Isomorphism of regular trees and words

Markus Lohrey Christian Mathissen

University of Leipzig

November 7, 2011

Lohrey, Mathissen (University of Leipzig) Isomorphism of regular trees and words

Example 1: Consider the equation X = abX.

Lohrey, Mathissen (University of Leipzig) Isomorphism of regular trees and words

Example 1: Consider the equation X = abX.

What is its smallest solution?

$$X=(ab)^\omega$$

Example 1: Consider the equation X = abX.

What is its smallest solution?

$$X = (ab)^{\omega} = ababab \cdots$$

Lohrey, Mathissen (University of Leipzig)

Example 1: Consider the equation X = abX.

What is its smallest solution?

$$X=(ab)^\omega=ababab\cdots$$

Example 2: Consider the equation X = Xab.

Example 1: Consider the equation X = abX. What is its smallest solution?

$$X=(ab)^\omega=ababab\cdots$$

Example 2: Consider the equation X = Xab.

What is its smallest solution?

$$X=(ab)^{\overline{\omega}}$$

Example 1: Consider the equation X = abX. What is its smallest solution?

$$X=(ab)^\omega=ababab\cdots$$

Example 2: Consider the equation X = Xab.

What is its smallest solution?

$$X=(ab)^{\overline{\omega}}=\cdots ababab$$

Example 1: Consider the equation X = abX. What is its smallest solution?

$$X=(ab)^{\omega}=ababab\cdots$$

Example 2: Consider the equation X = Xab.

What is its smallest solution?

$$X = (ab)^{\overline{\omega}} = \cdots ababab$$

Example 3: Consider the equation X = XaXbX.

Example 1: Consider the equation X = abX. What is its smallest solution?

$$X=(ab)^{\omega}=ababab\cdots$$

Example 2: Consider the equation X = Xab.

What is its smallest solution?

$$X = (ab)^{\overline{\omega}} = \cdots ababab$$

Example 3: Consider the equation X = XaXbX. What is its smallest solution?

$$X = [a, b]^{\eta}$$

Lohrey, Mathissen (University of Leipzig) Isomorphism of

Example 1: Consider the equation X = abX. What is its smallest solution?

$$X=(ab)^{\omega}=ababab\cdots$$

Example 2: Consider the equation X = Xab.

What is its smallest solution?

$$X = (ab)^{\overline{\omega}} = \cdots ababab$$

Example 3: Consider the equation X = XaXbX. What is its smallest solution?

$$X = [a, b]^{\eta}$$
 (dense shuffle of a and b)

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

 \blacktriangleright (L, \leq) is a countable linear order and

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A system of equations over the finite alphabet Σ consists of

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A system of equations over the finite alphabet Σ consists of

• a finite set of variables $\{X_1, \ldots, X_n\}$ and

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A system of equations over the finite alphabet Σ consists of

- a finite set of variables $\{X_1, \ldots, X_n\}$ and
- equations $X_1 = \alpha_1, \ldots, X_n = \alpha_n$, where $\alpha_i \in (\Sigma \cup \{X_1, \ldots, X_n\})^*$.

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A system of equations over the finite alphabet Σ consists of

- a finite set of variables $\{X_1, \ldots, X_n\}$ and
- equations $X_1 = \alpha_1, \ldots, X_n = \alpha_n$, where $\alpha_i \in (\Sigma \cup \{X_1, \ldots, X_n\})^*$.

Such a system has (in a certain technical sense) a smallest solution, which (intuitively) can be obtained by unravelling the system starting from X_1 .

A generalized word over the finite alphabet Σ is a tuple (L, \leq, c) , where

- (L, \leq) is a countable linear order and
- $c: L \to \Sigma$ is a coloring.

Concatenation of generalized words is defined in the natural way: Put (L_2, \leq_2, c_2) to the right of (L_1, \leq_1, c_1) .

A system of equations over the finite alphabet Σ consists of

- a finite set of variables $\{X_1, \ldots, X_n\}$ and
- equations $X_1 = \alpha_1, \ldots, X_n = \alpha_n$, where $\alpha_i \in (\Sigma \cup \{X_1, \ldots, X_n\})^*$.

Such a system has (in a certain technical sense) a smallest solution, which (intuitively) can be obtained by unravelling the system starting from X_1 .

A generalized word is regular iff it is the smallest solution of a system of equations.

Consider a tree T, which is: (i) rooted, (ii) finitely branching, (iii) ordered, and (iv) Σ -labelled.

Consider a tree T, which is:

- (i) rooted, (ii) finitely branching, (iii) ordered, and (iv) Σ -labelled.
- T defines a generalized word $yield(T) = (L, \leq, c)$ as follows:
 - L is the set leaves of T
 - \blacktriangleright \leq is the natural left-to-right order on leaves, and
 - c(v) = a if the leaf v is labelled with a.

Consider a tree T, which is:

- (i) rooted, (ii) finitely branching, (iii) ordered, and (iv) Σ -labelled.
- T defines a generalized word $yield(T) = (L, \leq, c)$ as follows:
 - L is the set leaves of T
 - \blacktriangleright \leq is the natural left-to-right order on leaves, and
 - c(v) = a if the leaf v is labelled with a.

T is regular iff T has only finitely many subtrees up to isomorphism.

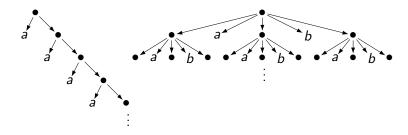
Consider a tree T, which is:

- (i) rooted, (ii) finitely branching, (iii) ordered, and (iv) Σ -labelled.
- T defines a generalized word $yield(T) = (L, \leq, c)$ as follows:
 - L is the set leaves of T
 - \blacktriangleright \leq is the natural left-to-right order on leaves, and
 - c(v) = a if the leaf v is labelled with a.

T is regular iff T has only finitely many subtrees up to isomorphism.

Observation

A generalized word w is regular $\iff w = yield(T)$ for a regular tree T.



Lohrey, Mathissen (University of Leipzig) Isomorphism of regular trees and words

A partitioned DFA is a tuple

$$A = (Q, \{1, \ldots, k\}, \delta, q_0, (F_a)_{a \in \Sigma}),$$

where Σ is a finite alphabet an $(Q, \{1, ..., k\}, \delta, q_0, \bigcup_{a \in \Sigma} F_a)$ is an ordinary DFA.

A partitioned DFA is a tuple

$$A = (Q, \{1, \ldots, k\}, \delta, q_0, (F_a)_{a \in \Sigma}),$$

where Σ is a finite alphabet an $(Q, \{1, ..., k\}, \delta, q_0, \bigcup_{a \in \Sigma} F_a)$ is an ordinary DFA.

A defines a generalized word $w(A) = (L, \leq, c)$, where

- ▶ *L* is the language accepted by $(Q, \{1, ..., k\}, \delta, q_0, \bigcup_{a \in \Sigma} F_a)$,
- \blacktriangleright \leq is the lexicographical order on L, and
- c(v) = a if v is accepted by the DFA $(Q, \{1, \dots, k\}, \delta, q_0, F_a)$.

A partitioned DFA is a tuple

$$A = (Q, \{1, \ldots, k\}, \delta, q_0, (F_a)_{a \in \Sigma}),$$

where Σ is a finite alphabet an $(Q, \{1, ..., k\}, \delta, q_0, \bigcup_{a \in \Sigma} F_a)$ is an ordinary DFA.

A defines a generalized word $w(A) = (L, \leq, c)$, where

- ► L is the language accepted by $(Q, \{1, ..., k\}, \delta, q_0, \bigcup_{a \in \Sigma} F_a)$,
- \blacktriangleright \leq is the lexicographical order on L, and
- c(v) = a if v is accepted by the DFA $(Q, \{1, \dots, k\}, \delta, q_0, F_a)$.

Observation

A generalized word w is regular $\iff w = w(A)$ for a partitioned DFA A.

Lohrey, Mathissen (University of Leipzig)

Isomorphism of regular trees and words

We define the following operations on generalized words:

Concatenation

We define the following operations on generalized words:

Concatenation

• ω -power: $w^{\omega} = www \cdots$

We define the following operations on generalized words:

- Concatenation
- ω -power: $w^{\omega} = www \cdots$
- $\overline{\omega}$ -power: $w^{\overline{\omega}} = \cdots www$

We define the following operations on generalized words:

- Concatenation
- ω -power: $w^{\omega} = www \cdots$
- $\overline{\omega}$ -power: $w^{\overline{\omega}} = \cdots www$
- Dense shuffle $[w_1, w_2, \ldots, w_n]^{\eta}$:
 - ► Take a dense coloring of (Q, ≤) with colors 1,..., n (every color i appears between any two rationals x < y).</p>
 - Replace every *i*-colored point by a copy of w_i.

We define the following operations on generalized words:

- Concatenation
- ω -power: $w^{\omega} = www \cdots$
- $\overline{\omega}$ -power: $w^{\overline{\omega}} = \cdots www$
- Dense shuffle $[w_1, w_2, \ldots, w_n]^{\eta}$:
 - ► Take a dense coloring of (Q, ≤) with colors 1,..., n (every color i appears between any two rationals x < y).</p>
 - Replace every *i*-colored point by a copy of w_i.

A regular expression e over the finite alphabet Σ is built up from these operations and the symbols from Σ .

We define the following operations on generalized words:

- Concatenation
- ω -power: $w^{\omega} = www \cdots$
- $\overline{\omega}$ -power: $w^{\overline{\omega}} = \cdots www$
- Dense shuffle $[w_1, w_2, \ldots, w_n]^{\eta}$:
 - ► Take a dense coloring of (Q, ≤) with colors 1,..., n (every color i appears between any two rationals x < y).</p>
 - Replace every *i*-colored point by a copy of w_i.

A regular expression e over the finite alphabet Σ is built up from these operations and the symbols from Σ .

A regular expression e defines a generalized word val(e).

We define the following operations on generalized words:

- Concatenation
- ω -power: $w^{\omega} = www \cdots$
- $\overline{\omega}$ -power: $w^{\overline{\omega}} = \cdots www$
- Dense shuffle $[w_1, w_2, \ldots, w_n]^{\eta}$:
 - ► Take a dense coloring of (Q, ≤) with colors 1,..., n (every color i appears between any two rationals x < y).</p>
 - Replace every *i*-colored point by a copy of w_i.

A regular expression e over the finite alphabet Σ is built up from these operations and the symbols from Σ .

A regular expression e defines a generalized word val(e).

Heilbrunner 1980

A generalized word w is regular $\iff w = val(e)$ for a regular expression e.

Isomorphism problem for a regular words I

Thomas 1986

It is decidable, whether $w_1 \cong w_2$ for two given regular words w_1, w_2 (given, e.g., by regular expressions or partitioned DFAs).

Isomorphism problem for a regular words I

Thomas 1986

It is decidable, whether $w_1 \cong w_2$ for two given regular words w_1, w_2 (given, e.g., by regular expressions or partitioned DFAs).

Thomas proves this result by a reduction to the MSO theory of countable linear orders (decidable by Rabin 1969).

Isomorphism problem for a regular words I

Thomas 1986

It is decidable, whether $w_1 \cong w_2$ for two given regular words w_1, w_2 (given, e.g., by regular expressions or partitioned DFAs).

- Thomas proves this result by a reduction to the MSO theory of countable linear orders (decidable by Rabin 1969).
- No good complexity bound

Isomorphism problem for a regular words I

Thomas 1986

It is decidable, whether $w_1 \cong w_2$ for two given regular words w_1, w_2 (given, e.g., by regular expressions or partitioned DFAs).

- Thomas proves this result by a reduction to the MSO theory of countable linear orders (decidable by Rabin 1969).
- No good complexity bound

Bloom, Esik 2005

It can be checked in in polynomial time, whether $val(e_1) \cong val(e_2)$ for two given regular expressions e_1, e_2 .

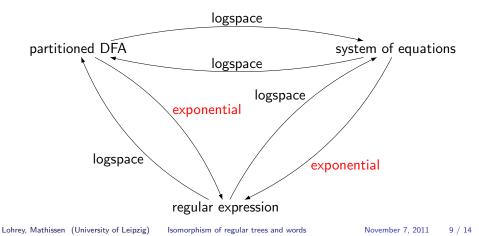
Isomorphism problem for a regular II

Open problem: What is the complexity of the isomorphism problem for regular words given by systems of equations or partitioned DFAs?

Isomorphism problem for a regular II

Open problem: What is the complexity of the isomorphism problem for regular words given by systems of equations or partitioned DFAs?

Complexity of transforming representations for regular words:



Our main result

Theorem 1

It can be checked in polynomial time whether $w(A_1) \cong w(A_2)$ for two given partitioned DFAs A_1, A_2 (in fact: P-complete).

Our main result

Theorem 1

It can be checked in polynomial time whether $w(A_1) \cong w(A_2)$ for two given partitioned DFAs A_1, A_2 (in fact: P-complete).

Analyzing Heilbrunner's algorithm yields:

$\mathsf{Partitioned}\ \mathsf{DFA}\to\mathsf{DAG}$

From a given partitioned DFA A one can compute in logspace a DAG (directed acyclic graph), whose unfolding is a regular expression e with val(e) = w(A).

Our main result

Theorem 1

It can be checked in polynomial time whether $w(A_1) \cong w(A_2)$ for two given partitioned DFAs A_1, A_2 (in fact: P-complete).

Analyzing Heilbrunner's algorithm yields:

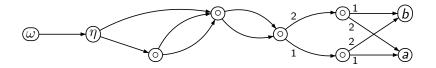
$\mathsf{Partitioned}\ \mathsf{DFA}\to\mathsf{DAG}$

From a given partitioned DFA A one can compute in logspace a DAG (directed acyclic graph), whose unfolding is a regular expression e with val(e) = w(A).

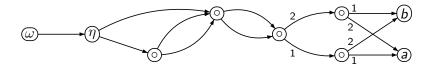
Proposition

It can be checked in polynomial time whether for two given DAGs, the corresponding regular expressions define isomorphic regular words.

DAGs: An example



DAGs: An example



This DAG produces the generalized word

 $[abbaabba, abbaabbaabbaabba]^{\eta})^{\omega}.$

Consider a DAG, in which the operations $()^{\omega}$, $()^{\overline{\omega}}$, and $[]^{\eta}$ are not used (only concatenation and constants from the alphabet).

Consider a DAG, in which the operations $()^{\omega}$, $()^{\overline{\omega}}$, and $[]^{\eta}$ are not used (only concatenation and constants from the alphabet).

Such a DAG is also called a straight-line programm (SLP).

Consider a DAG, in which the operations $()^{\omega}$, $()^{\overline{\omega}}$, and $[]^{\eta}$ are not used (only concatenation and constants from the alphabet).

Such a DAG is also called a straight-line programm (SLP).

An SLP with n nodes can define a finite word of length 2^n .

Consider a DAG, in which the operations ()^{ω}, ()^{$\overline{\omega}$}, and []^{η} are not used (only concatenation and constants from the alphabet).

Such a DAG is also called a straight-line programm (SLP).

An SLP with n nodes can define a finite word of length 2^n .

Plandowski 1994

It can be checked in polynomial time, whether two given SLPs produce the same string.

Consider a DAG, in which the operations $()^{\omega}$, $()^{\overline{\omega}}$, and $[]^{\eta}$ are not used (only concatenation and constants from the alphabet).

Such a DAG is also called a straight-line programm (SLP).

An SLP with n nodes can define a finite word of length 2^n .

Plandowski 1994

It can be checked in polynomial time, whether two given SLPs produce the same string.

We have to extend Plandowskis algorithm from SLPs to general DAGs!

Consider a DAG, in which the operations $()^{\omega}$, $()^{\overline{\omega}}$, and $[]^{\eta}$ are not used (only concatenation and constants from the alphabet).

Such a DAG is also called a straight-line programm (SLP).

An SLP with n nodes can define a finite word of length 2^n .

Plandowski 1994

It can be checked in polynomial time, whether two given SLPs produce the same string.

We have to extend Plandowskis algorithm from SLPs to general DAGs!

But: We reduce (by a polyomial time Turing reduction) the equivalence problem for general DAGs to those for SLPs, following the strategy of Bloom and Esik.

Theorem 2

It is PSPACE-hard (and in EXPTIME) to check for two given NFAs A_1, A_2 , whether $(L(A_1), \leq_{\text{lex}}) \cong (L(A_2), \leq_{\text{lex}})$.

Lohrey, Mathissen (University of Leipzig) Isomorphism

Isomorphism of regular trees and words

Theorem 2

It is PSPACE-hard (and in EXPTIME) to check for two given NFAs A_1, A_2 , whether $(L(A_1), \leq_{lex}) \cong (L(A_2), \leq_{lex})$.

Theorem 3

It is EXPTIME-complete to check for two given NFAs A_1, A_2 , whether $(L(A_1), \leq_{pref}) \cong (L(A_2), \leq_{pref})$.

Theorem 2

It is PSPACE-hard (and in EXPTIME) to check for two given NFAs A_1, A_2 , whether $(L(A_1), \leq_{lex}) \cong (L(A_2), \leq_{lex})$.

Theorem 3

It is EXPTIME-complete to check for two given NFAs A_1, A_2 , whether $(L(A_1), \leq_{pref}) \cong (L(A_2), \leq_{pref})$.

Theorem 4

It is P-complete to check for two given DFAs A_1, A_2 , whether $(L(A_1), \leq_{pref}) \cong (L(A_2), \leq_{pref}).$

Lohrey, Mathissen (University of Leipzig)

Isomorphism of regular trees and words

Kuske, Liu, L 2010

It is undecidable (even Σ_1^1 -complete) to check for two given deterministic pushdown automata (even visibly pushdown automata) A_1, A_2 , whether $(L(A_1), \leq_{lex}) \cong (L(A_2), \leq_{lex})$

Kuske, Liu, L 2010

It is undecidable (even Σ_1^1 -complete) to check for two given deterministic pushdown automata (even visibly pushdown automata) A_1, A_2 , whether $(L(A_1), \leq_{lex}) \cong (L(A_2), \leq_{lex})$

Kuske, Liu, L 2010

It is undecidable (even Σ_1^1 -complete) to check for two given deterministic pushdown automata (even visibly pushdown automata) A_1, A_2 , whether $(L(A_1), \leq_{pref}) \cong (L(A_2), \leq_{pref})$