), where we read the rows as binary numbers with the
elements of X being the ones, starting with the least significant bit.

b0 b1 L2 Lty bade
(0,1) o1y (03) €o,4)

{ 0,0)

bin(1) (19
bia(z) (2°)

bieal?) (3.°ﬁ9—T}
Liw (4) (4,0) | J
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Example, cont’d

Forie {1,...,n} the MSO-formula ¢(x; y1, y2) satisfies:
(O,]) € (,O(anm (07 0)7 (’7 0)) —
the jth bit in the binary representation of i is 1.

bk0 Lk 1 L2 Ly by
(01} 0y  (03) o)

{ 0,0)
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Example, cont’d

Forie {1,...,n} the MSO-formula ¢(x; y1, y2) satisfies:
(O’j) € @(GHXIN (07 0)7 (’7 0)) —
the jth bit in the binary representation of i is 1.
 says:
2. thereis a path from y» to x that goes horizontally to the right from y» to an
element of X and then vertically up to x.

b.lt O b’l" 4 Iq'-"z L)"}"S lv'nl- 4
(0,1) (01)  (03)  com)

{ 0,0)

biu(’ﬂ (1o @

b'm(l) (20) ©
bal3) (39 &

)

biw (4) (@)

®
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Main theorems

Theorem (Grohe, Turdn 2004)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth

Theorem (Adler, Adler 2010)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. FO has bounded VC dimension on C
2. C is nowhere dense
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Grohe-Turdn Theorem: proof sketch

Theorem (Grohe, Turdn 2004)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth
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Grohe-Turdn Theorem: proof sketch

Theorem (Grohe, Turdn 2004)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth

Proof.

e 2=1: Use: If C’ is a class of labeled binary trees, then MSO has
bounded VC dimension on C’. Encode graphs of bounded
treewidth in labeled binary trees.
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Grohe-Turdn Theorem: proof sketch

Theorem (Grohe, Turdn 2004)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth

Proof.

e 2=1: Use: If C’ is a class of labeled binary trees, then MSO has
bounded VC dimension on C’. Encode graphs of bounded
treewidth in labeled binary trees.

e 1=2: If C has unbounded treewidth, then C contains arbitrarily
large square ‘grids’ as subgraphs. By the previous example:
MSO has unbounded VC dimension on C.
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Adler® Theorem

We show:

Theorem (A% 2010)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

e C is nowhere dense,
e C is stable,
e FO has bounded VC dimension onC.
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Topological minors

Definition
A subdivision of a graph H is a graph resulting from H by
subdividing edges, i.e. by replacing edges by (new) paths.

H is a topological minor of G if a subdivision of H is isomorphic to a
subgraph of G.
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Topological minors
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Topological minors

Definition
A subdivision of a graph H is a graph resulting from H by
subdividing edges, i.e. by replacing edges by (new) paths.

H is a topological minor of G if a subdivision of H is isomorphic to a
subgraph of G.
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Topological r-minors

Definition
Letr e N.

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 19/37



Topological r-minors

Definition
Letr e N.

An r-subdivision of a graph H is a graph resulting from H by
subdividing edges at most r times
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Nowhere dense graph classes

K, := complete graph (clique) on n vertices
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Nowhere dense graph classes

K, := complete graph (clique) on n vertices

Definition (NeSetil and de Mendez in 2008")

Let C be a graph class.
C is nowhere dense, if for every r € N there is an n € N such that no

graph in C has K, as a topological r-minor.

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Definition (NeSetil and de Mendez in 2008")

Let C be a graph class.
C is nowhere dense, if for every r € N there is an n € N such that no

graph in C has K, as a topological r-minor.

Examples

o every finite graph class
e acyclic graphs (r+— n:=3)

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Nowhere dense graph classes

K, := complete graph (clique) on n vertices

Definition (NeSetil and de Mendez in 2008")

Let C be a graph class.
C is nowhere dense, if for every r € N there is an n € N such that no

graph in C has K, as a topological r-minor.

Examples
o every finite graph class
e acyclic graphs (r+— n:=3)
e planar graphs (r— n:=5)

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Nowhere dense graph classes
K, := complete graph (clique) on n vertices

Definition (NeSetil and de Mendez in 2008")

Let C be a graph class.
C is nowhere dense, if for every r € N there is an n € N such that no
graph in C has K, as a topological r-minor.

Examples

every finite graph class

acyclic graphs  (r— n:=3)

planar graphs (r— n:=5)

graphs of degree <d (r—n:=d+2)

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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C is nowhere dense, if for every r € N there is an n € N such that no
graph in C has K, as a topological r-minor.

Examples

every finite graph class

acyclic graphs  (r— n:=3)

planar graphs (r— n:=5)

graphs of degree <d (r—n:=d+2)

graphs excluding a fixed minor H (r — n:=|V(H)|)

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Nowhere dense graph classes
K, := complete graph (clique) on n vertices

Definition (NeSetil and de Mendez in 2008")

Let C be a graph class.
C is nowhere dense, if for every r € N there is an n € N such that no
graph in C has K, as a topological r-minor.

Examples

every finite graph class

acyclic graphs  (r— n:=3)

planar graphs (r— n:=5)

graphs of degree < d (r—n:=d+2)

graphs excluding a fixed minor H (r — n:=|V(H)|)
graphs locally excluding a minor H,  (r — n:= |V(H1)|)

Tin the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Nowhere dense = superflat
Let K| := K,, where every edge is subdivided exactly r times.
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Nowhere dense = superflat
Let K| := K,, where every edge is subdivided exactly r times.

Definition (Podewski and Ziegler, 1978)

Class C is superflat, if for every r € N there is an n € N such that K}
is not a subgraph of any member of C.
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Class C is superflat, if for every r € N there is an n € N such that K}
is not a subgraph of any member of C.

Example

e Theclass {K/ | 2 < r € N} is superflat.
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e Theclass {K/ | 2 < r € N} is superflat.

e C is nowhere dense, if for every r there is an n such that no
graph in C has K, as a topological r-minor.

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 21/37



Nowhere dense = superflat
Let K| := K,, where every edge is subdivided exactly r times.

Definition (Podewski and Ziegler, 1978)
Class C is superflat, if for every r € N there is an n € N such that K}
is not a subgraph of any member of C.

Example

e Theclass {K/ | 2 < r € N} is superflat.

e C is nowhere dense, if for every r there is an n such that no
graph in C has K, as a topological r-minor.

e C is nowhere dense <= for every r there is an n such that no
K" is a subgraph of a member of C.
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Nowhere dense = superflat
Let K| := K,, where every edge is subdivided exactly r times.

Definition (Podewski and Ziegler, 1978)
Class C is superflat, if for every r € N there is an n € N such that K}
is not a subgraph of any member of C.

Example
e Theclass {K/ | 2 < r € N} is superflat.

e C is nowhere dense, if for every r there is an n such that no
graph in C has K, as a topological r-minor.

e C is nowhere dense <= for every r there is an n such that no
K" is a subgraph of a member of C.

Remark
C is superflat < C is nowhere dense.

Proof. Ramsey. O
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Graph classes

~ ! ~~
bounded degree [bounded tree-width | {planar|

|

bounded local tree-width ‘ | excluded minor

’ locally excluded minor‘ ’ bounded expansion ‘

nowhere dense
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Graph classes

~ ! ~~
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Adler® Theorem

We show:

Theorem (A% 2010)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

e C is nowhere dense,

o C is superflat,

e (C Is stable,

e FO has bounded VC dimension onC.
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Stability

Let C be a class of structures of a fixed signature.
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Stability

Let C be a class of structures of a fixed signature.

Definition
A first-order formula ¢(X, ¥) has the order property on C if for every n
there exist a structure M € C and tuples a4, ...,an, by,....,bh € M
such that _

M= o(a,b) < i<
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Stability

Let C be a class of structures of a fixed signature.

Definition
A first-order formula ¢(X, ¥) has the order property on C if for every n
there exist a structure M € C and tuples a4, ...,an, by,....,bh € M
such that _

M= o(a,b) < i<

A class C of structures is called stable if there is no such formula.
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Formula ¢ has the order property




Example
The class of graphs B, (where B; is shown below) is not stable,
witnessed by E(x, y).
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Podewski-Ziegler for graph classes
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an { E}-structure).
If{G} is superflat then { G} is stable.
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an { E}-structure).
If{G} is superflat then { G} is stable.

Lemma (Podewski-Ziegler for graph classes)
LetC be a graph class. IfC is superflat then C is stable.
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an { E}-structure).
If{G} is superflat then { G} is stable.

Lemma (Podewski-Ziegler for graph classes)
LetC be a graph class. IfC is superflat then C is stable.

Proof sketch.

e Encode C in a single graph G¢ s.t.
C superflat = {G¢} superflat
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an { E}-structure).
If{G} is superflat then { G} is stable.

Lemma (Podewski-Ziegler for graph classes)
LetC be a graph class. IfC is superflat then C is stable.

Proof sketch.

e Encode C in a single graph G¢ s.t.
C superflat = {G¢} superflat

e interpret C in {Gc}
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an { E}-structure).
If{G} is superflat then { G} is stable.

Lemma (Podewski-Ziegler for graph classes)
LetC be a graph class. IfC is superflat then C is stable.

Proof sketch.

e Encode C in a single graph G¢ s.t.
C superflat = {G¢} superflat

e interpret C in {Gc}
e apply Podewski-Ziegler-Theorem to { G}
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Adler® Theorem

We show:

Theorem (A% 2010)

For any graph class C that is closed under taking subgraphs, the
following are equivalent:

e C is nowhere dense,

o C is superflat,

e (C Is stable,

e FO has bounded VC dimension onC.
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Stability & FO has bounded VC dimension

Remark

If C is stable then FO has bounded VC dimension on C.
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FO unbounded VC dimension on C=- C not stable
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Main Theorem

Theorem (A% 2010)

C a graph class closed under taking subgraphs.
The following are equivalent.

1. C is nowhere dense.

2. C is superflat.

3. C is stable.

4. FO has bounded VC dimension onC.
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Main Theorem

Theorem (A% 2010)

C a graph class closed under taking subgraphs.
The following are equivalent.

1. C is nowhere dense.

2. C is superflat.

3. C is stable.

4. FO has bounded VC dimension onC.

Remark: closure under subgraphs only for ‘4 = 1°.
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Conclusion: Outlook

Theorem (A% 2010)

C a class of structures over a fixed finite signature of arity < 2,
C closed under subgraphs. The following are equivalent.

1. C is nowhere dense.

C is superflat.

C is stable.

C is stable.

FO has bounded VC dimension on C.
6. FO has bounded VC dimension on C.

AN SN
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Open Problems

Is there a simple structural characterisation for general graph
classes on which FO (MSO) has bounded VC dimension?

e What about the VC dimension of other logics?
Is first order model checking in FPT on nowhere dense graph
classes?

Explore connections between infinite model theory and
algorithmic graph theory

Main sources:

[1] H. Adler, I. Adler, Nowhere dense graph classes, stability, and the independence
property, arxiv 2010. (New version submitted)

[2] M. Grohe, Gy. Turan, Learnability and definability in trees and similar structures,
Theory Comput. Syst. 2004.

[3] J. Nesetfil, P. Ossona de Mendez, On nowhere dense graphs, submitted.

[4] K.-P. Podewski, M. Ziegler, Stable graphs, Fund. Math. 1978.
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Why ‘nowhere dense’?

Let C be a graph class.
CVr := class of all topological r-minors of graphs in C.

Then: (V0 = { all subgraphs of graphs in C}.

Theorem (NeSetril, de Mendez, 2008)
C a class of finite graphs. Then

o log |E(H)|

lim limsup ———5 € 0,1,2}.

r—oo HeCVP log |V(H)| t J
[V(H)|— o0

Moreover, the quadratic case (right-hand side 2) is equivalent to:
for some r there is no finite upper bound on the sizes of cliques that
occur as topological r-minors.

Original definition: nowhere dense:= right hand side < 1.
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