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Introduction
I In the 1960s, Büchi, Elgot, Rabin, and Trakhtenbrot used finite

automata on (infinite) words and trees to obtain positive
decidability results for several logical theories.

I In 1995, Khoussainov and Nerode initiated the study of
automaton presentable structures, i.e., structures presented by
finite automata, and showed that every such structure has
decidable first order theory.

I Later on, these investigations were extended to structures
presented by automata on infinite words and (infinite) trees.

I Since trees generalize words, every structure presentable by finite
automata is also presentable by tree automata.

I However, there are structures presesentable by tree automata
which are not presentable by finite automata.

I Naturally, the following question arises: Given a structure
presesented by tree automata, is it decidable, whether this
structure is also presentable by finite automata?



Synchronous multi-tape automata

Question
How can we present relations on words by finite automata?

a1 a2 a3 am

b1 b2 b3 bm bm+1 bn

q0
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Synchronous multi-tape automata

Question
How can we present relations on words by finite automata?

a1 a2 a3 am

b1 b2 b3 bm bm+1 bn

qn ∈ F?



Convolution of words and regular word relations

Definition
Let 6∈ Σ and Σ = Σ ∪ { }. For n words w1, . . . ,wn ∈ Σ? their
convolution

⊗(w1, . . . ,wn) ∈
(
Σn )?

is defined as illustrated below.

Convolution of three words for Σ = {a, b, c}:

⊗(aabca, baccba, cb) =
a a b c a
b a c c b a
c b

Elements of Σ3

∈
(
Σ3 )?



Convolution of words and regular word relations

Definition
Let 6∈ Σ and Σ = Σ ∪ { }. For n words w1, . . . ,wn ∈ Σ? their
convolution

⊗(w1, . . . ,wn) ∈
(
Σn )?

is defined as illustrated below.

Definition
An n-ary word relation R ⊆ (Σ?)n is automatic if the word language

⊗R = { ⊗(w1, . . . ,wn) | (w1, . . . ,wn) ∈ R } ⊆
(
Σn )?

is regular.



Word automatic structures

Definition
A relational structure S = (U;R1, . . . ,Rn) is word automatic if there
are

I an alphabet Σ and
I an injective mapping h : U → Σ? (the naming function)

such that
I h(U) is a regular word language and
I h(R1), . . . , h(Rn) are automatic word relations.

Notice: The structure
(
h(U); h(R1), . . . , h(Rn)

)
is isomorphic to S.

A tuple M = (M;M1, . . . ,Mn) consisting of
I a finite automaton M accepting h(U) and
I finite automata Mi accepting ⊗h(Ri ) for each i = 1, . . . , n

is a word automatic presentation of S.



The fundamental theorem on word automatic structures

Theorem (Khoussainov, Nerode 1995)
Let S be a word automatic structure and R a first order definable
relation on S.

1 The structure S ′ = (S;R) is also word automatic.
2 One can compute a word automatic presentation of S ′ from a

word automatic presentation of S and a first order formula
defining R.

Corollary (Khoussainov, Nerode 1995)
The first order theory of a word automatic structure is decidable.



Examples of word automatic structures

The following structures are word automatic:
I finite structures
I (N; +), (Z; +), (N;<), (Z;<), (Q;<)

I ordinals < ωω

I Caley graphs of many interesting groups
I configuration graphs of Turing machines (⇒ undecidable

MSO-theory)

The following structures are not word automatic:
I (N;×), (Q; +)

I ordinals ≥ ωω

I infinite fields
I the random graph (a.k.a. Rado graph)
I uncountable structures
I structures with undecidable first order theory



Trees

Definition
Let Σ be an alphabet. A Σ-tree, or just tree, is a map t : D → Σ,
where D = dom(t) is a non-empty, finite, and prefix-closed subset of
{0, 1}?.
The set of all Σ-tree is denoted with TΣ.

Two Σ trees for Σ = {a, b, c}:
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Tree automata and regular tree languages
Definition
A (deterministic bottom-up) tree automaton A = (Q, q0, δ,F )
(over Σ) consists of

I a non-empty, finite set of states Q
I an initial state q0 ∈ Q
I a transition function δ : Q × Q × Σ→ Q
I a set F ⊆ Q of accepting states

The state which is reached (at the root) after processing a tree
t ∈ TΣ bottom-up is denoted with A(t).

The tree language accepted by A is

L(A) = { t ∈ TΣ | A(t) ∈ F } .

Definition
A tree language L ⊆ TΣ is regular if it can be accepted by some tree
automaton.



Bottom-up processing of trees

Definition
The state which is reached (at the root) after a tree automaton
A = (Q, q0, δ,F ) processed a tree t ∈ TΣ bottom-up is denoted with
A(t) and defined inductively on the structure of t:

1 t =
a

t0 t1
: A(t) = δ

(
A(t0),A(t1), a

)
2 t =

a

t0
: A(t) = δ

(
A(t0), q0, a

)
3 t =

a

t1
: A(t) = δ

(
q0,A(t1), a

)
4 t =

a
: A(t) = δ

(
q0, q0, a

)



Tree automata and regular tree languages
Definition
A (deterministic bottom-up) tree automaton A = (Q, q0, δ,F )
(over Σ) consists of

I a non-empty, finite set of states Q
I an initial state q0 ∈ Q
I a transition function δ : Q × Q × Σ→ Q
I a set F ⊆ Q of accepting states

The state which is reached (at the root) after processing a tree
t ∈ TΣ bottom-up is denoted with A(t).
The tree language accepted by A is

L(A) = { t ∈ TΣ | A(t) ∈ F } .

Definition
A tree language L ⊆ TΣ is regular if it can be accepted by some tree
automaton.



Convolution of trees and regular tree relations

Definition
Let 6∈ Σ and Σ = Σ ∪ { }. For n trees t1, . . . , tn ∈ TΣ their
convolution

⊗(t1, . . . , tn) ∈ TΣn

is defined as illustrated below.

Convolution of two trees for Σ = {a, b, c}:

⊗
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Convolution of trees and regular tree relations

Definition
Let 6∈ Σ and Σ = Σ ∪ { }. For n trees t1, . . . , tn ∈ TΣ their
convolution

⊗(t1, . . . , tn) ∈ TΣn

is defined as illustrated below.

Definition
An n-ary tree relation R ⊆

(
TΣ

)n is automatic if the tree language

⊗R = { ⊗(t1, . . . , tn) | (t1, . . . , tn) ∈ R } ⊆ TΣn

is regular.



Tree automatic structures

Definition
The notions of tree automatic and tree automatic presentation
are defined analogously to the word case.

Theorem (Blumensath 1999)
Let S be a tree automatic structure and R a first order definable
relation on S.

1 The structure S ′ = (S;R) is also tree automatic.
2 One can compute a tree automatic presentation of S ′ from a tree

automatic presentation of S and a first order formula defining R.

Corollary (Blumensath 1999)
The first order theory of a tree automatic structure is decidable.



Examples of tree automatic structures

The following structures are tree automatic:
I word automatic structures
I (N;×), (Z;×), (Q;×)

I ordinals < ωωω

The following structures are not tree automatic:
I ordinals ≥ ωωω

I the random graph (a.k.a. Rado graph)
I uncountable structures
I structures with undecidable first order theory



Motivation and main result
Observation
Every word automatic structure is also tree automatic.

Problem
Given a tree automatic presentation of some structure (from a certain
class of structures), is it decidable whether this structure is already
word automatic?

As far as we know, there are no (interesting) classes of structures for
which this question has been answered, positively or negatively, yet.

Theorem (H 2011)
1 Given a tree automatic presentation of an ordinal α, it is

decidable whether α is word automatic
2 In case α is word automatic, one can compute a word automatic

presentation of α from the tree automatic presentation.



Proof sketch of the main result

Theorem (H 2011)
1 Given a tree automatic presentation of an ordinal α, it is

decidable whether α is word automatic
2 In case α is word automatic, one can compute a word automatic

presentation of α from the tree automatic presentation.

Proof sketch.
We introduce the notion of slim tree automatic presentations and
show this property to be:

1 decidable,
2 sufficient for being word automatic for any kind of structure, and
3 necessary for being word automatic in case of ordinals. 4



The level size

Definition
The thickness of a tree t ∈ TΣ is

�(t) = max
{
| dom(t) ∩ {0, 1}`|

∣∣ ` ≥ 0
}
∈ N .

The thickness of a tree language L ⊆ TΣ is

�(L) = sup
{

�(t)
∣∣ t ∈ L } ∈ N ∪ {∞} .

If �(L) <∞, then L is slim, otherwise L is fat.

�
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b b

c

c = 4 �

c
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a b

c

b

a

b

= 3



The level size

Definition
The thickness of a tree t ∈ TΣ is

�(t) = max
{
| dom(t) ∩ {0, 1}`|

∣∣ ` ≥ 0
}
∈ N .

The thickness of a tree language L ⊆ TΣ is

�(L) = sup
{

�(t)
∣∣ t ∈ L } ∈ N ∪ {∞} .

If �(L) <∞, then L is slim, otherwise L is fat.

Definition
A tree automatic presentation (A; . . . ) of some structure is slim (resp.
fat) if L(A) is slim (resp. fat).



Proposition 1

Proposition 1

1 Given a tree automatic presentation A = (A; . . . ), it is decidable
whether A is slim or fat.

2 In case A is slim, the thickness of L(A) is at most (n + 1) · 2n,
where n is the number of states of A.

Proof.
Similar to deciding whether L(A) is a finite or an infinite set, but a bit
more involved. 4



Proposition 2

Proposition 2
1 Every structure S that admits a slim tree automatic presentation

is word automatic.
2 One can compute a word automatic presentation of S from a slim

tree automatic presentation.

Proof sketch.
I Encode trees by words.
I Construct (non-deterministic) finite automata which simulate the

automata of the slim tree automatic presentation on these
encodings.



Encoding trees by words
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Σ× 2{0,1}
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Encoding trees by words
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Encoding trees by words
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Definition
A tree t ∈ TΣ of thickness k is encoded by a word

C (t) ∈ Γ?
k

over the alphabet

Γk =
⋃

1≤`≤k

(
Σ× 2{0,1}

)`
.



Encoding tree languages by word languages
Definition
A tree language L ⊆ TΣ of thickness at most k is encoded by the word
language

C (L) =
{
C (t)

∣∣ t ∈ L } ⊆ Γ?
k .

Lemma
1 If L is a regular, then C (L) is regular.
2 One can compute a (non-deterministic) finite automaton

accepting C (L) from k and a tree automaton accepting L.

Proof.
Let A = (Q, q0, δ,F ) be a tree automaton accepting L. We construct
a non-deterministic finite automaton accepting C (L) with state space⋃

0≤m≤k
Qm .



The non-deterministic finite automaton for C (L)

p1

pi

pm

a1
1

ai
0

1

0

1

a`
0

q1

qj

qj+1

qn

???p qA

The transition p A−→ q exists precisely if
m = `, n “fits” A, and for all i = 1, . . . , `
one of the four conditions is met:

1 Ai = ai
0

1
and pi = δ(qj , qj+1, ai )

2 Ai = ai
0
and pi = δ(qj , q0, ai )

3 Ai = ai
1
and pi = δ(q0, qj+1, ai )

4 Ai = ai and pi = δ(q0, q0, ai )

where j is suitable (like in the picture).

Initial are the states f for f ∈ F .

Accepting is only the single state from Q0.



Encoding of tree relations by word relations

Definition
Let L ⊆ TΣ be a slim tree language. An n-ary tree relation R ⊆ Ln is
encoded by the word relation

C (R) =
{ (

C (t1), . . . ,C (tn)
) ∣∣ (t1, . . . , tn) ∈ R

}
⊆ C (L)n .

Lemma
1 If R is automatic, then C (R) is automatic.
2 One can construct a (non-deterministic) finite automaton

accepting ⊗C (R) from k and a tree automaton accepting ⊗R.

Proof.
Similar to the proof for tree languages, but a bit more involved.



The second key idea behind the finite automaton for ⊗C (R)
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Proposition 3

Proposition 3
If an ordinal α admits a fat tree automatic presentation, then α is not
word automatic.

Theorem (Delhommé 2001)
An ordinal α is word automatic if, and only if, α < ωω.

Proposition 3’
If an ordinal α admits a fat tree automatic presentation, then

α ≥ ωω .



Proposition 3’

Proposition 3’
If an ordinal α admits a fat tree automatic presentation (A;A<), then

α ≥ ωω .

Lemma
Let n, r ≥ 1 and (A;A<) be a tree automatic presentation of some
ordinal α such that A has n states and the thickness of L(A) is at
least r · 2n. Then,

α ≥ ωr .

Proof of Proposition 3’.
Since L(A) has thickness ∞, we have α ≥ ωr for all r ≥ 1. Thus,

α ≥ sup{ ωr | r ≥ 1 } = ωω .



The key lemma

Lemma
Let n, r ≥ 1 and (A;A<) be a tree automatic presentation of some
ordinal α such that A has n states and the thickness of L(A) is at
least r · 2n. Then,

α ≥ ωr .

Proof sketch.
I Let < be the order on L(A) recognized by A<, i.e.,

s < t ⇐⇒ s ⊗ t ∈ L(A<) .

I Consider a tree t ∈ L(A) with thickness at least r · 2n.
I Starting with t, construct a subset of L(A) which has order type

(w.r.t. <) at least α.



t ∈ L(A)

`

≥ r · 2n nodes

n

≥ r “roots”

q
q

f (t1, . . . , tr )

t1 ∈ A1

ti ∈ Ai

tr ∈ Ar

u1 ui ur

q1 qi qr

qf ∈ F Let A run on f (. . . )!

Observations

I the set Ai = { ti ∈ TΣ | δ(ti ) = qi }

is infinite

I f (t1, . . . , tr ) ∈ L(A) for all t1 ∈ A1, . . . , tr ∈ Ar

I A<

(
f (s1, . . . , sr )⊗ f (t1, . . . , tr )

)
is determined by the A<(si ⊗ ti )
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I By Ramsey’s theorem (for infinite undirected colored graphs)
there is an infinite subset Bi ⊆ Ai such that

C (si , ti ) =
{
A<(si ⊗ si ),A<(ti ⊗ ti ),A<(si ⊗ ti ),A<(ti ⊗ si )

}
is the same set Ci for all si , ti ∈ Bi with si 6= ti .

I The set Ci has exactly three elements, say q=
i , q

<
i , q

>
i , which

satisfy for si , ti ∈ Bi :

f (α, si , β) < f (α, ti , β) ⇐⇒ A<(si ⊗ ti ) = q<i ⇐⇒: si <i ti

f (α, si , β) = f (α, ti , β) ⇐⇒ A<(si ⊗ ti ) = q=
i ⇐⇒ si = ti

f (α, si , β) > f (α, ti , β) ⇐⇒ A<(si ⊗ ti ) = q>i ⇐⇒ si >i ti

where α ∈ B1 × · · · × Bi−1 and β ∈ Bi+1 × · · · × Br are arbitary.
I The relation <i is a well-ordering on Bi .



I The relation <i defined by

si <i ti :⇐⇒ f (α, si , β) < f (α, ti , β)

is a well-ordering on Bi .
I Let 0i and 1i be the least and the second least (w.r.t. <i )

element of Bi and put

ei = f (01, . . . , 0i−1, 1i , 0i+1, . . . , 0r ) .

I W.l.o.g. we assume e1 > e2 > · · · > er .
I Let <lex be the lexicographic ordering on B1 × · · · ×Br . The map

f : B1 × · · · × Br → L(A)

is order preserving embedding (w.r.t. <lex and <).
I Let βi ≥ ω be the order type of Bi (w.r.t <i ). Then

α ≥ βr · · ·β1 ≥ ω · · ·ω = ωr .



Summary and generalization

Theorem (H 2011)
Given a tree automatic
presentation of an ordinal α,
it is decidable whether α is word
automatic.

Theorem (H 2011)
Given a tree automatic
presentation of a scattered linear
ordering L, it is decidable
whether L is word automatic.

Theorem (Delhommé 2001)
An ordinal α is word automatic
if, and only if, α < ωω.

Theorem (KRS 2003)
The Hausdorff rank of every
word automatic scattered linear
ordering is finite.



Outlook

Open questions
I Given a tree automatic presentation of a linear ordering L, is it

decidable whether L is word automatic?
(New techniques are necessary, since (Q;<) is a word automatic
and admits a fat tree automatic presentation.)

I What about other classes of structures, e.g., Boolean algebras?

Another research direction
I For every tree automatic ordinal α the set of all (names of)
ω-limit points of α is (effectively) regular.

I Are the sets of all (names of) ωn-limit points for each n ≥ 1 also
(effectively) regular?

I If they are, we can show that the isomorphism problem for tree
automatic ordinals is decidable.


