Die modulare Struktur einer Ontologie: Atomare Dekomposition

Chiara Del Vescovo¹ Bijan Parsia¹ Uli Sattler¹ Thomas Schneider²

¹School of Computer Science, University of Manchester, GB

²Fachbereich Informatik, Universität Bremen

LogInf, 4. November 2011

Ontologien

... sind endliche Theorien in einer (Beschreibungs-)Logik, z.B.

$$\begin{tabular}{ll} Part &\equiv \exists strict_part_of. Whole \\ strict_part_of &\sqsubseteq part_of \\ &\quad Hand &\sqsubseteq = 5part_of. Finger \\ \end{tabular}$$

OWL (W3C-Standard, FOL-Fragment): expressive DL mit

- unären und binären Predikaten
- Konstruktoren für unäre Prädikate
 Boolesch, ∃, ∀, Zählquantoren, Nominale
- Konstruktoren für binäre Prädikate Inverses, Komposition
- Axiome: Inklusionen/Äquivalenzen von Prädikaten
- globalen Beschränkungen für Entscheidbarkeit

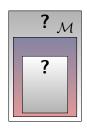
Module

Ein Modul $\mathcal{M}(\Sigma, \mathcal{O}) \subseteq \mathcal{O}$ kapselt Wissen bezüglich einer Signatur Σ wenn $\mathcal{M} \equiv_{\Sigma}^{c} \mathcal{O}$

d. h. für alle
$$C \sqsubseteq D$$
 mit $sig(C \sqsubseteq D) \subseteq \Sigma$:
 $\mathcal{O} \models C \sqsubseteq D$ gdw. $\mathcal{M}(\Sigma, \mathcal{O}) \models C \sqsubseteq D$

Bsp.:
$$\mathcal{O} = \text{Mereology.owl}$$
, $\Sigma = \{\text{Part}, \text{Whole}, \text{strict_part_of}\}$, $\mathcal{M}(\Sigma, \mathcal{O}) =$

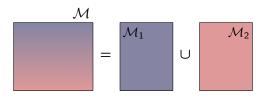
```
\mathcal{D}
\mathcal{D}
\mathsf{Part} \equiv \exists \mathsf{strict\_part\_of}. \mathsf{Whole} \qquad \mathsf{strict\_part\_of} \equiv \mathsf{direct\_part\_of}
\mathsf{Part} \sqsubseteq \forall \mathsf{strict\_part\_of}. \mathsf{Whole} \qquad \mathsf{direct\_part\_of} \equiv \mathsf{direct\_part}^{-1}
\mathsf{Whole} \equiv \exists \mathsf{strict\_part}. \mathsf{Part} \qquad \mathsf{strict\_part} \equiv \mathsf{direct\_part}
\mathsf{Whole} \sqsubseteq \forall \mathsf{strict\_part}. \mathsf{Part} \qquad \mathsf{strict\_part\_of} \equiv \mathsf{strict\_part}^{-1}
```


Modulare Struktur

Module sind prima:

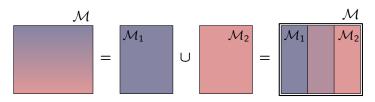
- wenn man die nötige (Start-)Signatur kennt . . .
- für "Ein-Modul"-Aufgaben wie Wiederverwendung

Extraktion eines Moduls hilft nicht, wenn man


- die richtige Startsignatur nicht kennt
- andere Module verstehen möchte
- die Abhängigkeitsstruktur der Axiome verstehen möchte

Zum Analysieren der modularen Struktur der Ontologie:

- signifikante Module
- signifikante Relationen zwischen Modulen
- ... offenbart logische Abhängigkeiten zwischen Axiomen


Sind alle Module signifikant?

Um \mathcal{M} zu verstehen, muss man verstehen:

- ullet die Abhängigkeitsstruktur von \mathcal{M}_1
- ullet die Abhängigkeitsstruktur von \mathcal{M}_2
- ullet nichts weiter: \mathcal{M}_1 und \mathcal{M}_2 haben keine weiteren Abhängigkeiten

Sind alle Module signifikant?

Um \mathcal{M} zu verstehen, muss man verstehen:

- ullet die Abhängigkeitsstruktur von \mathcal{M}_1
- ullet die Abhängigkeitsstruktur von \mathcal{M}_2
- ullet nichts weiter: \mathcal{M}_1 und \mathcal{M}_2 haben keine weiteren Abhängigkeiten
- \sim ${\cal M}$ ist nicht signifikant: es ist ein unechtes Modul
 - ullet \mathcal{M}_1 und \mathcal{M}_2 können signifikant sein.
 - ullet Es ist wichtig zu wissen, dass ${\mathcal M}$ "nur" eine Vereinigung ist.

Echte Module

Man betrachte ein Modul \mathcal{M} , das nicht unecht ist.

Um $\mathcal M$ zu verstehen, muss man $\mathcal M$ im Ganzen verstehen.

 \mathcal{M}

- ullet alle Axiome in ${\mathcal M}$ interagieren logisch
- möglicherweise auf verschiedene Weisen

"Nicht unecht" impliziert signifikant: echtes Modul

Verhältnis echt zu unecht

Gegeben eine Menge echter Module,

- Vereinigungen führen zu unechten Modulen
- → exponentiell großer Raum für unechte Module
 - Aber: nicht jede Vereinigung echter Module ist ein Modul

Anzahl aller Module wächst offenbar exponentiell in $|\mathcal{O}|$ [D.,P.,S.,S., KR 2010 & WoMO 2010]

Frage 1

Kommt hohe Modulanzahl primär durch triviale Kombinationen zustande?

D. h., sind die meisten Module unecht?

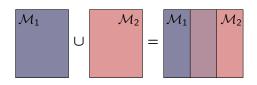
Ja!

Theorem 1

Jedes echte Modul ist das kleinste Modul, das α enthält, für ein Axiom $\alpha \in \mathcal{O}$.

 \rightarrow Familie der echten Module ist linear in $|\mathcal{O}|$. Die meisten Module sind unecht!

Beweis nutzt Eigenschaften von Modulen aus:

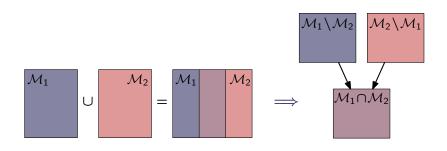

- Eindeutigkeit, Monotonie, Abgeschlossenheit, ...
- werden von allen lokalitätsbasierten Modulen erfüllt

Relationen zwischen Modulen

Echte Module können sich überlappen.

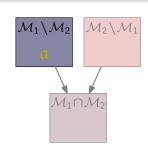
Das zeigt signifikante logische Abhängigkeiten zwischen Axiomen auf:

Die Axiome in $\mathcal{M}_1 \setminus \mathcal{M}_2$ hängen von den Axiomen in $\mathcal{M}_1 \cap \mathcal{M}_2$ ab.



Relationen zwischen Modulen

Echte Module können sich überlappen.

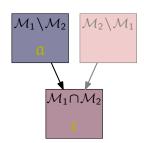

Das zeigt signifikante logische Abhängigkeiten zwischen Axiomen auf:

Die Axiome in $\mathcal{M}_1 \setminus \mathcal{M}_2$ hängen von den Axiomen in $\mathcal{M}_1 \cap \mathcal{M}_2$ ab.

Atome

Atom = maximale Menge $\mathfrak{a} \subseteq \mathcal{O}$, so dass für jedes Modul \mathcal{M} : entweder $\mathfrak{a} \subset \mathcal{M}$ oder $\mathfrak{a} \cap \mathcal{M} = \emptyset$.

- Das kleinste Modul für ein Axiom α enthält das gesamte Atom mit α .
- Axiome in einem Atom sind logisch voneinander abhängig.
- Atome sind paarweise disjunkt.
- → Die Familie aller Atome partitioniert die Ontologie.
 - Jedes Modul ist eine disjunkte Vereinigung von Atomen.


Proposition

Es gibt 1-1-Korrespondenz zwischen echten Modulen und Atomen.

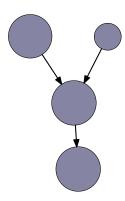
Atomare Dekomposition

Abhängigkeit zwischen Atomen:

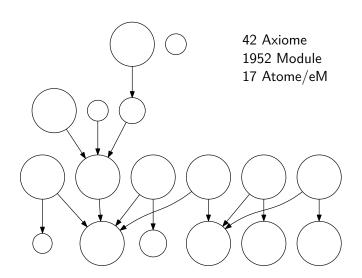
- $\mathfrak{a} \succeq \mathfrak{c}$ gdw. für alle \mathcal{M} : wenn $\mathfrak{a} \subseteq \mathcal{M}$, dann $\mathfrak{c} \subseteq \mathcal{M}$
- Axiome in α hängen logisch von Axiomen in c ab

Theorem 2

Die Relation \succeq ist reflexiv, antisymmetrisch und transitiv.


Hasse-Diagramm stellt 2 logische Abhängigkeiten dar: zwischen Axiomen in Atomen, zwischen Atomen

42 Axiome 1952 Module



42 Axiome 1952 Module

42 Axiome 1952 Module

Praktikabilität

Frage 2

Kann man

- alle echten Module berechnen.
- alle Atome berechnen.
- die Abhängigkeiten zwischen Atomen berechnen,

ohne alle Module zu berechnen?!

Ja!

Zur Erinnerung:

Theorem 1

Jedes echte Modul ist das kleinste Modul, das α enthält, für ein Axiom $\alpha \in \mathcal{O}$.

- Extrahiere $\mathcal{M}(\operatorname{sig}(\alpha), \mathcal{O})$ (\leq linear viele Modulextraktionen)
- Atomare Dekomposition wird bereits durch Vergleich nur der echten Module induziert (quadratische Prozedur)

In der Realität?

Haben atomare Dekomposition auf 181 OWL-Ontologien aus dem NCBO BioPortal angewandt.

Zerlegbarkeit:

Mittlere Anz. Axiome pro Atom	1.73
" max. Anz. Axiome pro Atom	86
" Anz. Axiome pro echtes Modul	66
" max. Anz. Axiome pro echtes Modul	143

Zusammenfassung

- Atomare Dekomposition (AD) ist lineare Repräsentation der potentiell exponentiellen Menge aller Module.
- AD kann mittels einer linearen Anzahl von Modulextraktionen berechnet werden.
- AD zeigt 2 Arten logischer Abhängigkeiten zwischen Axiomen auf.

Ausblicke

- Abhängigkeiten zwischen Atomen und Mengen von Atomen
- Beschriftungen für Atome –
 verschiedene Beschriftungen für verschiedene Aufgaben
- Anwendungen
 - "Themen" für das Verstehen von Ontologien
 - Schnelle Modulextraktion
 - Bestimmung der Modulanzahl
 - . . .

Ausblicke

- Abhängigkeiten zwischen Atomen und Mengen von Atomen
- Beschriftungen für Atome verschiedene Beschriftungen für verschiedene Aufgaben
- Anwendungen
 - "Themen" für das Verstehen von Ontologien
 - Schnelle Modulextraktion
 - Bestimmung der Modulanzahl
 - ...

Vielen Dank.

Ontologien mit problematischer Zerlegbarkeit

Ontology \mathcal{O} (ID in BioPortal)	#0	#max Atom	#Eq.	#Disj. axs.
Nanoparticle Ontology (1083)	16, 267	6,425	42	6, 106
Breast Tissue Cell Lines Ontology (1438)	2,734	2,201	0	7
IMGT Ontology (1491)	1,112	729	38	594
SNP Ontology (1058)	3,481	598	30	210
Amino Acid Ontology (1054)	477	445	8	190
Comparative Data Analysis (1128)	804	434	8	190
Family Health History (1126)	1,091	378	0	1
Neural Electromagnetic Ontologies (1321)	2,286	259	21	0
Computer-based Patient Record Ontology (1059)	1,454	238	18	20
Basic Formal Ontology (1332)	95	89	13	41
Ontology of Medically-related Social Entities (1565)	138	100	17	41
Ontology for General Medical Science (1414)	194	102	17	41
Cancer Research and Mgmt Acgt Master (1130)	5,435	3,796	16	42