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VC dimension
Definition

• For a set V , we call K ⊆ 2V a concept class.
• For U ⊆ V let K � U := {X ∩ U | X ∈ K}.

U is shattered by K, if K � U = 2U .
• The Vapnik-Chervonenkis (VC) dimension of K is

VC(K) :=

{
max

{
|U|

∣∣ U ⊆ V shattered by K
}
, if max exists,

∞, otherwise.
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PAC learning

• Successful learning of an unknown target concept X ∈ K:
Obtain with high probability a hypothesis H ∈ K that is a good
approximation of X . PAC: Probably Approximately Correct.

• How to obtain H?
Draw random examples e ∈ V labeled ‘+’ if e ∈ X and ‘−’
otherwise, and produce a consistent hypothesis.

Definition
Let 0 < ε, δ < 1. ε: error, 1− δ: confidence.
K is PAC-learnable with sample size s = s(1/ε,1/δ), if:
∃ algorithm that, given ε and δ, draws s random examples of an
unknown target concept X ∈ K according to distribution D on V ,
produces a hypothesis H ∈ K such that

PrD
(
PrD(X∆H) < ε

)
> 1− δ.
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PAC learning

PrD
(
PrD(X∆H) < ε

)
> 1− δ.

Theorem (Blumer et al., Vapnik and Cervonenkis)
The sample size of a PAC algorithm for K is characterized by VC(K).
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Preliminaries

• we consider first-order logic (FO) and monadic second-order
logic (MSO)

• MSO = FO + quantificaton over subsets of the universe
• relational structures, mostly undirected graphs
• Free variables are always individual variables

Definition

• For formula ϕ(x̄ , ȳ), structure M and elements b̄ of M let

ϕ(M, b̄) := {ā ∈ M | M |= ϕ(ā, b̄)}

be the set defined by ϕ in M with parameters b̄.
• Let K(ϕ,M) :=

{
ϕ(M, b̄)

∣∣ b̄ ∈ M
}

be the concept class of all
ϕ-definable subsets of M.
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Graphs are . . .
undirected and simple.

V (G) := vertex set of G
E(G) := set of edges e ⊆ V (G), |e| = 2

We encode undirected graphs as {E}-structures, where E is a
symmetric, irreflexive binary relation

Graph H is a subgraph of G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).
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Formulas of bounded VC dimension

Let L ∈ {FO,MSO}. Let C be a class of structures of a fixed
signature.

Definition
A formula ϕ(x̄ , ȳ) ∈ L has bounded VC dimension on C, if there is a
d such that for every M ∈ C we have VC

(
(K(ϕ,M)

)
≤ d .

Definition
Logic L has bounded VC dimension on C, if every formula in L has
bounded VC dimension on C.
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Formula ϕ has unbounded VC dimension

ϕā1

ā2

ā3

ā4

ā5

ā6

b̄{2,4,5}

M |= ϕ(āi , b̄J) ⇐⇒ i ∈ J
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Example

Example (Grohe, Turán 2004)
MSO has unbounded VC dimension on the class of all square grid
graphs {Gn×n | n ∈ N}.

• Define ϕ(x ; y1, y2) ∈ MSO such that for all n ≥ 1:
VC
(
K(ϕ,Gn×n)

)
≥ log(n).

• For i ∈ {1, . . . ,n} formula ϕ satisfies:
(0, j) ∈ ϕ(Gn×n, (0,0), (i ,0)) ⇐⇒
the j th bit in the binary representation of i is 1.

• Then: K(ϕ,Gn×n) shatters {(0, j) | 0 ≤ j < log(n)}
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Example, cont’d
For i ∈ {1, . . . , n} the MSO-formula ϕ(x ; y1, y2) satisfies:
(0, j) ∈ ϕ(Gn×n, (0, 0), (i, 0)) ⇐⇒
the j th bit in the binary representation of i is 1.

ϕ says:

1. ∃ set X such that all p, q ∈ {0, . . . , n} satisfy
(p, q) ∈ X ⇐⇒ the qth bit of the binary representation of p is 1.
For this, we say that the (p + 1)st row is one plus the pth row (for
p ∈ {1, . . . , n − 1}), where we read the rows as binary numbers with the
elements of X being the ones, starting with the least significant bit.
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Example, cont’d

For i ∈ {1, . . . , n} the MSO-formula ϕ(x ; y1, y2) satisfies:
(0, j) ∈ ϕ(Gn×n, (0, 0), (i, 0)) ⇐⇒
the j th bit in the binary representation of i is 1.

ϕ says:

2. there is a path from y2 to x that goes horizontally to the right from y2 to an
element of X and then vertically up to x .
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Main theorems

Theorem (Grohe, Turán 2004)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth

Theorem (Adler, Adler 2010)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. FO has bounded VC dimension on C
2. C is nowhere dense
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Grohe-Turán Theorem: proof sketch

Theorem (Grohe, Turán 2004)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

1. MSO has bounded VC dimension on C
2. C has bounded treewidth

Proof.

• 2⇒1: Use: If C′ is a class of labeled binary trees, then MSO has
bounded VC dimension on C′. Encode graphs of bounded
treewidth in labeled binary trees.

• 1⇒2: If C has unbounded treewidth, then C contains arbitrarily
large square ‘grids’ as subgraphs. By the previous example:
MSO has unbounded VC dimension on C.
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Adler2 Theorem

We show:

Theorem (A2 2010)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

• C is nowhere dense,
• C is stable,
• FO has bounded VC dimension on C.

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 17/37



Topological minors

Definition
A subdivision of a graph H is a graph resulting from H by
subdividing edges, i.e. by replacing edges by (new) paths.

H is a topological minor of G if a subdivision of H is isomorphic to a
subgraph of G.
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Topological r -minors

Definition
Let r ∈ N.
An r -subdivision of a graph H is a graph resulting from H by
subdividing edges at most r times

H is a topological r -minor of G if an r -subdivision of H is isomorphic
to a subgraph of G.
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Nowhere dense graph classes
Kn := complete graph (clique) on n vertices

Definition (Nešetřil and de Mendez in 20081)
Let C be a graph class.
C is nowhere dense, if for every r ∈ N there is an n ∈ N such that no
graph in C has Kn as a topological r -minor.

Examples

• every finite graph class
• acyclic graphs (r 7→ n := 3)
• planar graphs (r 7→ n := 5)
• graphs of degree ≤ d (r 7→ n := d + 2)
• graphs excluding a fixed minor H (r 7→ n := |V (H)|)
• graphs locally excluding a minor Hr (r 7→ n := |V (Hr+1)|)

1in the context of homomorphism preservation theorems (nowhere dense =
uniformly quasi-wide)
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Nowhere dense = superflat
Let K r

n := Kn, where every edge is subdivided exactly r times.

Definition (Podewski and Ziegler, 1978)
Class C is superflat, if for every r ∈ N there is an n ∈ N such that K r

n
is not a subgraph of any member of C.

Example

• The class {K r
r | 2 ≤ r ∈ N} is superflat.

• C is nowhere dense, if for every r there is an n such that no
graph in C has Kn as a topological r -minor.

• C is nowhere dense ⇐⇒ for every r there is an n such that no
K≤r

n is a subgraph of a member of C.

Remark
C is superflat ⇐⇒ C is nowhere dense.
Proof: Ramsey.
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Graph classes

paths
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Outline

1. VC dimension
2. VC dimension of definable sets
3. Nowhere dense graph classes
4. Stability & bounded VC dimension
5. Conclusion
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Adler2 Theorem

We show:

Theorem (A2 2010)
For any graph class C that is closed under taking subgraphs, the
following are equivalent:

• C is nowhere dense,
• C is superflat,
• C is stable,
• FO has bounded VC dimension on C.
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Stability

Let C be a class of structures of a fixed signature.

Definition
A first-order formula ϕ(x̄ , ȳ) has the order property on C if for every n
there exist a structure M ∈ C and tuples ā1, . . . , ān, b̄1, . . . , b̄n ∈ M
such that

M |= ϕ(āi , b̄j ) ⇐⇒ i < j .

A class C of structures is called stable if there is no such formula.
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A first-order formula ϕ(x̄ , ȳ) has the order property on C if for every n
there exist a structure M ∈ C and tuples ā1, . . . , ān, b̄1, . . . , b̄n ∈ M
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Formula ϕ has the order property
ϕā1

ā2

ā3

ā4

ā5

ā6

ā7

b̄1

b̄2

b̄3

b̄4

b̄5

b̄6

b̄7

M |= ϕ(āi , b̄j ) ⇐⇒ i < j
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Example
The class of graphs Bn (where B7 is shown below) is not stable,
witnessed by E(x , y).

a1

a2

a3

a4

a5

a6

a7

b1

b2

b3

b4

b5

b6

b7

B7 |= E(ai ,bj ) ⇐⇒ i < j
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Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Podewski-Ziegler for graph classes

Theorem (Podewski, Ziegler 1978)
Let G be an infinite graph (coded as an {E}-structure).
If {G} is superflat then {G} is stable.

Lemma (Podewski-Ziegler for graph classes)
Let C be a graph class. If C is superflat then C is stable.

Proof sketch.
• Encode C in a single graph GC s.t.
C superflat⇒ {GC} superflat

• interpret C in {GC}
• apply Podewski-Ziegler-Theorem to {GC}

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 28/37



Adler2 Theorem

We show:

Theorem (A2 2010)
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Stability & FO has bounded VC dimension

Remark
If C is stable then FO has bounded VC dimension on C.
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FO unbounded VC dimension on C⇒ C not stable

ϕā1

ā2

ā3

ā4

ā5

ā6

b̄{2,4,5}

ϕā1

ā2

ā3

ā4

ā5

ā6

ā7

b̄1

b̄2

b̄3

b̄4

b̄5

b̄6

b̄7

ISOLDE ADLER THE VC DIMENSION OF DEFINABLE SETS IN GRAPH CLASSES 31/37



Main Theorem

Theorem (A2 2010)
C a graph class closed under taking subgraphs.
The following are equivalent.

1. C is nowhere dense.
2. C is superflat.
3. C is stable.
4. FO has bounded VC dimension on C.

Remark: closure under subgraphs only for ‘4⇒ 1’.
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Conclusion: Outlook

Theorem (A2 2010)
C a class of structures over a fixed finite signature of arity ≤ 2,
C closed under subgraphs. The following are equivalent.

1. C is nowhere dense.
2. C is superflat.
3. C is stable.
4. C is stable.
5. FO has bounded VC dimension on C.
6. FO has bounded VC dimension on C.
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Open Problems

• Is there a simple structural characterisation for general graph
classes on which FO (MSO) has bounded VC dimension?

• What about the VC dimension of other logics?
• Is first order model checking in FPT on nowhere dense graph

classes?
• Explore connections between infinite model theory and

algorithmic graph theory

Main sources:
[1] H. Adler, I. Adler, Nowhere dense graph classes, stability, and the independence
property, arxiv 2010. (New version submitted)
[2] M. Grohe, Gy. Turán, Learnability and definability in trees and similar structures,
Theory Comput. Syst. 2004.
[3] J. Nešetřil, P. Ossona de Mendez, On nowhere dense graphs, submitted.
[4] K.-P. Podewski, M. Ziegler, Stable graphs, Fund. Math. 1978.
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Vielen Dank!
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Why ‘nowhere dense’?

Let C be a graph class.
C∇r := class of all topological r -minors of graphs in C.

Then: C∇0 = { all subgraphs of graphs in C}.

Theorem (Nešetřil, de Mendez, 2008)
C a class of finite graphs. Then

lim
r→∞

lim sup
H∈C∇r
|V (H)|→∞

log |E(H)|
log |V (H)|

∈ {0,1,2}.

Moreover, the quadratic case (right-hand side 2) is equivalent to:
for some r there is no finite upper bound on the sizes of cliques that
occur as topological r -minors.
Original definition: nowhere dense:= right hand side ≤ 1.
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