The VC dimension of definable sets in graph classes

Isolde Adler Goethe University Frankfurt

18. GI-Jahrestagung Logik in der Informatik, TU Ilmenau, 4.11.2011

Outline

1. VC dimension

- 2. VC dimension of definable sets
- 3. Nowhere dense graph classes
- 4. Stability & bounded VC dimension
- 5. Conclusion

VC dimension

Definition

- For a set *V*, we call $\mathcal{K} \subseteq 2^V$ a concept class.
- For U ⊆ V let K ↾ U := {X ∩ U | X ∈ K}.
 U is shattered by K, if K ↾ U = 2^U.
- The Vapnik-Chervonenkis (VC) dimension of \mathcal{K} is $VC(\mathcal{K}) := \begin{cases} \max \{ |U| \mid U \subseteq V \text{ shattered by } \mathcal{K} \}, & \text{if max exists,} \\ \infty, & \text{otherwise.} \end{cases}$

VC (ک = 3 The VC dimension of definable sets in graph classes

VC dimension

Definition

- For a set *V*, we call $\mathcal{K} \subseteq 2^V$ a **concept class**.
- For $U \subseteq V$ let $\mathcal{K} \upharpoonright U := \{X \cap U \mid X \in \mathcal{K}\}$. U is shattered by \mathcal{K} , if $\mathcal{K} \upharpoonright U = 2^U$.
- The Vapnik-Chervonenkis (VC) dimension of \mathcal{K} is $VC(\mathcal{K}) := \begin{cases} \max \{ |U| \mid U \subseteq V \text{ shattered by } \mathcal{K} \}, & \text{if max exists,} \\ \infty, & \text{otherwise.} \end{cases}$

VC () ころ The VC dimension of definable sets in graph classes

VC dimension

Definition

- For a set *V*, we call $\mathcal{K} \subseteq 2^V$ a **concept class**.
- For U ⊆ V let K ↾ U := {X ∩ U | X ∈ K}.
 U is shattered by K, if K ↾ U = 2^U.
- The Vapnik-Chervonenkis (VC) dimension of \mathcal{K} is

 $\mathsf{VC}(\mathcal{K}) := \begin{cases} \max \left\{ |\mathcal{U}| \ \middle| \ \mathcal{U} \subseteq \mathcal{V} \text{ shattered by } \mathcal{K} \right\}, & \text{if max exists,} \\ \infty, & \text{otherwise.} \end{cases}$

VC (ک = 3 The VC dimension of definable sets in graph classes

- Successful learning of an unknown target concept X ∈ K: Obtain with high probability a hypothesis H ∈ K that is a good approximation of X. PAC: Probably Approximately Correct.
- How to obtain H?

Draw random examples $e \in V$ labeled '+' if $e \in X$ and '-' otherwise, and produce a consistent hypothesis.

Definition

Let $0 < \varepsilon, \delta < 1$. ε : error, $1 - \delta$: confidence.

 \mathcal{K} is **PAC-learnable with sample size** $s = s(1/\varepsilon, 1/\delta)$, if:

$$\Pr_D(\Pr_D(X \Delta H) < \varepsilon) > 1 - \delta.$$

- Successful learning of an unknown target concept X ∈ K: Obtain with high probability a hypothesis H ∈ K that is a good approximation of X. PAC: Probably Approximately Correct.
- How to obtain H?

Draw random examples $e \in V$ labeled '+' if $e \in X$ and '-' otherwise, and produce a consistent hypothesis.

Definition

Let $0 < \varepsilon, \delta < 1$. ε : error, $1 - \delta$: confidence.

 \mathcal{K} is **PAC-learnable with sample size** $s = s(1/\varepsilon, 1/\delta)$, if:

$$\Pr_D(\Pr_D(X \Delta H) < \varepsilon) > 1 - \delta.$$

- Successful learning of an unknown target concept X ∈ K: Obtain with high probability a hypothesis H ∈ K that is a good approximation of X. PAC: Probably Approximately Correct.
- How to obtain *H*? Draw random examples *e* ∈ *V* labeled '+' if *e* ∈ *X* and '-' otherwise, and produce a consistent hypothesis.

Definition

Let $0 < \varepsilon, \delta < 1$. ε : error, $1 - \delta$: confidence.

 \mathcal{K} is **PAC-learnable with sample size** $s = s(1/\varepsilon, 1/\delta)$, if:

$$\Pr_D(\Pr_D(X \Delta H) < \varepsilon) > 1 - \delta.$$

- Successful learning of an unknown target concept X ∈ K: Obtain with high probability a hypothesis H ∈ K that is a good approximation of X. PAC: Probably Approximately Correct.
- How to obtain *H*?
 Draw random examples *e* ∈ *V* labeled '+' if *e* ∈ *X* and '-' otherwise, and produce a consistent hypothesis.

Definition

Let $0 < \varepsilon, \delta < 1$. ε : error, $1 - \delta$: confidence.

 \mathcal{K} is PAC-learnable with sample size $s = s(1/\varepsilon, 1/\delta)$, if:

$$\Pr_D(\Pr_D(X\Delta H) < \varepsilon) > 1 - \delta.$$

$\Pr_D(\Pr_D(X\Delta H) < \varepsilon) > 1 - \delta.$

Theorem (Blumer et al., Vapnik and Cervonenkis)

The sample size of a PAC algorithm for \mathcal{K} is characterized by VC(\mathcal{K}).

ISOLDE ADLER

$$\Pr_D(\Pr_D(X\Delta H) < \varepsilon) > 1 - \delta.$$

Theorem (Blumer et al., Vapnik and Cervonenkis)

The sample size of a PAC algorithm for \mathcal{K} is characterized by VC(\mathcal{K}).

ISOLDE ADLER

Outline

- 1. VC dimension
- 2. VC dimension of definable sets
- 3. Nowhere dense graph classes
- 4. Stability & bounded VC dimension
- 5. Conclusion

Preliminaries

- we consider first-order logic (FO) and monadic second-order logic (MSO)
- MSO = FO + quantificaton over subsets of the universe
- · relational structures, mostly undirected graphs
- Free variables are always individual variables

Definition

• For formula $\varphi(\bar{x}, \bar{y})$, structure *M* and elements \bar{b} of *M* let

 $\varphi(M,\bar{b}):=\{\bar{a}\in M\mid M\models\varphi(\bar{a},\bar{b})\}$

be the set **defined** by φ in *M* with parameters \overline{b} .

Let K(φ, M) := {φ(M, b) | b ∈ M} be the concept class of all φ-definable subsets of M.

Preliminaries

- we consider first-order logic (FO) and monadic second-order logic (MSO)
- MSO = FO + quantificaton over subsets of the universe
- · relational structures, mostly undirected graphs
- Free variables are always individual variables

Definition

• For formula $\varphi(\bar{x}, \bar{y})$, structure *M* and elements \bar{b} of *M* let

$$\varphi(M, \bar{b}) := \{ \bar{a} \in M \mid M \models \varphi(\bar{a}, \bar{b}) \}$$

be the set **defined** by φ in *M* with parameters \bar{b} .

Let K(φ, M) := {φ(M, b) | b ∈ M} be the concept class of all φ-definable subsets of M.

Preliminaries

- we consider first-order logic (FO) and monadic second-order logic (MSO)
- MSO = FO + quantificaton over subsets of the universe
- · relational structures, mostly undirected graphs
- Free variables are always individual variables

Definition

• For formula $\varphi(\bar{x}, \bar{y})$, structure *M* and elements \bar{b} of *M* let

$$\varphi(M, \bar{b}) := \{ \bar{a} \in M \mid M \models \varphi(\bar{a}, \bar{b}) \}$$

be the set **defined** by φ in *M* with parameters \bar{b} .

Let K(φ, M) := {φ(M, b) | b ∈ M} be the concept class of all φ-definable subsets of M.

undirected and simple.

V(G) := vertex set of GE(G) := set of edges $e \subseteq V(G)$, |e| = 2

We encode undirected graphs as $\{E\}$ -structures, where E is a symmetric, irreflexive binary relation

Graph *H* is a **subgraph** of *G*, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

ISOLDE ADLER

undirected and simple.

V(G) := vertex set of GE(G) := set of edges $e \subseteq V(G)$, |e| = 2

We encode undirected graphs as $\{E\}$ -structures, where E is a symmetric, irreflexive binary relation

Graph *H* is a **subgraph** of *G*, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

ISOLDE ADLER

undirected and simple.

V(G) := vertex set of GE(G) := set of edges $e \subseteq V(G)$, |e| = 2

We encode undirected graphs as $\{E\}$ -structures, where E is a symmetric, irreflexive binary relation

Graph *H* is a **subgraph** of *G*, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

ISOLDE ADLER

undirected and simple.

V(G) := vertex set of GE(G) := set of edges $e \subseteq V(G)$, |e| = 2

We encode undirected graphs as $\{E\}$ -structures, where *E* is a symmetric, irreflexive binary relation

Graph *H* is a **subgraph** of *G*, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

ISOLDE ADLER

undirected and simple.

V(G) := vertex set of GE(G) := set of edges $e \subseteq V(G)$, |e| = 2

We encode undirected graphs as $\{E\}$ -structures, where *E* is a symmetric, irreflexive binary relation

Graph *H* is a **subgraph** of *G*, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

ISOLDE ADLER

Formulas of bounded VC dimension

Let $\mathcal{L} \in \{\text{FO}, \text{MSO}\}.$ Let \mathcal{C} be a class of structures of a fixed signature.

Definition

A formula $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}$ has **bounded VC dimension** on \mathcal{C} , if there is a d such that for every $M \in \mathcal{C}$ we have $VC((\mathcal{K}(\varphi, M)) \leq d$.

Definition

Logic \mathcal{L} has **bounded VC dimension** on \mathcal{C} , if every formula in \mathcal{L} has bounded VC dimension on \mathcal{C} .

Formulas of bounded VC dimension

Let $\mathcal{L} \in \{FO, MSO\}$. Let \mathcal{C} be a class of structures of a fixed signature.

Definition

A formula $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}$ has **bounded VC dimension** on \mathcal{C} , if there is a d such that for every $M \in \mathcal{C}$ we have $VC((\mathcal{K}(\varphi, M)) \leq d$.

Definition

Logic \mathcal{L} has **bounded VC dimension** on \mathcal{C} , if every formula in \mathcal{L} has bounded VC dimension on \mathcal{C} .

Formulas of bounded VC dimension

Let $\mathcal{L} \in \{FO, MSO\}$. Let \mathcal{C} be a class of structures of a fixed signature.

Definition

A formula $\varphi(\bar{x}, \bar{y}) \in \mathcal{L}$ has **bounded VC dimension** on \mathcal{C} , if there is a d such that for every $M \in \mathcal{C}$ we have $VC((\mathcal{K}(\varphi, M)) \leq d$.

Definition

 $\label{eq:logic L} \mbox{Logic \mathcal{L} has bounded VC dimension on \mathcal{C}, if every formula in \mathcal{L} has bounded VC dimension on \mathcal{C}.}$

Formula φ has unbounded VC dimension

Example (Grohe, Turán 2004)

- Define φ(x; y₁, y₂) ∈ MSO such that for all n ≥ 1: VC(K(φ, G_{n×n})) ≥ log(n).
- For *i* ∈ {1,..., *n*} formula φ satisfies:
 (0, *j*) ∈ φ(G_{n×n}, (0, 0), (*i*, 0)) ⇔
 the *j*th bit in the binary representation of *i* is 1.
- Then: $\mathcal{K}(\varphi, G_{n \times n})$ shatters $\{(0, j) \mid 0 \le j < \log(n)\}$

Example (Grohe, Turán 2004)

- Define φ(x; y₁, y₂) ∈ MSO such that for all n ≥ 1: VC(K(φ, G_{n×n})) ≥ log(n).
- For $i \in \{1, ..., n\}$ formula φ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.
- Then: $\mathcal{K}(\varphi, G_{n \times n})$ shatters $\{(0, j) \mid 0 \le j < \log(n)\}$

Example (Grohe, Turán 2004)

- Define φ(x; y₁, y₂) ∈ MSO such that for all n ≥ 1: VC(K(φ, G_{n×n})) ≥ log(n).
- For *i* ∈ {1,..., *n*} formula φ satisfies:
 (0, *j*) ∈ φ(G_{n×n}, (0, 0), (*i*, 0)) ⇔
 the *j*th bit in the binary representation of *i* is 1.
- Then: $\mathcal{K}(\varphi, G_{n \times n})$ shatters $\{(0, j) \mid 0 \le j < \log(n)\}$

Example (Grohe, Turán 2004)

- Define φ(x; y₁, y₂) ∈ MSO such that for all n ≥ 1: VC(K(φ, G_{n×n})) ≥ log(n).
- For $i \in \{1, ..., n\}$ formula φ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.
- Then: *K*(*φ*, *G*_{*n*×*n*}) shatters {(0, *j*) | 0 ≤ *j* < log(*n*)}

For $i \in \{1, ..., n\}$ the MSO-formula $\varphi(x; y_1, y_2)$ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.

 φ says:

1. \exists set X such that all $p, q \in \{0, ..., n\}$ satisfy

 $(p,q) \in X \iff$ the qth bit of the binary representation of p is 1.

For this, we say that the (p + 1)st row is one plus the *p*th row (for $p \in \{1, ..., n - 1\}$), where we read the rows as binary numbers with the elements of *X* being the ones, starting with the least significant bit.

For $i \in \{1, ..., n\}$ the MSO-formula $\varphi(x; y_1, y_2)$ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.

 φ says:

I. \exists set *X* such that all *p*, $q \in \{0, ..., n\}$ satisfy $(p, q) \in X \iff$ the *q*th bit of the binary representation of *p* is 1.

For this, we say that the (p + 1)st row is one plus the *p*th row (for $p \in \{1, ..., n - 1\}$), where we read the rows as binary numbers with the elements of *X* being the ones, starting with the least significant bit.

For $i \in \{1, ..., n\}$ the MSO-formula $\varphi(x; y_1, y_2)$ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.

 φ says:

1. \exists set X such that all $p, q \in \{0, ..., n\}$ satisfy

 $(p,q) \in X \iff$ the *q*th bit of the binary representation of *p* is 1.

For this, we say that the (p + 1)st row is one plus the *p*th row (for $p \in \{1, ..., n - 1\}$), where we read the rows as binary numbers with the elements of *X* being the ones, starting with the least significant bit.

For $i \in \{1, ..., n\}$ the MSO-formula $\varphi(x; y_1, y_2)$ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.

 φ says:

2. there is a path from y_2 to x that goes horizontally to the right from y_2 to an element of X and then vertically up to x.

For $i \in \{1, ..., n\}$ the MSO-formula $\varphi(x; y_1, y_2)$ satisfies: $(0, j) \in \varphi(G_{n \times n}, (0, 0), (i, 0)) \iff$ the *j*th bit in the binary representation of *i* is 1.

 φ says:

2. there is a path from y_2 to x that goes horizontally to the right from y_2 to an element of X and then vertically up to x.

Main theorems

Theorem (Grohe, Turán 2004)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- 1. MSO has bounded VC dimension on $\mathcal C$
- 2. C has bounded treewidth

Theorem (Adler, Adler 2010)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- *1.* FO has bounded VC dimension on C
- 2. \mathcal{C} is nowhere dense

Grohe-Turán Theorem: proof sketch

Theorem (Grohe, Turán 2004)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- 1. MSO has bounded VC dimension on $\mathcal C$
- 2. C has bounded treewidth

Proof.

- 2⇒1: Use: If C' is a class of labeled binary trees, then MSO has bounded VC dimension on C'. Encode graphs of bounded treewidth in labeled binary trees.
- 1⇒2: If C has unbounded treewidth, then C contains arbitrarily large square 'grids' as subgraphs. By the previous example: MSO has unbounded VC dimension on C.

Grohe-Turán Theorem: proof sketch

Theorem (Grohe, Turán 2004)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- 1. MSO has bounded VC dimension on $\mathcal C$
- 2. C has bounded treewidth

Proof.

- 2⇒1: Use: If C' is a class of labeled binary trees, then MSO has bounded VC dimension on C'. Encode graphs of bounded treewidth in labeled binary trees.
- 1⇒2: If C has unbounded treewidth, then C contains arbitrarily large square 'grids' as subgraphs. By the previous example: MSO has unbounded VC dimension on C.
Grohe-Turán Theorem: proof sketch

Theorem (Grohe, Turán 2004)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- 1. MSO has bounded VC dimension on \mathcal{C}
- 2. C has bounded treewidth

Proof.

- 2⇒1: Use: If C' is a class of labeled binary trees, then MSO has bounded VC dimension on C'. Encode graphs of bounded treewidth in labeled binary trees.
- 1⇒2: If C has unbounded treewidth, then C contains arbitrarily large square 'grids' as subgraphs. By the previous example: MSO has unbounded VC dimension on C.

Outline

- 1. VC dimension
- 2. VC dimension of definable sets
- 3. Nowhere dense graph classes
- 4. Stability & bounded VC dimension
- 5. Conclusion

We show:

Theorem (A^2 2010)

For any graph class *C* that is closed under taking subgraphs, the following are equivalent:

- C is nowhere dense,
- C is stable,
- FO has bounded VC dimension on C.

Definition

A **subdivision** of a graph *H* is a graph resulting from *H* by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

A **subdivision** of a graph H is a graph resulting from H by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

A **subdivision** of a graph H is a graph resulting from H by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

A **subdivision** of a graph H is a graph resulting from H by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

A **subdivision** of a graph *H* is a graph resulting from *H* by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

A **subdivision** of a graph *H* is a graph resulting from *H* by **subdividing** edges, i.e. by replacing edges by (new) paths.

Definition

Let $r \in \mathbb{N}$.

An *r*-subdivision of a graph H is a graph resulting from H by subdividing edges at most r times

Definition

Let $r \in \mathbb{N}$. An *r*-subdivision of a graph *H* is a graph resulting from *H* by subdividing edges at most *r* times

Definition

Let $r \in \mathbb{N}$. An *r*-subdivision of a graph *H* is a graph resulting from *H* by subdividing edges at most *r* times

Definition

Let $r \in \mathbb{N}$.

An *r*-subdivision of a graph H is a graph resulting from H by subdividing edges at most r times

Definition

Let $r \in \mathbb{N}$.

An *r*-subdivision of a graph *H* is a graph resulting from *H* by subdividing edges at most r times

Definition

Let $r \in \mathbb{N}$.

An *r*-subdivision of a graph *H* is a graph resulting from *H* by subdividing edges at most r times

$K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

¹ in the context of homomorphism preservation theorems (nowhere dense = *uniformly quasi-wide*)

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{1}\mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{1}\mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

¹in the context of homomorphism preservation theorems (nowhere dense = *uniformly quasi-wide*)

ISOLDE ADLER

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{1}\mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ $(r \mapsto n := d + 2)$
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{1}\mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let C be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ ($r \mapsto n := d + 2$)
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$

• graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{1}\mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

 $K_n :=$ complete graph (clique) on *n* vertices

Definition (Nešetřil and de Mendez in 2008¹)

Let \mathcal{C} be a graph class.

C is **nowhere dense**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that no graph in C has K_n as a topological *r*-minor.

Examples

- every finite graph class
- acyclic graphs $(r \mapsto n := 3)$
- planar graphs $(r \mapsto n := 5)$
- graphs of degree $\leq d$ ($r \mapsto n := d + 2$)
- graphs excluding a fixed minor H $(r \mapsto n := |V(H)|)$
- graphs locally excluding a minor H_r $(r \mapsto n := |V(H_{r+1})|)$

 $^{^{1}\}mbox{in the context of homomorphism preservation theorems (nowhere dense = uniformly quasi-wide)}$

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat $\iff C$ is nowhere dense. *Proof* Bamsey

ISOLDE ADLER

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat $\iff C$ is nowhere dense. *Proof*. Bamsey

ISOLDE ADLER

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat $\iff C$ is nowhere dense. *Proof*. Bamsey

ISOLDE ADLER

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat $\iff C$ is nowhere dense. Proof. Bamsey

ISOLDE ADLER

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat \iff *C* is nowhere dense *Proof*: Ramsey.

ISOLDE ADLER

Let $K_n^r := K_n$, where every edge is subdivided exactly *r* times.

Definition (Podewski and Ziegler, 1978)

Class C is **superflat**, if for every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that K_n^r is not a subgraph of any member of C.

Example

- The class $\{K_r^r \mid 2 \le r \in \mathbb{N}\}$ is superflat.
- *C* is **nowhere dense**, if for every *r* there is an *n* such that no graph in *C* has *K_n* as a topological *r*-minor.
- C is nowhere dense \iff for every *r* there is an *n* such that no $K_n^{\leq r}$ is a subgraph of a member of C.

Remark C is superflat $\iff C$ is nowhere dense.

Proof: Ramsey.

Graph classes

Graph classes

Outline

- 1. VC dimension
- 2. VC dimension of definable sets
- 3. Nowhere dense graph classes
- 4. Stability & bounded VC dimension
- 5. Conclusion

We show:

Theorem (*A*² 2010)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- C is nowhere dense,
- C is superflat,
- C is stable,
- FO has bounded VC dimension on C.

Stability

Let $\ensuremath{\mathcal{C}}$ be a class of structures of a fixed signature.

Definition

A first-order formula $\varphi(\bar{x}, \bar{y})$ has the **order property** on C if for every n there exist a structure $M \in C$ and tuples $\bar{a}_1, \ldots, \bar{a}_n, \bar{b}_1, \ldots, \bar{b}_n \in M$ such that

$$M \models \varphi(\bar{a}_i, \bar{b}_j) \iff i < j.$$

A class C of structures is called **stable** if there is no such formula.

Stability

Let \mathcal{C} be a class of structures of a fixed signature.

Definition

A first-order formula $\varphi(\bar{x}, \bar{y})$ has the **order property** on C if for every n there exist a structure $M \in C$ and tuples $\bar{a}_1, \ldots, \bar{a}_n, \bar{b}_1, \ldots, \bar{b}_n \in M$ such that

$$M \models \varphi(\bar{a}_i, \bar{b}_j) \iff i < j.$$

A class C of structures is called **stable** if there is no such formula.

Stability

Let \mathcal{C} be a class of structures of a fixed signature.

Definition

A first-order formula $\varphi(\bar{x}, \bar{y})$ has the **order property** on C if for every n there exist a structure $M \in C$ and tuples $\bar{a}_1, \ldots, \bar{a}_n, \bar{b}_1, \ldots, \bar{b}_n \in M$ such that

$$M \models \varphi(\bar{a}_i, \bar{b}_j) \iff i < j.$$

A class C of structures is called **stable** if there is no such formula.
Formula φ *has the order property*

Example

The class of graphs B_n (where B_7 is shown below) is not stable, witnessed by E(x, y).

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to $\{G_{\mathcal{C}}\}$

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to $\{G_{\mathcal{C}}\}$

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to $\{G_{\mathcal{C}}\}$

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to {G_C}

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to {G_C}

Theorem (Podewski, Ziegler 1978)

Let G be an infinite graph (coded as an $\{E\}$ -structure). If $\{G\}$ is superflat then $\{G\}$ is stable.

Lemma (Podewski-Ziegler for graph classes)

Let C be a graph class. If C is superflat then C is stable.

- Encode C in a single graph G_C s.t. C superflat $\Rightarrow \{G_C\}$ superflat
- interpret C in $\{G_C\}$
- apply Podewski-Ziegler-Theorem to {G_C}

We show:

Theorem (A² 2010)

For any graph class C that is closed under taking subgraphs, the following are equivalent:

- C is nowhere dense,
- C is superflat,
- C is stable,
- FO has bounded VC dimension on C.

Stability & FO has bounded VC dimension

Remark If C is stable then FO has bounded VC dimension on C.

FO unbounded VC dimension on $C \Rightarrow C$ not stable

Main Theorem

Theorem (A^2 2010)

 \mathcal{C} a graph class closed under taking subgraphs. The following are equivalent.

- 1. C is nowhere dense.
- 2. C is superflat.
- 3. C is stable.
- 4. FO has bounded VC dimension on C.

Remark: closure under subgraphs only for '4 \Rightarrow 1'.

Main Theorem

Theorem (A^2 2010)

 \mathcal{C} a graph class closed under taking subgraphs. The following are equivalent.

- 1. C is nowhere dense.
- 2. C is superflat.
- 3. C is stable.
- 4. FO has bounded VC dimension on C.

Remark: closure under subgraphs only for '4 \Rightarrow 1'.

Outline

- 1. VC dimension
- 2. VC dimension of definable sets
- 3. Nowhere dense graph classes
- 4. Stability & bounded VC dimension
- 5. Conclusion

Conclusion: Outlook

Theorem $(A^2 \ 2010)$

C a class of structures over a fixed finite signature of arity ≤ 2 , \underline{C} closed under subgraphs. The following are equivalent.

- 1. \underline{C} is nowhere dense.
- 2. \underline{C} is superflat.
- 3. C is stable.
- 4. \underline{C} is stable.
- 5. FO has bounded VC dimension on C.
- 6. FO has bounded VC dimension on \underline{C} .

Open Problems

- Is there a simple structural characterisation for general graph classes on which FO (MSO) has bounded VC dimension?
- What about the VC dimension of other logics?
- Is first order model checking in FPT on nowhere dense graph classes?
- Explore connections between infinite model theory and algorithmic graph theory

Main sources:

[1] H. Adler, I. Adler, *Nowhere dense graph classes, stability, and the independence property*, arxiv 2010. (New version submitted)

[2] M. Grohe, Gy. Turán, *Learnability and definability in trees and similar structures*, Theory Comput. Syst. 2004.

[3] J. Nešetřil, P. Ossona de Mendez, On nowhere dense graphs, submitted.

[4] K.-P. Podewski, M. Ziegler, *Stable graphs*, Fund. Math. 1978.

Let C be a graph class. $C \nabla r :=$ class of all topological *r*-minors of graphs in C.

Then: $C\nabla 0 = \{ \text{ all subgraphs of graphs in } C \}.$

Theorem (Nešetřil, de Mendez, 2008) C a class of finite graphs. Then

$$\lim_{r\to\infty}\limsup_{\substack{H\in\mathcal{C}\nabla r\\|V(H)|\to\infty}}\frac{\log|E(H)|}{\log|V(H)|} \in \{0,1,2\}.$$

Moreover, the quadratic case (right-hand side 2) is equivalent to: for some r there is no finite upper bound on the sizes of cliques that occur as topological r-minors.

Let C be a graph class. $C\nabla r :=$ class of all topological *r*-minors of graphs in C.

Then: $C\nabla 0 = \{ \text{ all subgraphs of graphs in } C \}.$

Theorem (Nešetřil, de Mendez, 2008) C a class of finite graphs. Then

$$\lim_{r\to\infty}\limsup_{\substack{H\in\mathcal{C}\nabla r\\|V(H)|\to\infty}}\frac{\log|E(H)|}{\log|V(H)|} \in \{0,1,2\}.$$

Moreover, the quadratic case (right-hand side 2) is equivalent to: for some r there is no finite upper bound on the sizes of cliques that occur as topological r-minors.

Let C be a graph class. $C\nabla r :=$ class of all topological *r*-minors of graphs in C.

Then: $C\nabla 0 = \{ \text{ all subgraphs of graphs in } C \}.$

Theorem (Nešetřil, de Mendez, 2008)

 \mathcal{C} a class of finite graphs. Then

$$\lim_{r\to\infty}\limsup_{\substack{H\in\mathcal{C}\nabla r\\|V(H)|\to\infty}}\frac{\log|E(H)|}{\log|V(H)|} \in \{0,1,2\}.$$

Moreover, the quadratic case (right-hand side 2) is equivalent to: for some r there is no finite upper bound on the sizes of cliques that occur as topological r-minors.

Let C be a graph class. $C\nabla r :=$ class of all topological *r*-minors of graphs in C.

Then: $C\nabla 0 = \{ \text{ all subgraphs of graphs in } C \}.$

Theorem (Nešetřil, de Mendez, 2008)

 \mathcal{C} a class of finite graphs. Then

$$\lim_{r\to\infty}\limsup_{\substack{H\in\mathcal{C}\nabla r\\|V(H)|\to\infty}}\frac{\log|E(H)|}{\log|V(H)|} \in \{0,1,2\}.$$

Moreover, the quadratic case (right-hand side 2) is equivalent to: for some r there is no finite upper bound on the sizes of cliques that occur as topological r-minors.