Finite automata presentable Abelian groups

Lutz H. Strüngmann (joint work with Gábor Braun)

Ilmenau, 5th of November 2011

イロト イポト イヨト イヨト

ъ

Contents

Basic definitions and first examples

イロト イヨト イヨト イ

프 🕨 🗉 프

Adding integers

- ⇒ We observe that only local information is needed to compute the addition !
- \implies Are there other structures with such nice encodings?

イロト イポト イヨト イヨト

Adding integers

\implies We observe that only local information is needed to compute the addition !

 \implies Are there other structures with such nice encodings?

イロト イポト イヨト イヨト

Adding integers

- → We observe that only local information is needed to compute the addition !
- \implies Are there other structures with such nice encodings?

イロト イポト イヨト イヨト

æ

Finite automata presentable structures

The following definition goes back to Khoussainov and Nerode

Definition

A countable relational structure (M, R_1, \dots, R_k) is called FAP (Finite Automata Presentable) or automatic if there exists a finite alphabet Σ , a regular language $D \subseteq \Sigma^*$, and a bijection $f : D \to M$ such that the relations $f^{-1}(R_1), \dots, f^{-1}(R_k)$ are regular.

- Note that function symbols can be by considered as their graphs and can therefore be included in the language.
- What does it mean for $f^{-1}(R_i)$ to be regular?

 $f^{-1}(R_i) \subseteq D^s \subseteq (\Sigma^*)^s \to ((\Sigma \cup \{\Diamond\})^s)^*.$

ヘロト 人間 とくほとくほとう

Finite automata presentable structures

The following definition goes back to Khoussainov and Nerode

Definition

A countable relational structure (M, R_1, \dots, R_k) is called FAP (Finite Automata Presentable) or automatic if there exists a finite alphabet Σ , a regular language $D \subseteq \Sigma^*$, and a bijection $f : D \to M$ such that the relations $f^{-1}(R_1), \dots, f^{-1}(R_k)$ are regular.

- Note that function symbols can be by considered as their graphs and can therefore be included in the language.
- What does it mean for $f^{-1}(R_i)$ to be regular?

$$f^{-1}(R_i) \subseteq D^s \subseteq (\Sigma^*)^s \to ((\Sigma \cup \{\Diamond\})^s)^*.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Finite automata presentable structures

The following definition goes back to Khoussainov and Nerode

Definition

A countable relational structure (M, R_1, \dots, R_k) is called FAP (Finite Automata Presentable) or automatic if there exists a finite alphabet Σ , a regular language $D \subseteq \Sigma^*$, and a bijection $f : D \to M$ such that the relations $f^{-1}(R_1), \dots, f^{-1}(R_k)$ are regular.

- Note that function symbols can be by considered as their graphs and can therefore be included in the language.
- What does it mean for $f^{-1}(R_i)$ to be regular?

$$f^{-1}(R_i) \subseteq D^s \subseteq (\Sigma^*)^s \to ((\Sigma \cup \{\Diamond\})^s)^*.$$

イロト イポト イヨト イヨト

Adding integers revisited

Two finite automata adding integers

Some remarks

• Regular languages are stable under Boolean operations and projections. Thus definable relations yield regular sets again. Example: If $\varphi(\bar{x})$ is first order formula, then the set

$$A\varphi = \{\bar{a} \in D^s : M \models \varphi(f(\bar{a}))\}$$

is regular.

 The above is effective, i.e. there is a simple algorithm that computes an automaton recognizing Aφ from the automata defining the structure and φ.

(日)

Some remarks

• Regular languages are stable under Boolean operations and projections. Thus definable relations yield regular sets again. Example: If $\varphi(\bar{x})$ is first order formula, then the set

$$A\varphi = \{\bar{a} \in D^s : M \models \varphi(f(\bar{a}))\}$$

is regular.

 The above is effective, i.e. there is a simple algorithm that computes an automaton recognizing Aφ from the automata defining the structure and φ.

ヘロト ヘアト ヘヨト

The isomorphism problem

- The isomorphism problem for automatic structures is complete for Σ¹/₁
- (Kuske) The isomorphism problem and the elementary equivalence problem for automatic equivalence relations are complete for Π⁰₁.
- (Kuske) The isomorphism problem for automatic linear orders and for automatic trees are complete for Σ₁¹.

(日)

Is the definition very restrictive?

- (Khoussainov-Nies-Rubin-Stephan) Every infinite automatic Boolean algebra is a finite product of copies of the algebra of all finite and cofinite subsets of N.
- (Khoussainov-Nies-Rubin-Stephan) Every automatic integral domain is finite.
- \implies Rich algebraic structure implies few automatic structures

イロト イヨト イヨト イ

Is the definition very restrictive?

- (Khoussainov-Nies-Rubin-Stephan) Every infinite automatic Boolean algebra is a finite product of copies of the algebra of all finite and cofinite subsets of N.
- (Khoussainov-Nies-Rubin-Stephan) Every automatic integral domain is finite.

 \implies Rich algebraic structure implies few automatic structures

ヘロト ヘアト ヘヨト

Is the definition very restrictive?

- (Khoussainov-Nies-Rubin-Stephan) Every infinite automatic Boolean algebra is a finite product of copies of the algebra of all finite and cofinite subsets of N.
- (Khoussainov-Nies-Rubin-Stephan) Every automatic integral domain is finite.
- \implies Rich algebraic structure implies few automatic structures

What about groups?

- (Oliver-Thomas) A finitely generated group is automatic iff it is abelian-by-finite (has an abelian subgroup of finite index).
- (Nies-Thomas) Every finitely generated subgroup of an automatic group is abelian-by-finite.
- \implies It is natural to look at the class of Abelian groups !

What about groups?

- (Oliver-Thomas) A finitely generated group is automatic iff it is abelian-by-finite (has an abelian subgroup of finite index).
- (Nies-Thomas) Every finitely generated subgroup of an automatic group is abelian-by-finite.

 \implies It is natural to look at the class of Abelian groups !

What about groups?

- (Oliver-Thomas) A finitely generated group is automatic iff it is abelian-by-finite (has an abelian subgroup of finite index).
- (Nies-Thomas) Every finitely generated subgroup of an automatic group is abelian-by-finite.
- \implies It is natural to look at the class of Abelian groups !

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

• Z

- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

• Z

- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

- Z
- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

• Z

- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

• Z

- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

FAP Abelian groups

Here are some examples of FAP Abelian groups (with addition of course)

• Z

- $(\mathbb{Z}/p\mathbb{Z})^{(\omega)}$
- $\mathbb{Z}(p^{\infty}) = \{x \in \mathbb{Q}/\mathbb{Z} : \exists n \text{ with } p^n x = 0\}$
- $\mathbb{Z}[1/m] = \{\frac{a}{m^k} : a, k \in \mathbb{Z}\}$
- Finite direct sums of the above groups
- (Nies-Semukhin) Finite extensions and automatic amalgamations

• *G* FAP and $G \subseteq H$ such that H/G is finite, then *H* is FAP. In particular, many almost completely decomposable groups, i.e.

$$\langle R_1 \oplus R_2 \oplus \cdots \oplus R_n, g_1, \cdots, g_m \rangle$$
 with $R_i \subseteq \mathbb{Q}$.

• $\langle p_1^{-\infty} e_1, p_2^{-\infty} e_2, q^{-\infty} (e_1 + e_2) \rangle \subseteq \mathbb{Q}^2$ where $\mathbb{Q}^2 = \langle e_1, e_2 \rangle$

Non-examples (Khoussainov-Nies-Rubin-Stephan):

- Every torsion-free Abelian group of infinite rank
- $\mathbb{Z}(p^{(\infty)})^{(\omega)}$.
- (Tsankov) The group of rationals Q and any torsion-free Abelian group divisible by infinitely many primes.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

G FAP and G ⊆ H such that H/G is finite, then H is FAP.
 In particular, many almost completely decomposable groups, i.e.

$$\langle R_1 \oplus R_2 \oplus \cdots \oplus R_n, g_1, \cdots, g_m \rangle$$
 with $R_i \subseteq \mathbb{Q}$.

•
$$\langle \boldsymbol{p}_1^{-\infty}\boldsymbol{e}_1, \boldsymbol{p}_2^{-\infty}\boldsymbol{e}_2, \boldsymbol{q}^{-\infty}(\boldsymbol{e}_1 + \boldsymbol{e}_2) \rangle \subseteq \mathbb{Q}^2$$
 where $\mathbb{Q}^2 = \langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle$

Non-examples (Khoussainov-Nies-Rubin-Stephan):

- Every torsion-free Abelian group of infinite rank
- $\mathbb{Z}(p^{(\infty)})^{(\omega)}$.
- (Tsankov) The group of rationals Q and any torsion-free Abelian group divisible by infinitely many primes.

イロト イポト イヨト イヨト

• *G* FAP and $G \subseteq H$ such that H/G is finite, then *H* is FAP. In particular, many almost completely decomposable groups, i.e.

$$\langle R_1 \oplus R_2 \oplus \cdots \oplus R_n, g_1, \cdots, g_m \rangle$$
 with $R_i \subseteq \mathbb{Q}$.

• $\langle p_1^{-\infty} e_1, p_2^{-\infty} e_2, q^{-\infty} (e_1 + e_2) \rangle \subseteq \mathbb{Q}^2$ where $\mathbb{Q}^2 = \langle e_1, e_2 \rangle$

Non-examples (Khoussainov-Nies-Rubin-Stephan):

- Every torsion-free Abelian group of infinite rank
- $\mathbb{Z}(p^{(\infty)})^{(\omega)}$.
- (Tsankov) The group of rationals Q and any torsion-free Abelian group divisible by infinitely many primes.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• *G* FAP and $G \subseteq H$ such that H/G is finite, then *H* is FAP. In particular, many almost completely decomposable groups, i.e.

$$\langle R_1 \oplus R_2 \oplus \cdots \oplus R_n, g_1, \cdots, g_m \rangle$$
 with $R_i \subseteq \mathbb{Q}$.

• $\langle p_1^{-\infty} e_1, p_2^{-\infty} e_2, q^{-\infty} (e_1 + e_2) \rangle \subseteq \mathbb{Q}^2$ where $\mathbb{Q}^2 = \langle e_1, e_2 \rangle$

Non-examples (Khoussainov-Nies-Rubin-Stephan):

- Every torsion-free Abelian group of infinite rank
- $\mathbb{Z}(p^{(\infty)})^{(\omega)}$.
- (Tsankov) The group of rationals Q and any torsion-free Abelian group divisible by infinitely many primes.

Motivating question

Looking at subgroups of the rational numbers as additive group we see that

$\bigcirc \mathbb{Z}$ is FAP

- 2 $\mathbb{Z}[1/m]$ is FAP for any natural number m
- 3 Q is not FAP

But there 2^{\aleph_0} more subgroups of the rationals ! Are they FAP? For instance what about the following group

$$R = \left\langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{11}, \cdots \right\rangle$$

イロン イボン イヨン イヨン

Motivating question

Looking at subgroups of the rational numbers as additive group we see that

- Z is FAP
- 2 $\mathbb{Z}[1/m]$ is FAP for any natural number m
- Q is not FAP

But there 2^{\aleph_0} more subgroups of the rationals ! Are they FAP? For instance what about the following group

$$R = \left\langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{11}, \cdots \right\rangle$$

イロト イポト イヨト イヨト

Motivating question

Looking at subgroups of the rational numbers as additive group we see that

Z is FAP

- 2 $\mathbb{Z}[1/m]$ is FAP for any natural number m
- Q is not FAP

But there 2^{\aleph_0} more subgroups of the rationals ! Are they FAP? For instance what about the following group

$$R = \left\langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{11}, \cdots \right\rangle$$

イロト イポト イヨト イヨト

Inhalt

(日) (四) (日) (日) (日)

ъ

The main result

Here is what we can prove so far.....

Theorem

Every FAP torsion-free Abelian group is an extension of a finite-rank free group by a direct sum of finitely many $\mathbb{Z}(p^{\infty})$.

Especially, the FAP torsion-free Abelian groups of rank 1 are the rings $\mathbb{Z}[1/n]$.

Main ingredient in the proof by Tsankov

Lemma

For every FAP Abelian group G, there exist a sequence of finite subsets A_n of G, a constant C_1 and a function $h: \mathbb{N} \to \mathbb{N}$ such that:

$$\bigcirc \bigcup_{n=0}^{\infty} A_n = G;$$

2)
$$0 \in A_0$$
 and $|A_0| \ge 2;$

$$| A_{n+1} | \le C_1 | A_n |;$$

Sor every x ∈ A_n and m ∈ N with m | x in G there is a y ∈ A_{n+h(m)} with x = my. (If G is torsion-free, this means m⁻¹A_n ⊆ A_{n+h(m)}.)

イロン イボン イヨン イヨン

For $D \subseteq \Sigma^*$, let $D^{\leq n} = \{ w \in D : len(w) \leq n \}$.

_emma

Suppose that G is an FAP Abelian group, where addition is recognized by an automaton of size k. Then for every $x, y \in G$

 $len(x + y) \le max\{len(x), len(y)\} + k$

Hence, $D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+k}$ for all n.

emma

If D is a regular language, then for each k, there exists C such that $|D^{\leq n+k}| \leq C |D^{\leq n}|$ for all n.

In particular, $|D^{\leq n} + D^{\leq n}| \leq C |D^{\leq n}|$.

イロト イポト イヨト イヨト

For
$$D \subseteq \Sigma^*$$
, let $D^{\leq n} = \{w \in D : len(w) \leq n\}$.

Lemma

Suppose that G is an FAP Abelian group, where addition is recognized by an automaton of size k. Then for every $x, y \in G$,

 $len(x + y) \le max\{len(x), len(y)\} + k$

Hence, $D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+k}$ for all n.

emma

If D is a regular language, then for each k, there exists C such that $|D^{\leq n+k}| \leq C |D^{\leq n}|$ for all n.

```
In particular, |D^{\leq n} + D^{\leq n}| \leq C |D^{\leq n}|.
```

For
$$D \subseteq \Sigma^*$$
, let $D^{\leq n} = \{w \in D : len(w) \leq n\}$.

Lemma

Suppose that G is an FAP Abelian group, where addition is recognized by an automaton of size k. Then for every $x, y \in G$,

 $len(x + y) \le max\{len(x), len(y)\} + k$

Hence, $D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+k}$ for all n.

Lemma

If D is a regular language, then for each k, there exists C such that $|D^{\leq n+k}| \leq C |D^{\leq n}|$ for all n.

In particular, $|D^{\leq n} + D^{\leq n}| \leq C |D^{\leq n}|$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ 三日 - のんの

An idea of the proof of the main theorem

The idea is the following:

- First prove a finite version of Tsankov's Lemma
- Use this to prove a local version replacing $\mathbb Q$ by the finite group $\mathbb Z/p\mathbb Z$
- Use the local version to prove the main result

An idea of the proof of the main theorem

The idea is the following:

- First prove a finite version of Tsankov's Lemma
- Use this to prove a local version replacing $\mathbb Q$ by the finite group $\mathbb Z/p\mathbb Z$
- Use the local version to prove the main result

An idea of the proof of the main theorem

The idea is the following:

- First prove a finite version of Tsankov's Lemma
- Use this to prove a local version replacing $\mathbb Q$ by the finite group $\mathbb Z/p\mathbb Z$
- Use the local version to prove the main result

< ロ > < 同 > < 三 >

Proposition (finite version)

Given a constant C_1 there are integers $d, K \in \mathbb{Z}^+$ and a constant $C \ge C_1$ such that the following hold for any sequence p_0, \ldots, p_d of primes and integers $h(p_i)$ with

$$p_{i-1} > p_i C^{h(p_i)d} d^{Cd^4}$$
 $i = 1, ..., d$ (1)
 $p_d > C(4dK)^d$. (2)

There is no sequence $A_0, \ldots, A_{h(p_0)+\cdots+h(p_d)+1}$ of finite subsets of a torsion-free abelian group *G* such that

•
$$0 \in A_0$$
 and $|A_0| \ge 2$;
• $|A_{n+1}| \le C_1 |A_n|$ for $n \le h(p_0) + \dots + h(p_d)$;
• $A_n + A_n \subseteq A_{n+1}$ for $n \le h(p_0) + \dots + h(p_d)$;
• $\langle A_n \rangle \cap p_i G \subseteq p_i \langle A_{n+h(p_i)} \rangle$ and $p_i \langle A_n \rangle \subsetneq \langle A_n \rangle \cap p_i G$ for $n + h(p_i) \le h(p_0) + \dots + h(p_d)$.

Proposition (local version)

Given a constant C_1 there are integers $d, K \in \mathbb{Z}^+$ and a constant $C \ge C_1$ such that the following hold for any sequence p_0, \ldots, p_d of primes and integers $h(p_i)$ with

$$p_{i-1} > p_i C^{h(p_i)d} d^{Cd^4}$$
 $i = 1, ..., d$ (3)
 $p_d > C(4dK)^d$. (4)

There is a p^* such that for any prime $p \ge p^*$, there is no sequence $A_0, \ldots, A_{h(p_0)+\cdots+h(p_d)+1}$ of finite subsets of $\mathbb{Z}/p\mathbb{Z}$ such that

()
$$0 \in A_0, 2 \le |A_0| \le C_1$$

2
$$|A_{n+1}| \le C_1 |A_n|$$
 for $n \le h(p_0) + \cdots + h(p_d)$

3
$$A_n + A_n \subseteq A_{n+1}$$
 for $n \le h(p_0) + \cdots + h(p_d)$

Inhalt

・ロト ・ 一下・ ・ ヨト・

프 🕨 🗉 프

Wildness

Theorem

There are arbitrarily 'difficult' FAP Abelian groups in the following sense:

Given a natural number n and a prime p there are indecomposable almost completely decomposable groups G of arbitrary large finite rank with regulating quotient of exponent p^n .

This shows that the FAP groups behave 'wild'.....

(日)

Open question

By our main result every FAP torsion-free Abelian group G has to be the extension of a finite rank free group by a finite direct sum of Prüfer groups.

However: Every pure finite rank subgroup of the additive group of the ring of *p*-adic numbers J_p is of this form.

Since there are only countably many finite automata.....

Question

Which finite rank pure subgroup of the additive group of the ring of *p*-adic integers are FA-presentable?

ヘロト ヘアト ヘヨト ヘ

Open question

By our main result every FAP torsion-free Abelian group G has to be the extension of a finite rank free group by a finite direct sum of Prüfer groups.

However: Every pure finite rank subgroup of the additive group of the ring of *p*-adic numbers J_p is of this form.

Since there are only countably many finite automata.....

Question

Which finite rank pure subgroup of the additive group of the ring of *p*-adic integers are FA-presentable?

イロト イポト イヨト イヨト

Open question

By our main result every FAP torsion-free Abelian group G has to be the extension of a finite rank free group by a finite direct sum of Prüfer groups.

However: Every pure finite rank subgroup of the additive group of the ring of *p*-adic numbers J_p is of this form.

Since there are only countably many finite automata.....

Question

Which finite rank pure subgroup of the additive group of the ring of *p*-adic integers are FA-presentable?

ヘロト ヘアト ヘヨト ヘ