
Weighted automata

Manfred Droste1 and Dietrich Kuske2

1Institut für Informatik, Universität Leipzig, Germany

email:droste@informatik.uni-leipzig.de

2Institut für Theoretische Informatik, Technische Universtität Ilmenau, Germany

email:dietrich.kuske@tu-ilmenau.de

2010 Mathematics Subject Classification: Primary: 68Q45 Secondary: 03B50, 03D05, 16Y60,

68Q70

Key words: weighted finite automata, semirings, rational formal power series, weighted logic

Contents

1 Introduction 107

2 Weighted automata and their behavior 108

3 Linear representations 111

4 The Kleene-Schützenberger theorem 113

4.1 Rational series are recognizable . 115

4.2 Recognizable series are rational . 118

5 Semimodules 119

6 Nivat’s theorem 121

7 Weighted monadic second-order logic 122

8 Decidability of “r1 = r2?” 128

9 Characteristic series and supports 131

10 Further results 134

References 136

1 Introduction

Classical automata provide acceptance mechanisms for words. The starting point of

weighted automata is to determine the number of ways a word can be accepted or the

amount of resources used for this. The behavior of weighted automata thus associates

108 M. Droste, D. Kuske

p1 p2

a, b a, b

b

Figure 1. A nondeterministic finite automaton

a quantity or weight with every word. The goal of this chapter is to study the possible

behaviors.

Historically, weighted automata were introduced in the seminal paper by Schützen-

berger [101]. A close relationship to probabilistic automata was mutually influential in

the beginning [93, 21, 112]. For the domain of weights and their computations, the alge-

braic structure of semirings proved to be very fruitful. This soon led to a rich mathematical

theory, including applications for purely language-theoretic questions, as well as practical

applications in digital image compression and algorithms for natural language processing.

Excellent treatments of this are provided by the books [50, 100, 112, 79, 12, 98] and the

surveys in the recent handbook [37].

In this chapter, we describe the behavior of weighted automata by equivalent for-

malisms. These include rational expressions and series, algebraic means such as linear

representations and semimodules, decomposition into simple behaviors, and quantitative

logics. We also touch on decidability questions (including a strengthening of a celebrated

result by Krob) and languages naturally associated with the behaviors of weighted au-

tomata.

We had to choose from the substantial amount of theory and applications of this topic

and our choice is biased by our personal interests. We hope to wet the reader’s appetite

for this exciting field and for consulting the abovementioned books.

Acknowledgement The authors would like to thank Werner Kuich for valuable sugges-

tions regarding this chapter and Ingmar Meinecke for some improvements in Section 6.

2 Weighted automata and their behavior

We start with a simple automaton exemplifying different possible interpretations of its

behavior. We identify a common feature that will permit us to consider them as instances

of the unified concept of a weighted automaton. So let Σ = {a, b} and Q = {p1, p2} and

consider the automaton from Figure 1.

Example 2.1. Classically (cf. Chapter 1), the language accepted describes the behavior

of a finite automaton. In our case, this is the language Σ∗bΣ∗.

Now set in(p1) = out(p2) = true, out(p1) = in(p2) = false, and wt(p, c, q) = true
if (p, c, q) is a transition of the automaton and false otherwise. Then a word a1a2 · · · an

Weighted automata 109

is accepted by the automaton if and only if

∨

q0,q1,...,qn∈Q



in(q0) ∧
∧

16i6n

wt(qi−1, ai, qi) ∧ out(qn)





evaluates to true.

Example 2.2. For any word w ∈ Σ∗, let f(w) denote the number of accepting paths

labeled w. In our case, f(w) equals the number of occurrences of the letter b.
Set in(p1) = out(p2) = 1, out(p1) = in(p2) = 0, and wt(p, c, q) = 1 if (p, c, q) is a

transition of the automaton and 0 otherwise. Then f(a1 · · · an) equals

∑

q0,q1,...,qn∈Q



in(q0) ·
∏

16i6n

wt(qi−1, ai, qi) · out(qn)



 . (2.1)

Note that the above two examples would in fact work correspondingly for any finite

automaton. The following two examples are specific for the particular automaton from

Fig. 1.

Example 2.3. Define the functions in and out as in Example 2.2. But this time, set

wt(p, c, q) = 1 if (p, c, q) is a transition of the automaton and p = p1, wt(p2, c, p2) = 2
for c ∈ Σ, and wt(p, c, q) = 0 otherwise. If we now evaluate the formula (2.1) for a word

w ∈ Σ∗, we obtain the value of the word w if understood as a binary number where a
stands for the digit 0 and b for the digit 1.

Example 2.4. Let the deficit of a word v ∈ Σ∗ be the number |v|b − |v|a where |v|a is

the number of occurrences of a in v and |v|b is defined analogously. We want to compute

using the automaton from Fig. 1 the maximal deficit of a prefix of a word w. To this

aim, set in(p1) = out(p2) = 0 and out(p1) = in(p2) = −∞. Furthermore, we set

wt(p1, b, pi) = 1 for i = 1, 2, wt(p1, a, p1) = −1, wt(p2, c, p2) = 0 for c ∈ Σ, and

wt(p, c, q) = −∞ in the remaining cases. Then the maximal deficit of a prefix of the

word w = a1a2 · · · an ∈ Σ∗bΣ∗ equals

max
q0,q1,...,qn∈Q



in(q0) +
∑

16i6n

wt(qi−1, ai, qi) + out(qn)



 .

The similarities between the above examples naturally lead to the definition of a

weighted automaton.

Definition 2.1. Let S be a set and Σ an alphabet. A weighted automaton over S and Σ is

a quadruple A = (Q, in,wt, out) where

• Q is a finite set of states,

• in, out : Q→ S are weight functions for entering and leaving a state, resp., and

• wt: Q× Σ×Q→ S is a transition weight function.

110 M. Droste, D. Kuske

The role of S in the examples above is played by {true, false}, N, and Z ∪ {−∞},

resp., i.e., we reformulated all the examples as weighted automata over some appropriate

set S.

Note also the similarity of the description of the behaviors in all the examples above.

We now introduce semirings that formalize the similarities between the operations ∨, +,

and max on the one hand, and ∧, ·, and + on the other:

Definition 2.2. A semiring is a structure (S,+S , ·S , 0S , 1S) such that

• (S,+S , 0S) is a commutative monoid,

• (S, ·S , 1S) is a monoid,

• multiplication distributes over addition from the left and from the right, and

• 0S ·S s = s ·S 0S = 0S for all s ∈ S.

If no confusion can occur, we often write S for the semiring (S,+S , ·S , 0S , 1S).

It is easy to check that the structures B = ({0, 1},∨,∧, 0, 1), (N,+, ·, 0, 1), and (Z ∪
{−∞},max,+,−∞, 0) are semirings (with 0 = false and 1 = true, B is the semiring

underlying Example 2.1); many further examples are given in [35] and throughout this

chapter. The theory of semirings is described in [61]. The notion of a semiring allows

us to give a common definition of the behavior of weighted automata that subsumes all

those from our examples and, with the language semiring (P(Γ∗),∪, ·, ∅, {ε}), we even

capture the important notion of a transducer [10]; here P(Γ∗) denotes the powerset of Γ∗.

Definition 2.3. Let S be a semiring and A a weighted automaton over S and Σ. A path

in A is an alternating sequence P = q0a1q1 · · · anqn ∈ Q(ΣQ)∗. Its run weight is the

product

rweight(P) =
∏

06i<n

wt(qi, ai+1, qi+1)

(for n = 0, this is defined to be 1); the weight of P is then defined by

weight(P) = in(q0) · rweight(P) · out(qn) .

Furthermore, the label of P is the word label(P) = a1a2 · · · an. Then the behavior of

the weighted automaton A is the function ||A|| : Σ∗ → S with

||A||(w) =
∑

P path with
label(P)=w

weight(P) . (2.2)

Whereas classical automata determine whether a word is accepted or not, weighted

automata over the natural semiring N allow us to count the number of successful paths

labeled by a word (cf. Example 2.2). Over the semiring (N ∪ {−∞},max,+,−∞, 0),
weighted automata can be viewed as determining the maximal amount of resources needed

for the execution of a given sequence of actions (Weighted automata over this semiring

are studied in Chapter 5.) Thus, weighted automata determine quantitative properties.

Notational convention We write P : p
w
−→A q for “P is a path in the weighted automa-

ton A from p to q with label w”. From now on, all weighted automata will be over some

Weighted automata 111

semiring (S,+, ·, 0, 1). We will call functions from Σ∗ into S series. For such a series r,

it is customary to write (r, w) for r(w). The set of all series from Σ∗ into S will be de-

noted by S 〈〈Σ∗〉〉. If A is a weighted automaton, then we get in particular ||A|| ∈ S 〈〈Σ∗〉〉
and in the above definition, we could have written (||A||, w) instead of ||A||(w).

Definition 2.4. A series r ∈ S 〈〈Σ∗〉〉 is recognizable if it is the behavior of some weighted

automaton. The set of all recognizable series is denoted by Srec〈〈Σ∗〉〉.

For a series r ∈ S 〈〈Σ∗〉〉, the support of r is the set supp(r) = {w ∈ Σ∗ | (r, w) 6= 0}.

Also, for a language L ⊆ Σ∗, we write 1L for the series with (1L, w) = 1S if w ∈ L and

(1L, w) = 0S otherwise; 1L is called the characteristic series of L. From Example 2.1,

it should be clear that a series r in B 〈〈Σ∗〉〉 is recognizable if and only if the language

supp(r) is regular. Later, we will see that many properties of regular languages transfer

to recognizable series (sometimes with very similar proofs). But first, we want to point

out some differences.

Example 2.5. Let S = (P(Σ∗),∪, ·, ∅, {ε}) and consider the series r with (r, wa) =
{aw} for all words w ∈ Σ∗ and letters a ∈ Σ, and (r, ε) = ∅. Then r ∈ Srec〈〈Σ∗〉〉,
but, as is easily verified, there is no deterministic transducer whose behavior equals r.

Hence deterministic weighted automata are in general weaker than general weighted au-

tomata, i.e., a fundamental property of finite automata (see Prop. 2.3 in Chapter 1) does

not transfer to weighted automata.

Example 2.6. Let S = (N,+, ·, 0, 1) and a ∈ Σ. We consider the series r with (r, aa) =
2 and (r, w) = 0 forw 6= aa. Then there are 4 different (deterministic) weighted automata

with three states and behavior r (and none with only two states). Hence, another funda-

mental property of finite automata, namely the existence of unique minimal deterministic

automata, does not transfer.

Recall that the existence of a unique minimal deterministic automaton for a regular

language can be used to decide whether two finite automata accept the same language.

Above, we saw that this approach cannot be used for weighted automata over the semiring

(N,+, ·, 0, 1), but, since this semiring embeds into a field, other methods work in this case

(cf. Section 8). However, there are no universal methods since the equivalence problem

over the semiring (N ∪ {−∞},max,+,−∞, 0) is undecidable, see Section 8.

3 Linear representations

Let S be a semiring andQ1 andQ2 sets. We will consider a function fromQ1×Q2 into S
as a matrix whose rows and columns are indexed by elements of Q1 and Q2, respectively.

Therefore, we will write Mp,q for M(p, q) where M ∈ SQ1×Q2 , p ∈ Q1, and q ∈ Q2.

For finite setsQ1, Q2, Q3, this allows us to define the sum and the product of two matrices

as usual:

(K +M)p,q = Kp,q +Mp,q and (M ·N)p,r =
∑

q∈Q2

Mp,q ·Nq,r

112 M. Droste, D. Kuske

for K,M ∈ SQ1×Q2 , N ∈ SQ2×Q3 , p ∈ Q1, q ∈ Q2, and r ∈ Q3. Since in semirings,

multiplication distributes over addition from both sides, matrix multiplication is associa-

tive. For a finite set Q, the unit matrix E ∈ SQ×Q with Ep,q = 1 for p = q and Ep,q = 0
otherwise is the neutral element of the multiplication of matrices. Hence (SQ×Q, ·, E)
is a monoid. It is useful to note that the set SQ×Q with the above operations forms a

semiring.

Lemma 3.1. Let A = (Q, in,wt, out) be a weighted automaton and define a mapping

µ : Σ∗ → SQ×Q by

µ(w)p,q =
∑

P : p
w−→Aq

rweight(P) . (3.1)

Then µ is a homomorphism from the free monoid Σ∗ to the multiplicative monoid of

matrices (SQ×Q, ·, E).

Proof. Let P = p0a1p1 · · · anpn be a path with label uv and let |u| = k. Then P1 =
p0a1 · · · akpk is a u-labeled path, P2 = pkak+1 · · · anpn is a v-labeled path, and we

have rweight(P) = rweight(P1) · rweight(P2). This simple observation, together with

distributivity in the semiring S, allows us to prove the claim.

Now let A = (Q, in,wt, out) be a weighted automaton. Define λ ∈ S{1}×Q and

γ ∈ SQ×{1} by λ1,q = in(q) and γq,1 = out(q). With the homomorphism µ from

Lemma 3.1, we obtain for any word w ∈ Σ∗ (where we identify a {1} × {1}-matrix with

its entry):

(||A||, w) =
∑

p,q∈Q

λ1,p · µ(w)p,q · γq,1 = λ · µ(w) · γ . (3.2)

Subsequently, we consider λ (as usual) as a row vector and γ as a colum vector and we

simply write λ, γ ∈ SQ.

This motivates the following definition.

Definition 3.1 (Schützenberger [101]). A linear representation of dimension Q (where

Q is some finite set) is a triple (λ, µ, γ) such that λ, γ ∈ SQ and µ : (Σ∗, ·, ε) →
(SQ×Q, ·, E) is a monoid homomorphism. It defines the series r = ||(λ, µ, γ)|| with

(r, w) = λ · µ(w) · γ (3.3)

for all w ∈ Σ∗.

Above, we saw that any weighted automaton can be transformed into an equivalent

linear representation. Now we describe the converse transformation. So let (λ, µ, γ) be a

linear representation of dimension Q. For a ∈ Σ and p, q ∈ Q, set wt(p, a, q) = µ(a)p,q ,

in(q) = λq , and out(q) = γq, and define A = (Q, in,wt, out). Since the morphism µ is

uniquely determined by its restriction to Σ, the linear representation associated with A is

precisely (λ, µ, γ), so by Equation (3.2) we obtain ||A|| = ||(λ, µ, γ)||. Hence we showed

Theorem 3.2. Let S be a semiring, Σ an alphabet, and r ∈ S 〈〈Σ∗〉〉. Then r is recogniz-

able if and only if there exists a linear representation (λ, µ, γ) with r = ||(λ, µ, γ)||.

Weighted automata 113

This theorem explains why some authors (e.g., Chapter 5) use linear representations

to define recognizable series or even weighted automata.

4 The Kleene-Schützenberger theorem

The goal of this section is to derive a generalization of Kleene’s classical result on the co-

incidence of rational and regular languages in the realm of series over semirings. There-

fore, first we introduce operations in S 〈〈Σ∗〉〉 that correspond to the language-theoretic

operations union, intersection, concatenation, and Kleene iteration (cf. Chapter 1).

Let r1 and r2 be series. Pointwise addition is defined by

(r1 + r2, w) = (r1, w) + (r2, w) .

Clearly, this operation is associative and has the constant series with value 0 as neutral

element. Furthermore, it generalizes the union of languages since, in the Boolean semi-

ring B, we have supp(r1 + r2) = supp(r1) ∪ supp(r2) and 1K∪L = 1K +1L.

Any family of languages has a union, so one is tempted to also define the sum of

arbitrary sets of series. But this fails in general since it would require the sum of infinitely

many elements of the semiring S (which, e.g., in (N,+, ·, 0, 1), does not exist). But

certain families can be summed: a family (ri)i∈I of series is locally finite if, for any word

w ∈ Σ∗, there are only finitely many i ∈ I with (ri, w) 6= 0. For such families, we can

define
(

∑

i∈I

ri, w

)

=
∑

i∈I with
(ri,w) 6=0

(ri, w) .

Let r1, r2 ∈ S 〈〈Σ∗〉〉. Pointwise multiplication is defined by

(r1 ⊙ r2, w) = (r1, w) · (r2, w) .

This operation is called Hadamard product, is clearly associative, has the constant se-

ries with value 1 as neutral element, and distributes over addition. If S is the Boolean

semiring B, then the Hadamard product corresponds to intersection:

supp(r1 ⊙ r2) = supp(r1) ∩ supp(r2) and 1K ⊙1L = 1K∩L .

Other simple and natural operations are the left and right scalar multiplication that are

defined by

(s · r, w) = s · (r, w) and (r · s, w) = (r, w) · s

for s ∈ S and r ∈ S 〈〈Σ∗〉〉. If S is the Boolean semiring B, then s ∈ {0, 1} and we have

1 · r = r as well as (0 · r, w) = 0 for all words w and series r.

The counterpart of singleton languages in the realm of series are monomials: a mono-

mial is a series r with |supp(r)| 6 1. With w ∈ Σ∗ and s ∈ S, we will write sw for the

monomial r with (r, w) = s. Let r be an arbitrary series. Then the family of monomials

114 M. Droste, D. Kuske

((r, w)w)w∈Σ∗ is locally finite and can therefore be summed. Then one obtains

r =
∑

w∈Σ∗

(r, w)w =
∑

w∈supp(r)

(r, w)w .

If the support of r is finite, then the second sum has only finitely many summands which

is the reason to call r a polynomial in this case; the set of polynomials is denoted S 〈Σ∗〉,
so S 〈Σ∗〉 ⊆ S 〈〈Σ∗〉〉. The similarity with polynomials makes it natural to define another

product of the series r1 and r2 by

(r1 · r2, w) =
∑

w=uv

(r1, u) · (r2, v) .

Since the word w has only finitely many factorizations into u and v, the right-hand side

has only finitely many summands and is therefore well-defined. This important product

is called Cauchy-product of the series r1 and r2. If r1 and r2 are polynomials, then r1 · r2
is precisely the usual product of polynomials. For the Boolean semiring, we get

supp(r1 · r2) = supp(r1) · supp(r2) and 1K ·1L = 1K·L ,

i.e., the Cauchy-product is the counterpart of concatenation of languages. For any semi-

ring S, the monomial 1ε is the neutral element of the Cauchy-product. It requires a short

calculation to show that the Cauchy-product is associative and distributes over the addi-

tion of series. As a very useful consequence, (S 〈〈Σ∗〉〉,+, ·, 0, 1ε) is a semiring (note that

the set of polynomials S 〈Σ∗〉 forms a subsemiring of this semiring). For the Boolean

semiring B, this semiring is isomorphic to (P(Σ∗),∪, ·, ∅, {ε}), an isomorphism is given

by r 7→ supp(r) with inverse L 7→ 1L.

In the theory of recognizable languages, the Kleene-iteration L∗ of a language L is of

central importance. It is defined as the union of all the powers Ln of L (for n > 0). To

also define the iteration r∗ of a series, one would therefore try to sum all finite powers rn

(defined by r0 = 1ε and rn+1 = rn · r). In general, the family (rn)n>0 is not locally

finite, so it cannot be summed. We therefore define the iteration r∗ only for r proper: a

series r is proper if (r, ε) = 0. Then, for n > |w|, one has (rn, w) = 0, so the family

(rn)n>0 is locally finite and we can set

r∗ =
∑

n>0

rn or equivalently (r∗, w) =
∑

06n6|w|

(rn, w) .

For the Boolean semiring and L ⊆ Σ+, we get

supp(r∗) = (supp(r))∗ and (1L)
∗ = 1L∗ .

Recall from Chapter 1 (Sect. 2.1) that a language is rational if it can be constructed from

the finite languages by union, concatenation, and Kleene-iteration. Here, we give the

analogous definition for series:

Definition 4.1. A series from S 〈〈Σ∗〉〉 is rational if it can be constructed from the mono-

mials sa for s ∈ S and a ∈ Σ ∪ {ε} by addition, Cauchy-product, and iteration (applied

to proper series, only). The set of all rational series is denoted by Srat〈〈Σ∗〉〉.

Observe that the class of rational series is closed under scalar multiplication since sε

Weighted automata 115

is a monomial, s · r = sε · r and r · s = r · sε for r ∈ S 〈〈Σ∗〉〉 and s ∈ S.

Example 4.1. Consider the Boolean semiring B and r ∈ B 〈〈Σ∗〉〉. If r is a rational series,

then the above formulas show that supp(r) is a rational language since supp commutes

with the rational operations +, ·, and ∗ for series and ∪, ·, and ∗ for languages. Now

suppose that, conversely, supp(r) is a rational lanuage. To show that also r is a ratio-

nal series, one needs that any rational language can be constructed in such a way that

Kleene-iteration is only applied to languages in Σ+. Having ensured this, the remaining

calculations are again straightforward. Thus, indeed, our notion of rational series is the

counterpart of the notion of a rational language.

Hence, rational languages are precisely the supports of series in B
rat〈〈Σ∗〉〉 and rec-

ognizable languages are the supports of series in B
rec〈〈Σ∗〉〉 (cf. Example 2.1). Now

Kleene’s theorem (Theorem 4.11 in Chapter 1) implies Brec〈〈Σ∗〉〉 = B
rat〈〈Σ∗〉〉. It is the

aim of this section to prove this equality for arbitrary semirings. This is achieved by first

showing that every rational series is recognizable. The other inclusion will be shown in

Section 4.2.

4.1 Rational series are recognizable

For this implication, we generalize the techniques from Chapter 1 (Sections 3.1-3.3) from

classical to weighted automata and prove that the set of recognizable series contains the

monomials sa and sε and is closed under the necessary operations. To show this clo-

sure, we have two possibilities (a third one is sketched after the proof of Theorem 5.1):

either the purely automata-theoretic approach that constructs weighted automata, or the

more algebraic approach that handles linear representations. We chose to give the au-

tomata constructions for monomials and addition, and the linear representations for the

Cauchy-product and the iteration. The reader might decide which approach she prefers

and translate some of the constructions from one to the other.

There is a weighted automaton with just one state q and behavior the monomial sε:
just set in(q) = s, out(q) = 1 and wt(q, a, q) = 0 for all a ∈ Σ. For any a ∈ Σ, there

is a two-states weighted automaton with the monomial sa as behavior. If A1 and A2 are

two weighted automata, then the behavior of their disjoint union equals ||A1||+ ||A2||.
We next show that also the Cauchy-product of two recognizable series is recognizable:

Lemma 4.1. If r1 and r2 are recognizable series, then so is r1 · r2.

Proof. By Theorem 3.2, the series ri has a linear representation (λi, µi, γi) of dimen-

sion Qi with Q1∩Q2 = ∅. We define a row vector λ and a column vector γ of dimension

Q = Q1 ∪Q2 as well as a matrix µ(w) for w ∈ Σ∗ of dimension Q×Q:

λ =
(

λ1 0
)

, µ(w) =





µ1(w)
∑

w=uv,v 6=ε

µ1(u)γ1λ2µ2(v)

0 µ2(w)



 , γ =





γ1λ2γ2

γ2



 .

The reader is invited to check that µ is actually a monoid homomorphism from (Σ∗, ·, ε)

116 M. Droste, D. Kuske

into (SQ×Q, ·, E), i.e., that (λ, µ, γ) is a linear representation. One then gets

λ · µ(w) · γ = λ1 µ1(w) γ1λ2γ2 + λ1
∑

w=uv
v 6=ε

µ1(u)γ1λ2µ2(v) γ2

= (r1, w) · (r2, ε) +
∑

w=uv
v 6=ε

(r1, u)(r2, v)

= (r1 · r2, w) .

By Theorem 3.2, the series ||(λ, µ, γ)|| = r1 · r2 is recognizable.

Lemma 4.2. Let r be a proper and recognizable series. Then r∗ is recognizable.

Proof. There exists a linear representation (λ, µ, γ) of dimensionQwith r = ||(λ, µ, γ)||.
Consider the homomorphism µ′ : (Σ∗, ·, ε) → (SQ×Q, ·, E) defined, for a ∈ Σ, by

µ′(a) = µ(a) + γ λµ(a) .

Let w = a1a2 · · · an ∈ Σ+. Using distributivity of matrix multiplication or, alterna-

tively, induction on n, it follows

µ′(w) =
∏

16i6n

(µ(ai) + γ λµ(ai))

=
∑

w=w1···wk

wi∈Σ+



(µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 .

Note that λ γ = λµ(ε) γ = (r, ε) = 0. Hence we obtain

λµ′(w) γ =
∑

w=w1···wk

wi∈Σ+



λ (µ(w1) + γ λµ(w1)) ·
∏

26j6k

γ λµ(wj)



 γ

=
∑

w=w1···wk

wi∈Σ+

∏

16j6k

λµ(wj) γ

= (r∗, w) ,

as well as λµ′(ε) γ = 0. Hence r∗ = ||(λ, µ′, γ)||+ 1ε is recognizable.

Recall that the Hadamard-product generalizes the intersection of languages and that

the intersection of regular languages is regular. The following result extends this latter

fact to the weighted setting (since the Boolean semiring is commutative). We say that two

subsets S1, S2 ⊆ S commute, if s1 · s2 = s2 · s1 for all s1 ∈ S1, s2 ∈ S2.

Lemma 4.3. Let S1 and S2 be two subsemirings of the semiring S such that S1 and S2

commute. If r1 ∈ Srec
1 〈〈Σ∗〉〉 and r2 ∈ Srec

2 〈〈Σ∗〉〉, then r1 ⊙ r2 ∈ Srec〈〈Σ∗〉〉.

Weighted automata 117

Proof. For i = 1, 2, let Ai = (Qi, ini,wti, outi) be weighted automata over Si with

||Ai|| = ri. We define the product automaton A with states Q1 ×Q2 as follows:

in(p1, p2) = in1(p1) · in2(p2) ,

wt((p1, p2), a, (q1, q2)) = wt1(p1, a, q1) · wt2(p2, a, q2) , and

out(p1, p2) = out1(p1) · out2(p2) .

Then, (||A||, w) = (||A1|| ⊙ ||A2||, w) follows for all words w. For example, for a letter

a ∈ Σ we calculate as follows using the commutativity assumption and distributivity:

(||A||, a) =
∑

(p1,p2),(q1,q2)∈Q

(

(in1(p1) · in2(p2)) · (wt1(p1, a, q1) · wt2(p2, a, q2))
· (out1(q1) · out2(q2))

)

=
∑

(p1,p2),(q1,q2)∈Q

(

in1(p1) · wt1(p1, a, q1) · out1(q1)
· in2(p2) · wt2(p2, a, q2) · out2(q2)

)

=





∑

p1,q1∈Q1

in1(p1) · wt1(p1, a, q1) · out1(q1)





·





∑

p2,q2∈Q2

in2(p2) · wt2(p2, a, q2) · out2(q2)





= (||A1||, a) · (||A2||, a) = (||A1|| ⊙ ||A2||, a) .

We remark that the above lemma does not hold without the commutativity assumption:

Example 4.2. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and consider the recognizable

series r given by (r, w) = {w} for w ∈ Σ∗. Then (r ⊙ r, w) = {ww} and pumping

arguments show that r ⊙ r is not recognizable.

Note that the Hadamard product r ⊙ 1L can be understood as the “restriction” of

r : Σ∗ → S to L ⊆ Σ∗. As a consequence of Lemma 4.3, we obtain that these “restric-

tions” of recognizable series to regular languages are again recognizable.

Corollary 4.4. Let r ∈ S 〈〈Σ∗〉〉 be recognizable and let L ⊆ Σ∗ be a regular language.

Then r ⊙ 1L is recognizable.

Proof. Let A be a deterministic automaton accepting L with set of states Q. Then weight

by 1 those triples (p, a, q) ∈ Q×Σ×Q that are transitions, the initial (resp., final) states

with initial (resp., final) weight 1, and set all other weights to 0. This gives a weighted

automaton with behavior 1L. Since S commutes with its subsemiring generated by 1,

Lemma 4.3 implies the result.

118 M. Droste, D. Kuske

4.2 Recognizable series are rational

For this implication, we will transform a weighted automaton into a system of equations

and then show that any solution of such a system is rational. This generalizes the tech-

niques from Chapter 1 (Section 4.3). The following lemma (that generalizes Prop. 4.6

from Chapter 1 will be helpful and is also of independent interest (cf. [35, Section 5]).

Lemma 4.5. Let r, r′, s ∈ S 〈〈Σ∗〉〉 with r proper and s = r · s+ r′. Then s = r∗r′.

Proof. Let w ∈ Σ∗. First observe that

s = rs+ r′

= r(rs+ r′) + r′ = r2s+ rr′ + r′

...

= r|w|+1s+
∑

06i6|w|

rir′ .

Since r is proper, we have (ri, u) = 0 for all u ∈ Σ∗ and i > |u|. This implies

(r∗r′, w) =
∑

w=uv

(r∗, u) · (r′, v) =
∑

w=uv





∑

06i6|w|

(ri, u)



 · (r′, v) =
∑

06i6|w|

(rir′, w)

= (s, w) .

Now let A = (Q, in,wt, out) be a weighted automaton. For p ∈ Q, define a new

weighted automaton Ap = (Q, inp,wt, out) by inp(p
′) = 1 for p = p′ and inp(p

′) = 0
otherwise. Since all the entry weights of these weighted automata are 0 or 1, we have

||A|| =
∑

(p,a,q)∈Q×Σ×Q

in(p)wt(p, a, q)a · ||Aq||+
∑

p∈Q

in(p)out(p)ε

and for all p ∈ Q

||Ap|| =
∑

(p,a,q)∈Q×Σ×Q

wt(p, a, q)a · ||Aq||+ out(p)ε .

This transformation proves

Lemma 4.6. Let r be a recognizable series. Then there are rational series rij , ri ∈
S 〈〈Σ∗〉〉 with rij proper and a solution (s1, . . . , sn) with s1 = r of a system of equations



Xi =
∑

16j6n

rijXj + ri





16i6n

. (4.1)

A series s is rational over the series {s1, . . . , sn} if it can be constructed from the

monomials and the series s1, . . . , sn by addition, Cauchy-product, and iteration (applied

to proper series, only).

Weighted automata 119

We prove by induction on n that any solution of a system of the form (4.1) consists of

rational series. For n = 1, the system is a single equation of the form X1 = r11X1 + r1
with r11, r1 ∈ Srat〈〈Σ∗〉〉 and r11 proper. Hence, by Lemma 4.5, the solution s1 equals

r∗11r1 and is therefore rational. Now assume that any system with n − 1 unknowns has

only rational solutions and consider a solution (s1, . . . , sn) of (4.1). Then we have

sn = rnnsn +
∑

16j<n

rnjsj + rn

and therefore by Lemma 4.5

sn = r∗nn ·





∑

16j<n

rnjsj + rn



 .

In particular, sn is rational over {s1, s2, . . . , sn−1} since rnj and rn are all rational. Since

(s1, . . . , sn) is a solution of the system (4.1), we obtain

si =
∑

16j<n

(rij + rinr
∗
nnrnj)sj + rinr

∗
nnrn + ri

for all 1 6 i < n. Since rij and rin are proper and rational, so is rij + rinr
∗
nnrnj . Hence

(s1, . . . , sn−1) is a solution of a system of equations of the form (4.1) with n−1 unknowns

implying by the induction hypothesis that the series s1, . . . , sn−1 are all rational. Since

sn is rational over s1, . . . , sn−1, it is therefore rational, too. This completes the inductive

proof of the following lemma.

Lemma 4.7. Let rij , ri ∈ Srat〈〈Σ∗〉〉 with rij proper and let (s1, . . . , sn) be a solution of

the system of equations (4.1). Then all the series s1, . . . , sn are rational.

From Lemmas 4.6 and 4.7, we obtain that any recognizable series is rational. Together

with Lemmas 4.1, 4.2, and the arguments from the beginning of Section 4.1, we obtain

Theorem 4.8 (Schützenberger [101]). Let S be a semiring, Σ an alphabet, and r ∈
S 〈〈Σ∗〉〉. Then r is recognizable if and only if it is rational, i.e., Srec〈〈Σ∗〉〉 = Srat〈〈Σ∗〉〉.

5 Semimodules

If, in the definition of a vector space, one replaces the underlying field by a semiring,

one obtains a semimodule. More formally, let S be a semiring. An S-semimodule is a

commutative monoid (M,+, 0M) together with a left scalar multiplication S ×M →M
satisfying all the usual laws (with s, s′ ∈ S and r, r′ ∈M):

(s+ s′) r = s r + s′ r , (s · s′) r = s (s′ r) ,

s (r + r′) = s r + s r′ , 1 r = r ,

0 r = 0M , and s 0M = 0M .

120 M. Droste, D. Kuske

In our context, the most interesting example is the S-semimodule S 〈〈Σ∗〉〉 of series

over Σ. The additive structure of the semimodule is pointwise addition and the left scalar

multiplication is as defined before.

A subsemimodule of the S-semimodule (M,+, 0M) is a set N ⊆ M that is closed

under addition and left scalar multiplication. A set X ⊆ M generates the subsemimod-

uleN = 〈X〉 ifN is the least subsemimodule containingX . Equivalently, all elements of

N can be written as linear combinations of elements from X . The subsemimodule N is

finitely generated if it is generated by a finite set. A simple example of a subsemimodule

of S 〈〈Σ∗〉〉 is the set of polynomials S 〈Σ∗〉, i.e., of series with finite support. But this

subsemimodule is not finitely generated. The set of constant series is a finitely generated

subsemimodule.

The following is specific for the semimodule of series. For r ∈ S 〈〈Σ∗〉〉 and u ∈ Σ∗,

the series u−1r is defined by

(u−1r, w) = (r, uw)

for all w ∈ Σ∗. A subsemimodule N of S 〈〈Σ∗〉〉 is stable if r ∈ N implies u−1r ∈ N for

all u ∈ Σ∗.

Theorem 5.1 (Fliess [58] and Jacob [67]). Let S be a semiring, Σ an alphabet, and

r ∈ S 〈〈Σ∗〉〉. Then r is recognizable if and only if there exists a finitely generated and

stable subsemimodule N of S 〈〈Σ∗〉〉 with r ∈ N .

For the boolean semiring B, any finitely generated subsemimodule of B 〈〈Σ∗〉〉 is finite.

Therefore the above equivalence extends the well-known result that a language is regular

if and only if it has finitely many left-quotients (cf. Prop. 3.10 from Chapter 1).

Proof. First, let A = (Q, in,wt, out) be a weighted automaton with r = ||A||. For

q ∈ Q, define inq : Q → S by inq(q) = 1 and inq(p) = 0 for p 6= q, and let Aq =
(Q, inq,wt, out). Let N be the subsemimodule generated by {||Aq|| | q ∈ Q}. Since

r = ||A|| =
∑

q∈Q in(q)||Aq||, we get r ∈ N . Note that, for a ∈ Σ and p ∈ Q, we have

a−1||Ap|| =
∑

q∈Q

wt(p, a, q)||Aq||

which allows us to prove by simple calculations that N is stable.

Conversely, let N be finitely generated by {r1, . . . , rn} and stable and let r ∈ N .

For all a ∈ Σ and 1 6 i 6 n, we have a−1ri =
∑

16j6n sijrj with suitable sij ∈ S.

Then there exists a unique morphism µ : Σ∗ → Sn×n with µ(a)ij = sij for a ∈ Σ. By

induction on the length of w ∈ Σ∗, we can show that w−1ri =
∑

16j6n µ(w)ijrj . Hence

(ri, w) = (w−1ri, ε) =
∑

16j6n

µ(w)ij(rj , ε) .

Since r ∈ N , we have r =
∑

16i6n λiri for some λi ∈ S. With γj = (rj , ε), we obtain

(r, w) =
∑

16i,j6n

λi · µ(w)ij · γj = λ · µ(w) · γ

showing that (λ, µ, γ) is a linear representation of r. Hence r is recognizable by Theo-

rem 3.2.

Weighted automata 121

Inductively, one can show that every rational series belongs to a finitely generated and

stable subsemimodule, cf. [12]. Together with the theorem above, this is an alternative

proof of the fact that every rational series is recognizable (cf. Theorem 4.8).

6 Nivat’s theorem

Nivat’s theorem [91] (cf. Theorem 3.5 from Chapter 3) provides an insight into the con-

catenation of mappings and, as we will see, recognizability of certain simple series. More

precisely, it asserts that every proper recognizable series r ∈ S 〈〈Σ∗〉〉 can be decom-

posed into three particular series, namely an inverse monoid homomorphism h−1 : Σ∗ →
P(Γ∗) with h : Γ∗ → Σ∗, a recognizable “selection series” sel : Γ∗ → P(Γ∗) satisfying

(sel, v) ⊆ {v}, and a homomorphism c : (Γ∗, ·, ε) → (S, ·, 1). Conversely, assuming

h(a) 6= ε for all a ∈ Γ, the composition of h−1, sel, and c is recognizable.

A mapping sel : Γ∗ → P(Γ∗) is a selection series if (sel, v) ⊆ {v} for all v ∈ Γ∗.

Let fin(Γ∗) denote the set of all finite subsets of Γ∗. Then (fin(Γ∗),∪, ·, ∅, {ε}) is a

(computable) subsemiring of P(Γ∗). For brevity, this subsemiring is denoted by fin(Γ∗).

Lemma 6.1. (1) A selection series sel ∈ fin(Γ∗) 〈〈Γ∗〉〉 is recognizable if and only if

its support K = {v ∈ Γ∗ | v ∈ (sel, v)} is regular.

(2) If c : (Γ∗, ·, ε) → (S, ·, 1) is a monoid homomorphism, then c is a recognizable

series in S 〈〈Γ∗〉〉.

Proof. (1) We first prove the implication “⇐”. So let K be regular. Then, in an arbi-

trary finite automaton accepting K, weight any a-labeled transition with {a} (for

a ∈ Γ), and weight the initial and final states by {ε}. This gives a weighted au-

tomaton with behavior sel.
The other direction follows from Proposition 9.5 below since K = supp(sel).

(2) This series is the behavior of a weighted automaton with just one state.

By Prop. 2.1 and 3.9 from Chapter 1 morphisms and inverse morphisms preserve the

regularity of languages. Next we show the analogous fact for series which is also of

independent interest.

Lemma 6.2. Let r ∈ S 〈〈Γ∗〉〉 be recognizable.

(1) If h : Σ∗ → Γ∗ is a homomorphism, then the series r◦h ∈ S 〈〈Σ∗〉〉 with (r◦h,w) =
(r, h(w)) is recognizable.

(2) If h : Γ∗ → Σ∗ is a homomorphism with h(a) 6= ε for all a ∈ Γ, then the series

r ◦ h−1 ∈ S 〈〈Σ∗〉〉 with (r ◦ h−1, w) =
∑

v∈h−1(w)(r, v) is recognizable.

Note that h(a) 6= ε in the second statement implies |h(v)| > |v|. Hence, for any

w ∈ Σ∗, there are only finitely many words v with h(v) = w. Hence the series is well-

defined.

Proof. (1) If (λ, µ, γ) is a representation of r, then µ◦h is a morphism and (λ, µ◦h, γ)
represents r ◦ h, as is easy to check.

122 M. Droste, D. Kuske

(2) By Theorem 4.8, r is rational, and an inductive proof shows that r ◦h−1 is rational,

too. Hence it is recognizable by Theorem 4.8, again.

Next, if c : Γ∗ → S is a mapping and sel : Γ∗ → fin(Γ∗) is a selection series, then we

define the series c ◦ sel : Γ∗ → S by

(c ◦ sel, v) =

{

c(v) if (sel, v) = {v} ,

0 otherwise.

Theorem 6.3 (cf. Nivat [91]). Let S be a semiring, Σ an alphabet, and r ∈ S 〈〈Σ∗〉〉
with (r, ε) = 0. Then r is recognizable if and only if there exist an alphabet Γ, a

homomorphism h : Γ∗ → Σ∗ with h(a) 6= ε for all a ∈ Γ, a recognizable selection

series sel ∈ fin(Γ∗) 〈〈Γ∗〉〉, and a homomorphism c : (Γ∗, ·, ε) → (S, ·, 1) such that

r = c ◦ sel ◦ h−1.

Proof. We first prove the implication “⇐”. Let K = supp(sel). By Lemma 6.1(1), K is

regular. Note that c ◦ sel = c ⊙ 1K . Hence c ◦ sel is recognizable by Lemma 6.1(2) and

Corollary 4.4. Therefore, c ◦ sel ◦ h−1 is recognizable by Lemma 6.2(2).

Conversely, let A = (Q, in,wt, out) be a weighted automaton with r = ||A||. Set

Γ = (Q ⊎Q× {1})× Σ× (Q ⊎Q× {2}) ,

h(p′, a, q′) = a , and

c(p′, a, q′) =































wt(p′, a, q′) if p′, q′ ∈ Q ,

in(p) · wt(p, a, q′) if p′ = (p, 1), q′ ∈ Q ,

wt(p′, a, q) · out(q) if p′ ∈ Q, q′ = (q, 2) ,

in(p) · wt(p, a, q) · out(q) if p′ = (p, 1), q′ = (q, 2) ,

0 otherwise

for (p′, a, q′) ∈ Γ. Furthermore, let K be the set of words

((p0, 1), a1, p1)(p1, a2, p2) · · · (pn−1, an, (pn, 2))

with pi ∈ Q for all 0 6 i 6 n. ThenK is regular and corresponds to the set of paths in A.

This allows us to prove (r, w) = (||A||, w) =
∑

v∈h−1(w)∩K c(v), i.e., r = c◦selK ◦h−1

with selK(v) = {v} ∩K. But selK is recognizable by Lemma 6.1(1).

A recent extension of Theorem 6.3 to weighted timed automata was given in [42].

7 Weighted monadic second-order logic

Fundamental results by Büchi, by Elgot and by Trakhtenbrot [20, 51, 109] state that a

language is regular if and only if it is definable in monadic second-order (MSO) logic (see

also [108, 70] and Chapter 7). Here, we wish to extend this result to a quantitative setting

and thereby obtain a further characterization of the recognizability of a series r : Σ∗ → S,

using a weighted version of monadic second-order logic. We follow [32, 34].

Weighted automata 123

We will enrich MSO-logic by permitting all elements of S as atomic formulas. The

semantics of a sentence from the weighted MSO-logic will be a series in S 〈〈Σ∗〉〉. In

general, this weighted MSO-logic is more expressive than weighted automata. But a

suitable, syntactically defined restriction of the logic, which contains classical MSO-logic,

has the same expressive power as weighted automata.

For the convenience of the reader we will recall basic background of classical MSO-

logic, cf. [108, 70]. Let Σ be an alphabet. The syntax of formulas of MSO(Σ), the

monadic second-order logic over Σ, is usually given by the grammar

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables, and X is a set variable. We let Free(ϕ) denote

the set of all free variables of ϕ.

As usual, a word w = a1 · · · an ∈ Σ∗ is represented by the relational structure

(dom(w),6, (Ra)a∈Σ) where dom(w) = {1, . . . , n}, 6 is the usual order on dom(w)
and Ra = {i ∈ dom(w) | ai = a} for a ∈ Σ.

Let V be a finite set of first-order or second-order variables. A (V, w)-assignment

σ is a function mapping first-order variables in V to elements of dom(w) and second-

order variables in V to subsets of dom(w). For a first-order variable x and i ∈ dom(w),
σ[x 7→ i] denotes the (V ∪ {x}, w)-assignment which maps x to i and coincides with σ
otherwise. Similarly, σ[X 7→ I] is defined for I ⊆ dom(w). For ϕ ∈ MSO(Σ) with

Free(ϕ) ⊆ V , the satisfaction relation (w, σ) |= ϕ is defined as usual.

Subsequently, we will encode a pair (w, σ) as above as a word over the extended

alphabet ΣV = Σ × {0, 1}V (with Σ∅ = Σ). We write a word (a1, σ1) . . . (an, σn) over

ΣV as (w, σ) where w = a1 · · · an and σ = σ1 · · ·σn. We call (w, σ) valid, if it is empty

or if for each first order variable x ∈ V , there is a unique position i with σi(x) = 1. In

this case, we identify σ with the (V, w)-assignment that maps each first order variable x
to the unique position i with σi(x) = 1 and each set variable X to the set of positions i
with σi(X) = 1. Clearly the language

NV = {(w, σ) ∈ Σ∗
V | (w, σ) is valid}

is recognizable (here and later we write Σ∗
V for (ΣV)

∗). If Free(ϕ) ⊆ V , we let

LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ} .

We simply write Σϕ = ΣFree(ϕ), Nϕ = NFree(ϕ), and L(ϕ) = LFree(ϕ)(ϕ).
By the Büchi-Elgot-Trakhtenbrot theorem [20, 51, 109], a language L ⊆ Σ∗ is regular

if and only if it is definable by some MSO-sentence. In the proof of the implication ⇒,

given an automaton, one constructs directly an MSO-sentence that defines the language

of the automaton. For the other implication, one uses the closure properties of the class

of regular languages (cf. Chapter 1) and shows inductively the stronger fact that LV(ϕ) is

regular for each formula ϕ (where Free(ϕ) ⊆ V). Our goal is to proceed similarly in the

present weighted setting.

We start by defining the syntax of our weighted MSO-logic as in [32, 34] but we

include arbitrary negation here.

Definition 7.1. The syntax of formulas of the weighted MSO-logic over S and Σ is given

124 M. Droste, D. Kuske

Table 1. MSO(S,Σ) semantics

ϕ [[ϕ]]V(w, σ)

s s

Pa(x)

{

1 if aσ(x) = a

0 otherwise

x 6 y

{

1 if σ(x) 6 σ(y)

0 otherwise

x ∈ X

{

1 if σ(x) ∈ σ(X)

0 otherwise

¬ψ

{

1 if [[ψ]]V(w, σ) = 0

0 otherwise

ϕ [[ϕ]]V(w, σ)

ψ ∨ ̺ [[ψ]]V(w, σ) + [[̺]]V(w, σ)

ψ ∧ ̺ [[ψ]]V(w, σ) · [[̺]]V(w, σ)

∃x.ψ
∑

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∀x.ψ
∏

i∈dom(w)

[[ψ]]V(w, σ[x 7→ i])

∃X.ψ
∑

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

∀X.ψ
∏

I⊆dom(w)

[[ψ]]V(w, σ[X 7→ I])

by the grammar

ϕ ::= s | Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

| ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

where s ∈ S and a ∈ Σ. We let MSO(S,Σ) be the collection of all such weighted

MSO-formulas ϕ.

Next we define the V-semantics of formulas ϕ ∈ MSO(S,Σ) as a series [[ϕ]]V : Σ∗
V →

S.

Definition 7.2. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables with Free(ϕ) ⊆ V .

The V-semantics of ϕ is the series [[ϕ]]V ∈ S 〈〈Σ∗
V〉〉 defined as follows. Let (w, σ) ∈ Σ∗

V .

If (w, σ) is not valid, we put [[ϕ]]V(w, σ) = 0. If (w, σ) with w = a1 · · · an is valid, we

define [[ϕ]]V(w, σ) ∈ S inductively as in Table 1. Note that the product
∏

i∈dom(w) is

calculated following the natural order of the positions in w. For the product
∏

X⊆dom(w),

we use the lexicographic order on the powerset of dom(w).

For brevity, we write [[ϕ]] for [[ϕ]]Free(ϕ). Note that if ϕ is a sentence, i.e., Free(ϕ) = ∅,

then [[ϕ]] ∈ S 〈〈Σ∗〉〉.
Similar definitions of the semantics occur in multivalued logic, cf. [63, 62]. In par-

ticular, a similar definition of the semantics of negated formulas is also used for Gödel

logics. We give several examples of possible interpretations of weighted formulas:

Weighted automata 125

(1) Let S be an arbitrary bounded distributive lattice (S,∨,∧, 0, 1) with smallest el-

ement 0 and largest element 1. In this case, sums correspond to suprema, and

products to infima. For instance, we have [[ϕ ∨ ψ]] = [[ϕ]] ∨ [[ψ]] for sentences ϕ,ψ.

Thus our logic may be interpreted as a multi-valued logic. In particular, if S = B,

the 2-valued Boolean algebra, our semantics coincides with the usual semantics of

unweighted MSO-formulas, identifying characteristic series with their supports.

(2) The formula ∃x.Pa(x) counts how often a occurs in the word. Here, how often

depends on the semiring: e.g., natural numbers, Boolean semiring, integers modulo

2,

(3) Let S = (N,+, ·, 0, 1) and assume ϕ does not contain constants s ∈ N and negation

is applied only to atomic formulas Pa(x), x 6 y, or x ∈ X . Then [[ϕ]](w, σ) gives

the number of “arguments” a machine could present to show that (w, σ) |= ϕ.

Indeed, the machine could proceed inductively over the structure of ϕ. For the

atomic subformulas and their negations, the number should be 1 or 0 depending on

whether the formula holds or not. Now, if [[ϕ]](w, σ) = m and [[ψ]](w, σ) = n, the

number for [[ϕ ∨ ψ]](w, σ) should be m+ n (since any reason for ϕ or ψ suffices),

and for [[ϕ ∧ ψ]](w, σ) it should be m · n (since the machine could pair the reasons

for ϕ resp., ψ arbitrarily). Similarly, the machine could deal with existential and

universal quantifications.

(4) The semiring S = (N ∪ {−∞},max,+,−∞, 0) is often used for settings with

costs or rewards as weights. For the semantics of formulas, a choice like in a

disjunction or existential quantification is resolved by maximum. Conjunction is

resolved by a sum of the costs, and ∀x.ϕ can be interpreted by the sum of the costs

of all positions x.

(5) Consider the reliability semiring S = ([0, 1],max, ·, 0, 1) and Σ = {a1, . . . , an}.

Assume that every letter ai has a reliability pi ∈ [0, 1]. Let ϕ = ∀x.
∨n

i=1(Pai
(x)∧

pi). Then ([[ϕ]], w) can be considered as the reliability of the word w ∈ Σ∗.

(6) PCTL is a well-studied probabilistic extension of computational tree logic CTL
that is applied in verification. As shown recently in [13], PCTL can be considered

as a fragment of weighted MSO logic.

The following basic consistency property of the semantics definition can be shown by

induction over the structure of the formula using also Lemma 6.2.

Proposition 7.1. Let ϕ ∈ MSO(S,Σ) and V be a finite set of variables with Free(ϕ) ⊆
V . Then

[[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ))

for each valid (w, σ) ∈ Σ∗
V . Also, the series [[ϕ]] is recognizable iff [[ϕ]]V is recognizable.

Our goal is to compare the expressive power of suitable fragments of MSO(S,Σ)
with weighted automata. Crucial for this will be closure properties of recognizable series

under the constructs of our weighted logic. In general, neither negation, conjunction, nor

universal quantification preserves recognizability.

Example 7.1. Let S = (Z,+, ·, 0, 1) be the ring of integers and consider the sentence

ϕ = ∃x.Pa(x) ∨ ((−1) ∧ ∃x.Pb(x)) .

126 M. Droste, D. Kuske

Then ([[ϕ]], w) is the difference of the numbers of occurrences of a and b inw and therefore

[[ϕ]] is recognizable. Note that ([[¬ϕ]], w) = 1 if and only if these numbers are equal,

so [[¬ϕ]] = 1L for a non-regular language L. Therefore [[¬ϕ]] is not recognizable (see

Theorem 9.2 below).

Example 7.2. Let Σ = {a, b}, S = (P(Σ∗),∪, ·, ∅, {ε}), and ϕ = ∀x.
(

(Pa(x) ∧ {a}) ∨

(Pb(x) ∧ {b})
)

. With r the series from Example 4.2, [[ϕ]] = r which is recognizable. On

the other hand, [[ϕ ∧ ϕ]] = r ⊙ r is not recognizable.

Example 7.3. Let S = (N,+, ·, 0, 1). Then ([[∃x.1]], w) = |w| and ([[∀y.∃x.1]], w) =

|w||w|
for each w ∈ Σ∗. So [[∃x.1]] is recognizable, but [[∀y.∃x.1]] is not recogniz-

able. Indeed, let A = (Q, in,wt, out) be any weighted automaton over S. Let M =

max{in(p), out(p),wt(p, a, q) | p, q ∈ Q, a ∈ Σ}. Then (||A||, w) 6 |Q||w|+1 ·M |w|+2

for each w ∈ Σ∗, showing ||A|| 6= [[∀y.∃x.1]]. Similarly, ([[∀X.2]], w) = 22
|w|

for each

w ∈ Σ∗, and [[∀X.2]] is not recognizable due to its growth.

These examples lead us to consider fragments of MSO(S,Σ). As in [13], we define

the syntax of Boolean formulas of MSO(S,Σ) by

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | ∀X.ϕ

where a ∈ Σ. Note that in comparison to the syntax of MSO(Σ), we only replaced

disjunction by conjunction and existential by universal quantification. Then, we have

[[ϕ]]V(w, σ) ∈ {0, 1} for each Boolean formula ϕ and (w, σ) ∈ Σ∗
V if Free(ϕ) ⊆ V .

Expressing disjunction and existential quantification by negation and conjunction resp.

universal quantification, for each ϕ ∈ MSO(Σ) there is a Boolean formula ψ such

that [[ψ]] = 1L(ϕ), and conversely. Hence Boolean formulas capture the full power of

MSO(Σ).
Now the class of almost Boolean formulas of MSO(S,Σ) is the smallest class con-

taining all constants s ∈ S and all Boolean formulas which is closed under disjunction,

conjunction, and negation.

It is useful to introduce the closely related notion of recognizable step functions: these

are precisely the finite sums of series s1L where s ∈ S and L ⊆ Σ∗ is regular. By in-

duction it follows that [[ϕ]] is a recognizable step function for any almost Boolean formula

ϕ ∈ MSO(S,Σ). Conversely, if r : Σ∗ → S is a recognizable step function, by the Büchi-

Elgot-Trakhtenbrot theorem, we obtain an almost Boolean sentence ϕ with r = [[ϕ]].
For ϕ ∈ MSO(S,Σ), let const(ϕ) be the set of all elements of S occurring in ϕ. We

recall that two subsets A,B ⊆ S commute, if a · b = b · a for all a ∈ A, b ∈ B.

Definition 7.3. A formula ϕ ∈ MSO(S,Σ) is syntactically restricted, if it satisfies the

following conditions:

(1) for all subformulas ψ ∧ ψ′ of ϕ, the sets const(ψ) and const(ψ′) commute or ψ or

ψ′ is almost Boolean,

(2) whenever ϕ contains a subformula ∀x.ψ or ¬ψ, then ψ is almost Boolean,

(3) whenever ϕ contains a subformula ∀X.ψ, then ψ is Boolean.

We let srMSO(S,Σ) denote the collection of all syntactically restricted formulas from

MSO(S,Σ).

Weighted automata 127

Also, a formula ϕ ∈ MSO(S,Σ) is called existential, if it has the form ∃X1 . . . ∃Xn.ψ
where ψ contains only first order quantifiers.

Theorem 7.2 (Droste and Gastin [34]). Let S be any semiring, Σ an alphabet, and

r : Σ∗ → S a series. The following are equivalent:

(1) r is recognizable.

(2) r = [[ϕ]] for some syntactically restricted and existential sentence ϕ of MSO(S,Σ).
(3) r = [[ϕ]] for some syntactically restricted sentence ϕ of MSO(S,Σ).

Proof (sketch). (1) → (2): We have r = ||A|| for some weighted automaton A =
(Q, in,wt, out). Then we can use the structure of A to define a sentence ϕ as required

such that ||A|| = [[ϕ]].
(2) → (3): Trivial.

(3) → (1): By structural induction we show for each formula ϕ ∈ srMSO(S,Σ) that

[[ϕ]] = ||A|| for some weighted automaton A over Σϕ and Sϕ where Sϕ = 〈const(ϕ)〉 is

the subsemiring of S generated by the set const(ϕ). For Boolean formulas, this is easy.

For disjunction and existential quantification, we use closure properties of the class of rec-

ognizable series. For conjunction, the assumption of Definition 7.3(1) and the particular

induction hypothesis allow us to employ the construction from Lemma 4.3. If ϕ = ∀x.ψ
where ψ is almost Boolean, we can use the description of [[ψ]] as a recognizable step

function to construct a weighted automaton with the behavior [[ϕ]].

Note that the case ϕ = ∀x.ψ requires a crucial new construction of weighted au-

tomata which does not occur in the unweighted setting since, in general, we cannot reduce

(weighted) universal quantification to existential quantification.

A semiring S is locally finite if each finitely generated subsemiring is finite. Examples

include any bounded distributive lattice, thus in particular all Boolean algebras and the

semiring ([0, 1],max,min, 0, 1). Another example is given by ([0, 1],min,⊕, 1, 0) with

x⊕ y = min(1, x+ y).
We call a formula ϕ ∈ MSO(S,Σ) weakly existential, if whenever ϕ contains a sub-

formula ∀X.ψ, then ψ is Boolean.

Theorem 7.3 (Droste and Gastin [32, 34]). Let S be locally finite and r : Σ∗ → S a

series. The following are equivalent:

(1) r is recognizable.

(2) r = [[ϕ]] for some weakly existential sentence ϕ of MSO(S,Σ).

If moreover, S is commutative, these conditions are equivalent to the following one:

(3) r = [[ϕ]] for some sentence ϕ of MSO(S,Σ).

The proof uses the fact that if S is locally finite, then each recognizable series r ∈
S 〈〈Σ∗〉〉 can be shown to be a recognizable step function.

Observe that Theorem 7.3 applies to all bounded distributive lattices and to all fi-

nite semirings; in particular, with S = B it contains our starting point, the Büchi-Elgot-

Trakhtenbrot theorem, as a very special case.

Given a syntactically restricted formula ϕ of MSO(S,Σ), by the proofs of Theo-

rem 7.2 we can construct a weighted automaton A such that ||A|| = [[ϕ]] (provided the

128 M. Droste, D. Kuske

operations of the semiring S are given in an effective way, i.e., S is computable). Since

the equivalence problem for weighted automata over computable fields is decidable by

Corollary 8.4 below, we obtain:

Corollary 7.4. Let S be a computable field. Then the equivalence problem whether [[ϕ]] =
[[ψ]] for syntactically restricted sentences ϕ, ψ of MSO(S,Σ) is decidable.

In contrast, the equivalence problem for weighted automata is undecidable for the

semirings (N ∪ {∞},min,+,∞, 0) and (N ∪ {−∞},max,+,−∞, 0) (Theorem 8.6).

Since the proof of Theorem 7.2 is effective, for these semirings also the equivalence prob-

lem for syntactically restricted sentences of MSO(S,Σ) is undecidable.

8 Decidability of “r1 = r2?”

In this section, we investigate when it is decidable whether two given recognizable series

are equal. For this, we assume S to be a computable semiring, i.e., the underlying set of

S forms a decidable set and addition and multiplication can be performed effectively. In

the first part, we fix one of the two series to be the constant series with value 0.

Let P = (λ, µ, γ) be a linear representation of dimensionQ of the series r ∈ S 〈〈Σ∗〉〉.
For n ∈ N, let UP

n = 〈{λµ(w) | w ∈ Σ∗, |w| 6 n}〉 and UP = 〈{λµ(w) | w ∈ Σ∗}〉, so

UP
n and UP are subsemimodules of S{1}×Q. Then UP

0 ⊆ UP
1 ⊆ UP

2 · · · ⊆ UP =
⋃

n∈N
UP
n , and each of the semimodules UP

n is finitely generated.

Lemma 8.1. The set of all pairs (P, n) such that P is a linear representation and UP
n =

UP
n+1 is recursively enumerable (here, the homomorphism µ from the linear representa-

tion P is given by its restriction to Σ).

Proof. Note that UP
n = UP

n+1 if and only if every vector λµ(w) with |w| = n+1 belongs

to UP
n if and only if for each w ∈ Σ∗ of length n+ 1, we have

λµ(w) =
∑

v∈Σ∗

|v|6n

svλµ(v)

for some sv ∈ S. A non-deterministic Turing-machine can check the solvability of this

equation by just guessing the coefficients sv and checking the required equality.

Corollary 8.2. Assume that, for any linear representation P , UP is a finitely gener-

ated semimodule. Then, from a linear representation P of dimension Q, one can com-

pute n ∈ N with UP
n = UP and finitely many vectors x1, . . . , xm ∈ S{1}×Q with

〈{x1, . . . , xm}〉 = UP .

Proof. Since UP is finitely generated, there is some n ∈ N such that UP = UP
n and

therefore UP
n = UP

n+1. Hence, for some n ∈ N, the pair (P, n) appears in the list from

the previous lemma. Then UP = UP
n = 〈{λµ(v) | v ∈ Σ∗, |v| 6 n}〉.

Weighted automata 129

Clearly, every finite semiring satisfies the condition of the corollary above, but not all

semirings do.

Example 8.1. Let S be the semiring (N,+, ·, 0, 1) and consider a linear representation P
with

λ =
(

1 0
)

and µ(w) =

(

1 |w|
0 1

)

.

Then UP
n is generated by all the vectors

(

1 m
)

for 0 6 m 6 n so that
(

1 n+ 1
)

∈
UP
n+1 \ U

P
n ; hence UP is not finitely generated.

As a positive example, we have the following.

Example 8.2. If S is a skew-field (i.e., a semiring such that (S,+, 0) and (S\{0}, ·, 1) are

groups), then we can consider UP
n as a vector space. Then the dimensions of the spaces

UP
i ⊆ S{1}×Q are bounded by |Q| and dim(UP

i) 6 dim(UP
i+1) implying UP

|Q| = UP .

Hence, for any skew-field S, in the corollary above we can set n = |Q|.
We only note that all Noetherian rings (that include all polynomial rings in several

indeterminates over fields, by Hilbert’s basis theorem) satisfy the assumption of Corol-

lary 8.2.

Theorem 8.3 (Schützenberger [101]). Let S be a computable semiring such that, for

any linear representation P , UP is a finitely generated semimodule. Then, for a linear

representation P , one can decide whether ||P || = 0.

Proof. We have to decide whether yγ = 0 for all vectors y ∈ UP . By Corollary 8.2,

we can compute a finite list x1, . . . , xm of vectors that generate UP . So one only has to

check whether xiγ = 0 for 1 6 i 6 m.

Example 8.3. If S is a skew-field, a basis of UP can be obtained in time |Σ| · |Q|3

(where the operations in the skew-field S are assumed to require constant time). The

algorithm actually computes a prefix-closed set of words u1, . . . , udim(UP) such that the

vectors λµ(ui) form a basis of UP (cf. [99]). This basis consists of at most |Q| vectors

(cf. Example 8.2), each of size |Q|. Hence ||P || = 0 can be decided in time |Σ||Q|3.

If S is a finite semiring, thenUP = UP
|SQ|. Hence the vectors λµ(w) with |w| 6 |S||Q|

form a generating set. To check whether λµ(w)γ = 0 for all such words w, time |Σ||S||Q|

suffices. Within the same time bound, one can decide whether ||P || = 0 holds.

Corollary 8.4. Let S be a computable ring such that, for any linear representation P ,

UP is a finitely generated semimodule. Then one can decide for two linear representations

P1 and P2 whether ||P1|| = ||P2||.

Proof. Since S is a ring, there is an element −1 ∈ S with x+(−1) ·x = 0 for any x ∈ S.

Replacing the initial vector λ from P2 by −λ, one obtains a linear representation for the

series (−1)||P2||. This yields a linear representation P with ||P || = ||P1||+ (−1)||P2||.
Now ||P1|| = ||P2|| if and only if ||P || = 0 which is decidable by Theorem 8.3.

130 M. Droste, D. Kuske

Remark 8.5. Let n1 and n2 be the dimensions of P1 and P2, respectively. Then the linear

representation P from the proof above can be computed in time n1 ·n2 and has dimension

n1+n2. If S is a skew-field, then we can therefore decide whether ||P1|| = ||P2|| in time

|Σ|(n1 + n2)
3.

Let S be a finite semiring. Then from s ∈ S and weighted automata for ||P1|| and

for ||P2||, one can construct automata accepting {w ∈ Σ∗ | (||Pi||, w) = s} for i = 1, 2.

This allows us to decide ||P1|| = ||P2|| in doubly exponential time. If S is a finite ring,

this result follows also from the proof of the corollary above and Example 8.3.

However, the following result is in sharp contrast to Corollary 8.4. For two series r and s
with values in N ∪ {−∞}, we write r 6 s if (r, w) 6 (s, w) for all words w.

Theorem 8.6 (cf. Krob [76]). There are series r1, r2 : Σ
∗ → N∪{−∞} such that the sets

of weighted automata A over the semiring (N ∪ {−∞},max,+,−∞, 0) with ||A|| = r1
(with ||A|| 6 r1, with r2 6 ||A||, resp.) are undecidable.

We remark that analogous statements hold for the semiring (N∪{∞},min,+,∞, 0).
As a consequence, the equivalence problem of weighted automata over these two semi-

rings is undecidable (this undecidability was shown by Krob). The original proof by Krob

is rather involved reducing Hilbert’s 10th problem to the equivalence problem. (Chapter 5

identifies subclasses of weighted automata over (N ∪ {−∞},max,+,−∞, 0) where the

equivalence is decidable.) A simplified proof was found by Almagor, Boker and Kupfer-

man in [3] starting from the undecidability of the question whether a 2-counter machine A
will eventually halt when started with empty counters. The proof below is an extension

of the arguments from [3].

A 2-counter machine is a deterministic finite automaton over the alphabet Σ with

Σ = {a+, a−, a?, b+, b−, b?}. The idea is that we have two counters, a and b. The counter

a is incremented when executing a+ and decremented when executing a−; this action a−
can only be executed if the value of the counter a is positive. Similarly, the action a? can

only be executed when the counter a is zero. Formally, the 2-counter machine M halts

from the empty configuration if it accepts some word w ∈ Σ∗ such that

(1) |u|a−
6 |u|a+

and |u|b− 6 |u|b+ for any prefix u of w,

(2) |u|a−
= |u|a+

for any prefix ua? of w, and

(3) |u|b− = |u|b+ for any prefix ub? of w.

Words satisfying the conditions (1)-(3) will be called potential computation. By Min-

sky’s theorem [89], the set of 2-counter machines that halt fom the empty configuration

is undecidable.

Proof of Theorem 8.6. The maximal error of a word w ∈ Σ∗ is the maximal value n ∈ N

such that there exists

• a prefix u of w with n = |u|a−
− |u|a+

or n = |u|b− − |u|b+ or

• a prefix ua? of w with n = |u|a+
− |u|a−

or

• a prefix ub? of w with n = |u|b+ − |u|b− .

Let r′1 be the series that assigns the maximal error to any word w ∈ Σ∗. Then the

following properties of r′1 are essential:

(1) A word w ∈ Σ∗ is a potential computation if and only if (r′1, w) = 0.

Weighted automata 131

(2) The series r′1 is recognizable over the semiring (Z ∪ {−∞},max,+,−∞, 0).

Now let M be a 2-counter machine. We define, from M and r′1, a new series r′M
setting

(r′M , w) =

{

max((r′1, w), 1) if w ∈ L(M) ,

(r′1, w) otherwise.

Note that

r′M = (r′1 + 1 · 1Σ∗)⊙ 1L(M) + r′1 ⊙ 1Σ∗\L(M)

where +, ·, and ⊙ in this expression for series refer to the addition max and multiplica-

tion + of values in the semiring (N∪{−∞},max,+,−∞, 0). Since the language L(M)
is regular, this series r′M is recognizable and a weighted automaton A with ||A|| = r′M
can be computed from M (cf. Section 4.1).

For a word w ∈ Σ∗, we have (r′1, w) = (r′M , w) if and only if w /∈ L(M) or

(r′1, w) > 0. Recall that (r′1, w) > 0 is equivalent to saying “w is no potential computa-

tion”. Consequently, r′1 = r′M if and only ifM does not accept any potential computation

if and only if the 2-counter machine M does not halt from the empty configuration. Since

this is undecidable, the equality of r′1 and r′M is undecidable. Since (r′1, w) 6 (r′M , w)
for any word w, it is also undecidable whether r′M 6 r′1.

Next let (r′2, w) = 1 for any word w. Then r′2 = 1 · 1Σ∗ is recognizable over the

semiring (Z ∪ {−∞},max,+,−∞, 0). Now let M be a 2-counter machine. We define,

from M and r′2, a new series s′M setting

(s′M , w) =

{

(r′1, w) if w ∈ L(M) ,

(r′2, w) otherwise.

Note that s′M = r′1⊙1L(M) +r
′
2⊙1Σ∗\L(M). Hence a weighted automaton with behavior

s′M can be computed from M . Then (r′2, w) 6 (s′M , w) if and only if w /∈ L(M) or

1 6 r′1(w). Hence r′2 6 s′M if and only if the 2-counter machine M does not halt from

the empty configuration. Consequently, it is undecidable whether r′2 6 s′M .

Recall that the series r′1, r′2, r′M , and s′M are recognizable over the semiring (Z ∪
{−∞},max,+,−∞, 0). Set (r1, w) = (r′1, w)+|w| and define r2, rM , and sM similarly.

One can check that the weighted automata for the dashed series use transition weights −1,

0, 1, and −∞, only. Hence, adding 1 to every transition in these weighted automata trans-

forms them into weighted automata over (N∪{−∞},max,+,−∞, 0) whose behavior is

r1 etc. This implies that the above undecidabilities also hold for weighted automata with

non-negative integer weights.

9 Characteristic series and supports

The goal of this section to investigate the regularity of the support of recognizable (char-

acteristic) series.

Lemma 9.1. Let S be any semiring and L ⊆ Σ∗ a regular language. Then the charac-

teristic series 1L of L is recognizable.

132 M. Droste, D. Kuske

Proof. Take a deterministic finite automaton accepting L and weight the initial state, the

transitions, and the final states with 1 and all the non-initial states, the non-transitions,

and the non-final states with 0. Since every word has at most one successful path in the

deterministic finite automaton, the behavior of the weighted automaton constructed this

way is the characteristic series of L over S.

For all commutative semirings, also the converse of this lemma holds. This was first

shown for commutative rings where one actually has the following more general result:

Theorem 9.2 (Schützenberger [101] and Sontag [105]). Let S be a commutative ring,

and let r ∈ Srec〈〈Σ∗〉〉 have finite image. Then r−1(s) is recognizable for any s ∈ S.

It remains to consider commutative semirings that are not rings. Let S be a semiring.

A subset I ⊆ S is called an ideal, if for all a, b ∈ I and s ∈ S we have a+ b, a · s, s ·a ∈
I . Dually, a subset F ⊆ S is called a filter, if for all a, b ∈ F and s ∈ S we have

a · b, s+ a ∈ F . Given a subset A ⊆ S, the smallest filter containing A is the set

F(A) = {a1 · · · an + s | ai ∈ A for 1 6 i 6 n, and s ∈ S} .

Lemma 9.3 (Wang [111]). Let S be a commutative semiring which is not a ring. Then

there is a semiring morphism onto B.

Proof. Consider the collection C of all filters F of S with 0 6∈ F . Since S is not a ring,

we have F({1}) ∈ C. By Zorn’s lemma, (C,⊆) contains a maximal element M with

F({1}) ⊆ M . We define h : S → B by letting h(s) = 1 if s ∈ M , and h(s) = 0
otherwise. Clearly h(0) = 0 and h(1) = 1.

Now let a, b ∈ S. We claim that h(a+b) = h(a)+h(b). By contradiction, we assume

that a, b 6∈ M but a + b ∈ M . Then 0 ∈ F(M ∪ {a}) and 0 ∈ F(M ∪ {b}). Since S is

commutative, we have 0 = m · an + s = m′ · bn
′

+ s′ for some m,m′ ∈ M , n, n′ ∈ N

and s, s′ ∈ S. This implies that 0 = m ·m′ · (a+ b)n+n′

+ s′′ for some s′′ ∈ S. But now

a+ b ∈M implies 0 ∈M , a contradiction.

Finally, we claim that h(a · b) = h(a) · h(b). If a, b ∈M , then also ab ∈M , showing

our claim. Now assume a 6∈M but ab ∈M . As above, we have 0 = m · an + s for some

m ∈M , n ∈ N, and s ∈ S. But then 0 = m · an · bn + s · bn = m · (ab)n + sbn ∈M by

ab ∈M , a contradiction.

Theorem 9.4 (Wang [111]). Let S be a commutative semiring and L ⊆ Σ∗. Then L is

regular iff 1L is recognizable.

Proof. One implication is part of Lemma 9.1. Now assume that 1L is recognizable. If S
is a ring, the result is immediate by Theorem 9.2. If S is not a ring, by Lemma 9.3 there

is a semiring morphism h from S to B. Let A be a weighted automaton with ||A|| = 1L.

In this automaton, replace all weights s by h(s). The behavior of the resulting weighted

automaton over the Boolean semiring B is 1L ∈ B 〈〈Σ∗〉〉. Hence L is regular.

Now we turn to supports of arbitrary recognizable series. Already for S = Z, the ring

of integers, such a language is not necessarily regular (cf. Example 7.1). But we have the

following positive result.

Weighted automata 133

Proposition 9.5. Let S be a zero-sum- and zero-divisor-free monoid (i.e., x + y = 0 or

x · y = 0 implies 0 ∈ {x, y}). Then the support of every recognizable series over S is

regular.

Proof. Let A be a weighted automaton. Deleting all transitions of weight 0 and delet-

ing all remaining weights, one gets a nondeterministic finite automaton that accepts the

support of ||A||.

Examples of zero-sum- and zero-divisor-free semirings include (N,+, ·, 0, 1), (N ∪
{−∞},max,+,−∞, 0), and (P(Γ∗),∪, ·, ∅, {ε}). In [72], it is shown that, in the above

proposition, one can replace the condition “zero-divisor-free” by “commutative” cover-

ing, e.g., the semiring N × N with componentwise addition and multiplication. One can

even characterize those semirings for which the support of any recognizable series is reg-

ular:

Theorem 9.6 (Kirsten [73]). For a semiring S, the following are equivalent:

(1) The support of every recognizable series over S is regular.

(2) For any finitely generated semiring S′ ⊆ S, there exists a finite semiring Sfin and

a homomorphism η : S′ → Sfin with η−1(0) = {0}.

It is not hard to see that positive (i.e., zero-sum- and zero-divisor-free) semirings

like (N,+, ·, 0, 1) or (P(Γ∗),∪, ·, ∅, {ε}) and locally finite semirings (like (Z/4Z)ω or

bounded distributive lattices) satisfy condition (2) and therefore (1).

Given a semiring S, by Lemma 9.1, the class SR(S) of all supports of recognizable

series over S contains all regular languages. Closure properties of this class SR(S) have

been studied extensively, see, e.g., [12]. A further result is the following.

Theorem 9.7 (Restivo and Reutenauer [97]). Let S be a field and L ⊆ Σ∗ a language

such that L and its complement Σ∗ \ L both belong to SR(S). Then L is regular.

In contrast, we note the following result which was also observed by Kirsten:

Theorem 9.8. There exists a semiring S such that L ∈ SR(S) (and even 1L is recogniz-

able) for any language L over any finite alphabet Σ.

Proof. Let Γ = {a, b} and ∆ = Γ∪{c}. Furthermore, let ∆ = {γ | γ ∈ ∆} be a disjoint

copy of ∆. The elements of the semiring S are the subsets of ∆
∗
∆∗ and the addition of S

is the union of these sets (with neutral element ∅). To define multiplication, let L,M ∈ S.

Then L⊙M consists of all words uv ∈ ∆
∗
∆∗ such that there exists a word w ∈ ∆∗ with

uw ∈ L and wrevv ∈ M . Alternatively, multiplication of L and M can be described as

follows: concatenate any word from L with any word from M , delete any factors of the

form dd for d ∈ ∆, and place the result into L ⊙M if and only if it belongs to ∆
∗
∆∗.

For instance, we have

{abc} · {ca, cba, a} = {abcca, abccba, abca} and

{abc} ⊙ {ca, cba, a} = {aba, aa}

134 M. Droste, D. Kuske

since the above procedure, when applied to abc and a, results in abca /∈ ∆
∗
∆∗ . Then it

is easily verified that (S,∪,⊙, ∅, {ε}) is a semiring.

Now let L ⊆ Γ∗. Define the linear representation P = (λ, µ, γ) of dimension 1 as

follows:

λ1 = {c} ⊙ Lrev ,

µ(d)11 = {d} for d ∈ Γ , and

γ1 = {c} .

For v ∈ Γ∗, one then obtains

(||P ||, v) = {c} ⊙ Lrev ⊙ {v̄} ⊙ {c} =

{

{ε} if v ∈ L ,

∅ otherwise.

This proves that the characteristic series of L is recognizable for any L ⊆ Γ∗. To obtain

this fact for any language L ⊆ Σ∗, let h : Σ∗ → Γ∗ be an injective homomorphism. Then

1L = 1h(L) ◦h

which is recognizable by Lemma 6.2(1).

An open problem is to characterize those (non-commutative) semirings S for which

the support of every characteristic and recognizable series is regular.

10 Further results

Above, we could only touch on a few selected topics from the rich area of weighted

automata. In this section, we wish to give pointers to many other research results and

directions. For details as well as further topics, we refer the reader to the books [50,

100, 79, 12, 98] and to the recent handbook [37] with extensive surveys including open

problems.

Recognizability Some authors use linear representations to define recognizable series [12]

and Chapter 5.

The transition relation of weighted automata given in this chapter can alternatively be

considered as a Q × Q-matrix whose entries are functions from Σ to S (cf. Section 6

from Chapter 2). A more general approach is presented in [99, 98] where the entries are

functions from Σ∗ to S. Here, the free monoid Σ∗ can even be replaced by an arbitrary

monoid with a length function.

The surveys [52, 54, 55] contain an axiomatic treatment of iteration and weighted

automata using the concept of Conway semirings (i.e., semirings equipped with a suitable
∗-operation).

The abovementioned books contain many further properties of recognizable series

including minimization, Fatou-properties, growth behavior, relationship to coding, and

decidability and undecidability results.

Weighted automata 135

The coincidence of aperiodic, starfree, and first-order definable languages [102, 87]

has counterparts in the weighted setting [32, 33] for suitable semirings. An open problem

would be to investigate the relationship between dot-depth and quantifier-alternation (as

in [106] for languages). Recently, the expressive power of weighted pebble automata

and nested weighted automata was show to equal that of a weighted transitive closure

logic [14].

Recall that the distributivity of semirings permitted us to employ linear representa-

tions and algebraic proofs for many results. Using automata-theoretic constructions, one

can obtain Kleene and Büchi type characterizations of recognizable series for strong bi-

monoids [46] which can be viewed as semirings without distributivity assumption, also

cf. [40].

Weighted pushdown automata A huge amount of research has dealt with weighted

versions of pushdown automata and of context-free grammars. The books [100, 79] and

the chapters [77, 94] survey the theory and also infer purely language-theoretic decid-

ability results on unambiguous context-free languages. The list of equivalent formalisms

(weighted pushdown automata, weighted context-free grammars, systems of algebraic

equations) has recently been extended by a weighted logic [86].

Quantitative automata Motivated by practical questions on the behavior of technical

systems, new kinds of behaviors of weighted automata have been investigated [23, 22].

E.g., the run weight of a path could be the average of the weights of the transitions.

Various decidability and undecidability results, closure properties, and properties of the

expressive powers of these models have been established [23, 22, 40, 39, 88, 46]. An

axiomatic investigation of such automata using Conway hemirings is given in [36]. A

Chomsky-Schützenberger result for quantitative pushdown automata is obtained in [47].

Discrete structures Weighted tree automata and transducers have been investigated,

e.g., for program analysis and transformation [103] and for description logics [6]. Their

investigation, e.g., [11, 17, 18, 78, 45], was also guided by results on weighted word

automata and on tree transducers, for an extensive survey see [59].

Distributed behaviors can be modelled by Mazurkiewicz traces. The well-established

theory of recognizable languages of traces [27] has a weighted counterpart including a

weighted distributed automaton model [57].

Automata models for other discrete structures like pictures [60], nested words [4],

texts [49, 66], graphs [107], data words [68], and recently operator precedence languages

[82] have been studied extensively. Corresponding weighted automata models and their

expressive power have been investigated in [56, 7, 86, 29, 85, 28, 48, 8, 30].

Infinite words Weighted automata on infinite words were investigated for image pro-

cessing [26] and used as devices to compute real functions [25]. A discounting parameter

was employed in [38, 44] in order to calculate the run weight of an infinite path. This led to

Kleene-Schützenberger and logical descriptions of the resulting behaviors. Alternatively,

semirings with infinitary sum and product operations allow us to define the behavior anal-

ogously to the finitary case and to obtain corresponding results [53, 34]. Also the quantita-

136 M. Droste, D. Kuske

tive automata from above have been investigated for infinite words employing, e.g., accu-

mulation points of averages to define the run weight of infinite paths [23, 22, 40, 39, 88].

The behaviors of these automata also fit into the framework of Conway hemirings [31].

Weighted Muller automata on ω-trees were studied in [6, 96, 84].

Applications Since the early 90s, weighted automata have been used for compressed

representations of images and movies which led to various algorithms for image transfor-

mation and processing, cf. [69, 1] for surveys.

Practical tools for multi-valued model checking have been developed based on weigh-

ted automata over De Morgan algebras, cf. [24, 19, 80]. De Morgan algebras are particular

bounded distributive lattices and therefore locally finite semirings. Weighted automata

have also been crucially used to automatically prove termination of rewrite systems, cf.

[110] for an overview.

In network optimization problems, one often employs the max-plus-semiring (R ∪
{−∞},max,+,−∞, 0), see Chapter 5.

For quantitative evaluations, reachability questions, and scheduling optimization in

real-time systems, timed automata with cost and multi-cost functions form a vigorous

current research field [9, 5, 16, 15]. Rational and logical descriptions of weighted timed

and of multi-weighted automata were given in [43, 95, 42, 41].

In natural language processing, an interesting strand of applications is developing

where weighted tree automata play a central role, cf. [75, 83] for surveys. Toolkits for

handling weighted automata models are described in [74, 2]. A survey on algorithms for

weighted automata with references to many further applications is given in [90].

We close with three examples where weighted automata were employed to solve long-

standing open questions in language theory. First, the equivalence of deterministic multi-

tape automata was shown to be decidable in [64], cf. also [99]. Second, the equality

of an unambiguous context-free language and a regular language can be decided using

weighted pushdown automata [104], cf. also [92]. Third, the decidability and complexity

of determining the star-height of a regular language were determined using a variant of

weighted automata [65, 71].

References

[1] J. Albert and J. Kari. Digital image compression. In Droste et al. [37], chapter 11. 136

[2] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. Openfst: a general and efficient

weighted finite-state transducer library. In CIAA’07, Lecture Notes in Computer Science

vol. 4783, pages 11–23. Springer, 2007. 136

[3] S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted automata? In

ATVA 2011, Lecture Notes in Computer Science vol. 6996, pages 482–491. Springer, 2011.

130

[4] R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM, 56:1–

43, 2009. 135

[5] R. Alur, S. L. Torre, and G. Pappas. Optimal paths in weighted timed automata. Theoretical

Computer Science, 318:297–322, 2004. 136

Weighted automata 137

[6] F. Baader and R. Peñaloza. Automata-based axiom pinpointing. Journal of Automated Rea-

soning, 45(2):91–129, 2010. 135, 136

[7] P. Babari and M. Droste. A Nivat theorem for weighted picture automata and weighted MSO

logics. Journal of Computer and System Sciences, 2018. to appear. 135

[8] P. Babari, M. Droste, and V. Perevoshchikov. Weighted register automata and weighted logic

on data words. Theoretical Computer Science, 2018. to appear. 135

[9] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F. Vaandrager.

Minimum-cost reachability for priced timed automata. In HSCC’01, Lecture Notes in Com-

puter Science vol. 2034, pages 147–161. Springer, 2001. 136

[10] J. Berstel. Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart,

1979. 110

[11] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoretical Com-

puter Science, 18:115–148, 1982. 135

[12] J. Berstel and C. Reutenauer. Rational Series and Their Languages. Springer, 1988. An aug-

mented and updated version appeared as Noncommutative Rational Series With Applications,

Cambridge University Press, 2010. 108, 121, 133, 134

[13] B. Bollig and P. Gastin. Weighted versus probabilistic logics. In V. Diekert and D. Nowotka,

editors, Developments in Language Theory, Lecture Notes in Computer Science vol. 5583,

pages 18–38. Springer Berlin / Heidelberg, 2009. 125, 126

[14] B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata and weighted

logics. ACM Transactions on Computational Logic, 15(2:15), 2014. 135

[15] P. Bouyer, E. Brinksma, and K. Larsen. Optimal infinite scheduling for multi-priced timed

automata. Formal Methods in System Design, 32:3–23, 2008. 136

[16] P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed

automata with energy constraints. In FORMATS’08, Lecture Notes in Computer Science

vol. 5215, pages 33–47. Springer, 2008. 136

[17] S. Bozapalidis. Effective construction of the syntactic algebra of a recognizable series on

trees. Acta Informatica, 28:351–363, 1991. 135

[18] S. Bozapalidis. Representable tree series. Fundamenta Informaticae, 21:367–389, 1994. 135

[19] G. Bruns and P. Godefroid. Model checking with multi-valued logics. In ICALP’04, Lecture

Notes in Computer Science vol. 3142, pages 281–293. Springer, 2004. 136

[20] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen

Math., 6:66–92, 1960. 122, 123

[21] R. G. Bukharaev. Theorie der stochastischen Automaten. Teubner, 1995. 108

[22] K. Chatterjee, L. Doyen, and T. Henzinger. Expressiveness and closure properties for quan-

titative languages. Logical Methods in Computer Science, 6(3:10):1–23, 2010. 135, 136

[23] K. Chatterjee, L. Doyen, and T. Henzinger. Quantitative languages. ACM Transactions on

Computational Logic, 11:4, 2010. 135, 136

[24] M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems

with fine-grained abstractions using SPIN. In SPIN’01, Lecture Notes in Computer Science

vol. 2057, pages 16–36. Springer, 2001. 136

[25] K. Čulik II and J. Karhumäki. Finite automata computing real functions. SIAM J. of Com-

puting, pages 789–814, 1994. 135

138 M. Droste, D. Kuske

[26] K. Čulik II and J. Kari. Image compression using weighted finite automata. Computer and

Graphics, 17(3):305–313, 1993. 135

[27] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific Publ. Co., 1995.

135

[28] M. Droste and S. Dück. Weighted automata and logics on graphs. In MFCS’15, volume

9234 of Lecture Notes in Computer Science, pages 192–204. Springer, 2015. 135

[29] M. Droste and S. Dück. Weighted automata and logics for infinite nested words. Information

and Computation, 253:448–466, 2017. 135

[30] M. Droste, S. Dück, D. Mandrioli, and M. Pradella. Weighted operator precedence lan-

guages. In MFCS’17, number 83 in LIPIcs, pages 31:1–31:15. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2017. 135

[31] M. Droste, Z. Ésik, and W. Kuich. Conway and iteration hemirings, parts 1 and 2. Int. J. of

Algebra and Computation, 24:461–482 and 483–513, 2014. 136

[32] M. Droste and P. Gastin. Weighted automata and weighted logics. Theoretical Computer

Science, 380:69–86, 2007. 122, 123, 127, 135

[33] M. Droste and P. Gastin. On aperiodic and star-free formal power series in partially com-

muting variables. Theory Comput. Syst., 42(4):608–631, 2008. 135

[34] M. Droste and P. Gastin. Weighted automata and weighted logics. In Droste et al. [37],

chapter 5. 122, 123, 127, 135

[35] M. Droste and W. Kuich. Semirings and formal power series. In Droste et al. [37], chapter 1.

110, 118

[36] M. Droste and W. Kuich. Weighted finite automata over hemirings. Theoretical Computer

Science, 485:38–48, 2013. 135

[37] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. EATCS

Monographs in Theoretical Computer Science. Springer, 2009. 108, 134, 136, 138, 139,

140, 141

[38] M. Droste and D. Kuske. Skew and infinitary formal power series. Theoretical Computer

Science, 366:199–227, 2006. 135

[39] M. Droste and I. Meinecke. Weighted automata and regular expressions over valuation

monoids. Intern. J. of Foundations of Comp. Science, 22:1829–1844, 2011. 135, 136

[40] M. Droste and I. Meinecke. Weighted automata and weighted mso logics for average- and

longtime-behaviors. Information and Computation, 220-221:44–59, 2012. 135, 136

[41] M. Droste and V. Perevoshchikov. Multi-weighted automata and MSO logic. In CSR, Lecture

Notes in Computer Science vol. 7913, pages 418–430. Springer, 2013. 136

[42] M. Droste and V. Perevoshchikov. A Nivat theorem for weighted timed automata and

weighted relative distance logic. In ICALP, Lecture Notes in Computer Science vol. 8573,

pages 171–182. Springer, 2014. 122, 136

[43] M. Droste and K. Quaas. A Kleene-Schützenberger theorem for weighted timed automata.

Theoretical Computer Science, 412:1140–1153, 2011. 136

[44] M. Droste and G. Rahonis. Weighted automata and weighted logics with discounting. The-

oretical Computer Science, 410:3481–3494, 2009. 135

[45] M. Droste and H. Vogler. Weighted logics for unranked tree automata. Theory of Computing

Systems, 48:23–47, 2011. 135

Weighted automata 139

[46] M. Droste and H. Vogler. Weighted automata and multi-valued logics over arbitrary bounded

lattices. Theoretical Computer Science, 418:14–36, 2012. 135

[47] M. Droste and H. Vogler. A Chomsky-Schützenberger theorem for quantitative context-free

languages. In DLT, Lecture Notes in Computer Science vol. 7907, pages 203–214. Springer,

2013. 135

[48] S. Dück. Weighted automata and logics on infinite graphs. In DLT’16, volume 9840 of

Lecture Notes in Computer Science, pages 151–163, 2016. 135

[49] A. Ehrenfeucht and G. Rozenberg. T-structures, T-functions, and texts. Theoretical Com-

puter Science, 116:227–290, 1993. 135

[50] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, 1974. 108,

134

[51] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.

Amer. Math. Soc., 98:21–51, 1961. 122, 123

[52] Z. Ésik. Fixed point theories. In Droste et al. [37], chapter 2. 134

[53] Z. Ésik and W. Kuich. A semiring-semimodule generalization of ω-regular languages I+II.

Journal of Automata, Languages and Combinatorics, 10:203–242 and 243–264, 2005. 135

[54] Z. Ésik and W. Kuich. Finite automata. In Droste et al. [37], chapter 3. 134

[55] Z. Ésik and W. Kuich. A unifying Kleene theorem for weighted finite automata. In

C. Calude, G. Rozenberg, and A. Salomaa, editors, Rainbow of Computer Science, pages

76–89. Springer, 2011. 134

[56] I. Fichtner. Weighted picture automata and weighted logics. Theory of Computing Systems,

48(1):48–78, 2011. 135

[57] I. Fichtner, D. Kuske, and I. Meinecke. Traces, series-parallel posets, and pictures: A

weighted study. In Droste et al. [37], chapter 10. 135

[58] M. Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 53:197–222,

1974. Erratum in: Journal de Mathématiques Pures et Appliquées, 54:481, 1976. 120

[59] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In Droste et al. [37],

chapter 9. 135

[60] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over

rectangular pictures and recognizability by tiling systems. Inform. and Comput., 125:32–45,

1996. 135

[61] J. Golan. Semirings and their Applications. Kluwer Academic Publishers, 1999. 110

[62] S. Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and Compu-

tation. Research Studies Press, 2001. 124

[63] P. Hájek. Metamathematics of Fuzzy Logic. Springer, 1998. 124

[64] T. Harju and J. Karhumäki. The equivalence problem of multitape finite automata. Theoret-

ical Computer Science, 78:347–255, 1991. 136

[65] K. Hashigushi. Improved limitedness theorem on finite automata with distance functions.

Theoretical Computer Science, 72:27–38, 1990. 136

[66] H. Hoogeboom and P. ten Pas. Monadic second-order definable text languages. Theory

Comput. Syst., 30(4):335–354, 1997. 135

[67] G. Jacob. Représentations et substitutions matricielles dans la théorie algébrique des trans-

ductions. Thèse Sci. Math. Univ. Paris VII, 1975. 120

140 M. Droste, D. Kuske

[68] M. Kaminsky and N. Francez. Finite-memory automata. Theoretical Computer Science,

134:329–363, 1994. 135

[69] J. Kari. Image processing using finite automata. In Z. Ésik, C. M. Vide, and C. Mitrana,

editors, Recent Advances in Formal Languages and Applications, Studies in Computational

Intelligience, pages 171–208. Springer, 2006. 136

[70] B. Khoussainov and A. Nerode. Automata Theory and Its Applications. Birkhäuser Boston,

2001. 122, 123

[71] D. Kirsten. Distance desert automata and the star height problem. RAIRO, 39(3):455–509,

2005. 136

[72] D. Kirsten. The support of a recognizable series over a zero-sum free, commutative semiring

is recognizable. Acta Cybern., 20(2):211–221, 2011. 133

[73] D. Kirsten. An algebraic characterization of semirings for which the support of every recog-

nizable series is recognizable. Theoretical Computer Science, 534:45–52, 2014. 133

[74] K. Knight and J. May. Tiburon: A weighted tree automata toolkit. In CIAA’06, Lecture

Notes in Computer Science vol. 4094, pages 102–113. Springer, 2006. 136

[75] K. Knight and J. May. Applications of weighted automata in natural language processing. In

Droste et al. [37], chapter 14. 136

[76] D. Krob. The equality problem for rational series with multiplicities in the tropical semiring

is undecidable. International Journal of Algebra and Computation, 4(3):405–425, 1994. 130

[77] W. Kuich. Semirings and formal power series: their relevance to formal languages and

automata. In Handbook of Formal Languages, vol. 1: Word, Language, Grammar, pages

609–677. Springer, 1997. 135

[78] W. Kuich. Tree transducers and formal tree series. Acta Cybernetica, 14:135–149, 1999.

135

[79] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Mono-

graphs in Theoretical Computer Science. Springer, 1986. 108, 134, 135

[80] O. Kupferman and Y. Lustig. Lattice automata. In VMCAI’07, Lecture Notes in Computer

Science vol. 4349, pages 199–213. Springer, 2007. 136

[81] D. Kuske. Schützenberger’s theorem on formal power series follows from Kleene’s theorem.

Theoretical Computer Science, 401:243–248, 2008.

[82] V. Lonati, D. Mandrioli, F. Panella, and M. Pradella. Operator precedence languages: Their

automata-theoretic and logic characterization. SIAM J. Comput., 44(4):1026–1088, 2015.

135

[83] A. Maletti. Survey: Weighted extended top-down tree transducers — part II: Application in

machine translation. Fundam. Inform., 112(2–3):239–261, 2011. 136

[84] E. Mandrali and G. Rahonis. Recognizable tree series with discounting. Acta Cybernetica,

19:411–439, 2009. 136

[85] C. Mathissen. Definable transductions and weighted logics for texts. Theoretical Computer

Science, 411(3):631–659, 2010. 135

[86] C. Mathissen. Weighted logics for nested words and algebraic formal power series. Logical

Methods in Computer Science, 6(1:5):1–34, 2010. 135

[87] R. McNaughton and S. A. Papert. Counter-Free Automata. M.I.T. research monograph no.

65. The MIT Press, 1971. 135

Weighted automata 141

[88] I. Meinecke. Valuations of weighted automata: Doing it in a rational way. In W. Kuich and

G. Rahonis, editors, Algebraic Foundations in Computer Science, Lecture Notes in Computer

Science vol. 7020, pages 309–346. Springer, 2011. 135, 136

[89] M. Minsky. Recursive unsolvability of Post’s problem of ’tag’ and other topics in theory of

Turing machines. Annals of Mathematics, 74(3):437–455, 1961. 130

[90] M. Mohri. Weighted automata algorithms. In Droste et al. [37], chapter 6. 136

[91] M. Nivat. Transductions des langages de Chomsky. Ann. de l’Inst. Fourier, 18:339–456,

1968. 121, 122

[92] A. Panholzer. Gröbner bases and the definining polynomial of a context-free grammar gen-

erating function. Journal of Automata, Languages and Combinatorics, 10(1):79–97, 2005.

136

[93] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971. 108

[94] I. Petre and A. Salomaa. Algebraic systems and pushdown automata. In Droste et al. [37],

chapter 7. 135

[95] K. Quaas. MSO logics for weighted timed automata. Formal Methods in System Design,

38(3):193–222, 2011. 136

[96] G. Rahonis. Weighted Muller tree automata and weighted logics. Journal of Automata,

Languages and Combinatorics, 12(4):455–483, 2007. 136

[97] A. Restivo and C. Reutenauer. On cancellation properties of languages which are supports

of rational power series. J. Comput. Syst. Sci., 29(2):153–159, 1984. 133

[98] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009. 108, 134

[99] J. Sakarovitch. Rational and recognisable power series. In Droste et al. [37], chapter 4. 129,

134, 136

[100] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts

and Monographs in Computer Science. Springer, 1978. 108, 134, 135

[101] M. P. Schützenberger. On the definition of a family of automata. Inf. Control, 4:245–270,

1961. 108, 112, 119, 129, 132

[102] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. and Control,

8:190–194, 1965. 135

[103] H. Seidl. Finite tree automata with cost functions. Theoret. Comput. Sci., 126(1):113–142,

1994. 135

[104] A. Semenov. Algorithmitšeskie problemy dlja stepennykh rjadov i kontekst-nosvobodnykh

grammatik. Dokl. Adad. Nauk SSSR, 212:50–52, 1973. 136

[105] E. D. Sontag. On some questions of rationality and decidability. Journal of Computer and

System Sciences, 11(3):375–381, 1975. 132

[106] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System

Sciences, 25:360–376, 1982. 135

[107] W. Thomas. Elements of an automata theory over partial orders. In D. Peled et al., editors,

Partial order methods in verification, pages 25–40. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science vol. 29, 1996. 135

[108] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, pages 389–455. Springer Verlag, 1997. 122, 123

142 M. Droste, D. Kuske

[109] B. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Doklady

Akademii Nauk SSSR, 140:326–329, 1961. 122, 123

[110] J. Waldmann. Automatic termination. In R. Treinen, editor, RTA, volume 5595 of Lecture

Notes in Computer Science, pages 1–16. Springer, 2009. 136

[111] H. Wang. On characters of semirings. Houston J. Math, 23(3):391–405, 1997. 132

[112] W. Wechler. The Concept of Fuzzyness in Automata and Language Theory. Akademie

Verlag, Berlin, 1978. 108

