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Abstract
We study the existence of Hanf normal forms for extensions
FO(Q) of first-order logic by sets Q ⊆ P(N) of unary
counting quantifiers. A formula is in Hanf normal form if it is
a Boolean combination of statements of the form “the number
of witnesses y of ψ(x, y) belongs to Q” where Q ⊆ N is a
unary counting quantifer and ψ describes the isomorphism
type of a local neighbourhood around its free variables x, y.

We show that a formula from FO(Q) can be transformed
into a formula in Hanf normal form that is equivalent on
all structures of degree 6 d if, and only if, all counting
quantifiers occurring in the formula are ultimately periodic.
This transformation can be carried out in worst-case optimal
3-fold exponential time.

In particular, this yields an algorithmic version of Nurmo-
nen’s extension of Hanf’s theorem for first-order logic with
modulo counting quantifiers.

1. Introduction
The intuition that first-order logic can only express local
properties is formalised by the theorems by Hanf, by Gaifman,
and by Schwentick and Barthelmann [5, 7, 8, 17]. All these
results give rise to normal forms for first-order formulas.

Hanf’s and Gaifman’s theorem have found various ap-
plications in algorithms and complexity (cf., e.g., [3, 6, 10–
12, 18, 19]). In particular, there are very general algorith-
mic meta-theorems stating that first-order model checking is
fixed-parameter tractable for various classes of structures, and
that the results of first-order queries against various classes
of databases can be enumerated with constant delay after a
linear-time preprocessing phase. In the context of such algo-
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rithms, questions about the efficiency of the normal forms
have recently attracted interest (cf. e.g., [1, 2, 13]).

Notions of locality have also been developed for exten-
sions of first-order logic, and they have found application
in proving inexpressibility results for these logics (cf., e.g.,
[9, 12, 16]). When restricting attention to classes of finite
structures of bounded degree, these locality notions also give
rise to normal forms for the respective logics. Let us focus on
the particular case of Hanf-locality:

Hanf’s locality theorem for first-order logic implies that
for every first-order sentence ϕ over a finite relational sig-
nature σ, and for every degree bound d ∈ N, there exists
a first-order sentence ψ that is equivalent to ϕ on all finite
σ-structures of degree 6 d, such that ψ is a Boolean com-
bination of statements of the form “the number of elements
x whose r-neighbourhood has isomorphism type τ is > k”.
Such a formula ψ is said to be in Hanf normal form. A worst-
case optimal algorithm for constructing ψ when given ϕ and
d has been developed in [1].

In [16], Nurmonen extended Hanf’s locality theorem
to the extension of first-order logic by modulo counting
quantifiers Dp (for positive integers p), where a formula of
the form Dp y ψ(x, y) states that the number of witnesses
y for ψ(x, y) is divisible by p. As an easy consequence of
Nurmonen’s theorem, one obtains that for every sentence ϕ
of first-order logic with modulo counting quantifiers, and for
every degree bound d ∈ N there exists a first-order sentence
with modulo counting quantifiers ψ that is equivalent to
ϕ on all finite structures of degree 6 d, such that ψ is a
Boolean combination of statements of the form “the number
of elements x whose r-neighbourhood has isomorphism
type τ is congruent k modulo p” and statements of the
form “the number of elements x whose r-neighbourhood
has isomorphism type τ is > k”. Again, we say that ψ is in
Hanf normal form.

For algorithmic applications, an effective procedure for
computing ψ when given ϕ and d, would be highly desirable
(cf., e.g., the use of Nurmonen’s theorem in the full version
of [15]). The proof of [16], however, does not lead to such an
effective procedure. The two main questions which started
the research whose results are presented in this paper are
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(1) Is there an algorithmic version of Nurmonen’s result?

(2) For which classes of unary counting quantifiers does an
analogue of Nurmonen’s result hold?

Answering question (2), our first main result provides
a precise characterisation: A class Q of unary counting
quantifiers permits “Hanf normal forms” (analogous to the
ones obtained from Nurmonen’s result) if, and only if, all
counting quantifiers in Q are ultimately periodic.

Answering question (1), our second main result provides
an algorithm which, when given a degree bound d and a
formula ϕ of the extension of first-order logic with ultimately
periodic unary counting quantifiers, transforms ϕ into a
corresponding “Hanf normal form” ψ which is equivalent
to ϕ on all structures of degree 6 d. This algorithm uses
3-fold exponential time and is worst-case optimal.

The rest of the paper is structured as follows. Section 2
fixes basic notations used throughout the paper. Section 3
gives precise statements of our two main results. Sections 4
and 5 are devoted to the proof of the “only if”-direction and
the “if”-direction, respectively, of our characterisation of the
sets of unary counting quantifiers that permit Hanf normal
forms. Section 6 is devoted to the runtime analysis of our
algorithm for transforming a given formula into Hanf normal
form. Section 7 concludes the paper and points out directions
for future work.

2. Preliminaries
We write P(S) to denote the power set of a set S. We write N
for the set of non-negative integers, and we let N>1 := N\{0}.
For all m,n ∈ N with m 6 n, we write [m,n] for the set
{i ∈ N : m 6 i 6 n}, and we let [m,n) := [m,n] \ {n}.
For a real number r > 0, we write log(r) to denote the
logarithm of r with respect to base 2.

We say that a function f from N to the set R>0 of non-
negative reals is at most k-fold exponential, for some k ∈ N,
if there exists a number c > 0 such that for all sufficiently
large n ∈ N we have f(n) 6 T (k, nc), where T (k,m) is a
tower of 2s of height k with an m on top (i.e., T (0,m) = m
and T (k+1,m) = 2T (k,m) for all k,m > 0).

For an ω-word w = w0w1w2 · · · ∈ {0, 1}ω and a number
n ∈ N, we write w[n] to denote the letter wn in w at position
n. For numbers i, j ∈ N with i 6 j, we write w[i, j] for
the (finite) word wiwi+1 · · ·wj . Similarly, we write w(i, j]
for the (finite) word wi+1 · · ·wj . In particular, w(i, i] is the
empty word ε, and w(j−1, j] = w[j].

Structures and formulas. A signature σ is a finite set of
relation symbols and constant symbols. Associated with every
relation symbol R is a positive integer ar(R) called the arity
of R. A σ-structure A consists of a finite non-empty set
A called the universe of A, a relation RA ⊆ Aar(R) for
each relation symbol R ∈ σ, and an element cA ∈ A for
each constant symbol c ∈ σ. Note that according to this
definition, all signatures and all structures considered in this

paper are finite. We call a signature relational, if it only
contains relation symbols.

We use the standard notation concerning first-order logic
and extensions thereof, cf. [4, 12]. By FO[σ] we denote the
class of all first-order formulas of signature σ, and by FO we
denote the union of all FO[σ] for arbitrary signatures σ.

By free(ϕ) we denote the set of all free variables of ϕ. A
sentence is a formula ϕ with free(ϕ) = ∅.

We write ϕ(x), for x = (x1, . . . , xn) with n > 0, to
indicate that free(ϕ) ⊆ {x1, . . . , xn}. If A is a σ-structure
and a = (a1, . . . , an) ∈ An, we write A |= ϕ[a] to indicate
that the formula ϕ(x) is satisfied in A when interpreting
the free occurrences of the variables x1, . . . , xn with the
elements a1, . . . , an.

For a class C of σ-structures, two formulas ϕ(x) and
ψ(x) of signature σ are called equivalent on C (for short:
C-equivalent) if for all σ-structuresA ∈ C and for all a ∈ An
we have A |= ϕ[a]⇐⇒ A |= ψ[a].

Unary counting quantifiers. All quantifiers considered in
this article are unary counting quantifiers (for short: quanti-
fiers), i.e., subsets of N. We will use the terms “set (of natural
numbers)” and “quantifier” interchangeably.

For a quantifier Q ⊆ N and a formula ϕ(x, y) over
a signature σ, the formula Qy ϕ(x, y) is satisfied by a σ-
structure A and an interpretation a of the variables x if

|{b ∈ A : A |= ϕ[a, b]}| ∈ Q.

For a set Q ⊆ P(N) of quantifiers we write FO(Q) to
denote the extension of FO with the quantifiers from Q. To
avoid unnecessary special cases in proofs, we will often
tacitly assume that the existential quantifier ∃ = N>1 is
contained in the sets Q considered.1

The quantifier rank qr(ϕ) of an FO(Q)-formula ϕ is
defined as the maximal nesting depth of all quantifiers.

For a number k > 0 we write (Q+k)y ϕ(x, y) as a short
hand for a formula expressing in a σ-structure A and for
an interpretation a of the variables x that the number of
elements b ∈ A such that A |= ϕ[a, b] belongs to the set
(Q+k) := {n+k : n ∈ Q}. Clearly, (Q+k)y ϕ(x, y) can be
expressed by the formula

∃y1 · · · ∃yk
( ∧

16i<j6k

¬ yi=yj

∧ ∀y
( ∨
16i6k

y=yi → ϕ(x, y)
)

∧ Qy
(
ϕ(x, y) ∧

∧
16i6k

¬ y=yi
))
.

(1)

For every k > 1, we will write ∃>ky ϕ and ∃=ky ϕ for the
formulas (∃+(k−1))y ϕ and ∃>ky ϕ ∧ ¬∃>k+1y ϕ, resp.

1 Since we only consider finite structures, the classical quantifier ∃ and the
unary counting quantifier N>1 are equivalent.
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The displacement of a formula ψ is the smallest K > 0
such that for every subformula of ψ of shape (Q+k)y ϕ with
Q ⊆ N and k > 0 it holds that k 6 K.

It is the aim of this paper to study the locality of the logics
FO(Q) in the sense of Hanf’s theorem [4, 5, 8]. To define the
according locality notion for this logic, we need the concepts
introduced in the remainder of this section.

Gaifman graph. LetA be a σ-structure. Its Gaifman graph
GA is the undirected, loop-free graph with vertex set A and
an edge between two distinct vertices a, b ∈ A iff there
exists R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA such that
a, b ∈ {a1, . . . , aar(R)}.

The distance distA(a, b) between two elements a, b ∈ A is
the minimal length (i.e., the number of edges) of a path from
a to b in GA (if no such path exists, we set distA(a, b) =∞).

For r > 0 and a ∈ A, the r-neighbourhood of a in A is
the set NAr (a) := {b ∈ A : distA(a, b) 6 r}. For a tuple
a = (a1, . . . , an) ∈ An, we write NAr (a) for the union of
the sets NAr (ai) for all i ∈ [1, n].

Types and spheres. Let σ be a relational signature and
let c1, c2, . . . be a sequence of pairwise distinct constant
symbols. For every n > 1 we write σn for the signature
σ ∪ {c1, . . . , cn}.

For every r > 0 and n > 1, a type with n centres
and radius r (for short: r-type with n centres) is a σn-
structure (A, a1, . . . , an), where A is a σ-structure, the con-
stant symbols c1, . . . , cn are interpreted by the elements
a1, . . . , an ∈ A, and A = NAr (a1, . . . , an). The elements
a1, . . . , an are called the centres of the r-type.

For a σ-structure A and a tuple a = (a1, . . . , an) ∈ An,
the r-sphere of a inA is the r-typeNAr (a) := (A[NAr (a)], a)
(where A[B] denotes the restriction of the structure A to the
universe B ⊆ A).

Bounded structures. The degree of a σ-structure A is the
degree of its Gaifman graph GA. If this degree is 6 d, then
we call A d-bounded.

Two formulas ϕ(x) and ψ(x) of signature σ are called
d-equivalent if they are Cd-equivalent where Cd is the class
of all d-bounded σ-structures.

Note that for all d > 2, r > 0 and n > 1, every
d-bounded r-type τ with n centres contains at most n · dr+1

elements. Thus, there is an FO[σ]-formula sphτ (x) of size
(n · dr+1)O(||σ||) such that for every σ-structure A and every
tuple a ∈ An we have that A |= sphτ [a]⇐⇒ NAr (a) ∼= τ .

Hanf normal form for first-order logic. An FO-sentence
over a relational signature σ is said to be in Hanf normal
form (cf. [1]) if it is a Boolean combination2 of so-called
Hanf-sentences. A Hanf-sentence is a sentence of the form

∃>ky sphτ (y),

2 Throughout this paper, whenever we speak of Boolean combinations, we
mean finite Boolean combinations.

expressing that there exist at least k elements whose r-sphere
is isomorphic to τ , for a given r-type τ . More generally, a
Hanf-formula is a formula of the form

∃>ky sphτ (x, y),

where k > 1, x is a tuple of n > 0 variables, and τ is a
type with n+1 centres and radius r > 0, such that for every
σ-structure A and every tuple a ∈ An,

(A, a) |= ∃>ky sphτ (x, y)

⇐⇒ |{b ∈ A : NAr (a, b) ∼= τ}| > k.

An FO[σ]-formula is said to be in Hanf normal form (HNF,
for short) if it is a Boolean combination of Hanf-formulas.

It is known that every first-order formula is d-equivalent to
some formula in Hanf normal form [4] that can be computed
in 3-fold exponential time [1]. A main result of the present
paper is that this generalizes to formulas from FO(Q) only in
case that all quantifiers in Q are ultimately periodic — which
motivates the last definitions of this section.

Ultimately periodic sets. Let Q ⊆ N be a unary quantifier.
It is ultimately periodic if there exist numbers p, n0 ∈ N with
p > 1, such that

for all n > n0 we have n ∈ Q ⇐⇒ n+p ∈ Q. (2)

The minimal number p > 1 for which there exists an n0 such
that statement (2) is true is called the period of Q, and n0 is
called an offset of Q. Examples of ultimately periodic sets are
the existential quantifier ∃ := N>1 (with period 1 and offset
1) and the divisibility quantifier Dp := { p ·m : m ∈ N }
for every p ∈ N with p > 2 (with period p and offset 0).

The characteristic sequence χQ of Q ⊆ N is the ω-word
w = w0w1 · · · ∈ {0, 1}ω with Q = {n ∈ N : wn = 1}.

Fact 2.1. Let Q ⊆ N. If Q is ultimately periodic with offset
n0 and period p, then there exist finite words α ∈ {0, 1}∗ and
π ∈ {0, 1}+ such that χQ = α · πω , |α| = n0 and |π| = p.

If, conversely, ξQ = α · πω , then Q is ultimately periodic,
its period divides |π| and |α| is an offset.

We can thus represent an ultimately periodic set Q by the
finite word rep(Q) := α#π, where χQ = α · πω. To make
this definition unambiguous, we demand that p := |π| is the
period of Q, and n0 := |α| is the smallest offset of Q for the
period p. The size ||Q|| of Q is defined as the length of rep(Q).

Let Q ⊆ P(N) be a set of ultimately periodic sets. The
size ||ϕ|| of an FO(Q)-formula3 ϕ of signature σ is its length
when viewed as a word over the alphabet σ ∪ Var ∪ {=,
∃,¬,∨, (, )} ∪ {, } ∪ {0, 1,#}, where Var is a countable set
of variable symbols, and where each quantifier Q ∈ Q is
represented by the word rep(Q).

3 as usual, ∃,¬,∨ belong to the official syntax, whereas ∀, ∧, →, ↔ will
be used as abbreviations when constructing formulas
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3. Main results
In the following, we denote by σ a relational signature.

We generalise the notion of Hanf normal form to exten-
sions of first-order logic by unary counting quantifiers in the
following way. A Hanf-formula is a formula of the form

(Q+k)y sphτ (x, y),

where Q ⊆ N, k > 0, and τ is an r-type with n+1 centres.
The free variables of this formula are x, and the formula
expresses that the number of interpretations for y such that
the r-sphere of x, y is isomorphic to τ , belongs to the set
(Q+k). I.e., for every σ-structure A and every tuple a ∈ An,

(A, a) |= (Q+k)y sphτ (x, y)

⇐⇒ |{b ∈ A : NAr (a, b) ∼= τ}| ∈ (Q+k).

The locality radius of the Hanf-formula (Q+k)y sphτ (x, y)
is the radius of the type τ . A Hanf-sentence is a Hanf-formula
that does not have any free variable. A formula in Hanf
normal form (for short: HNF) is a Boolean combination of
Hanf-formulas. The locality radius of a Hanf normal form is
the maximum of the locality radii of its Hanf-formulas.

Definition 3.1. Let Q ⊆ P(N) be a set of unary counting
quantifiers. We say that Q permits Hanf normal forms if for
every relational signature σ and every degree bound d > 0,
every FO(Q)[σ]-formula is d-equivalent to an FO(Q)[σ]-
formula in HNF.

Our main result characterises the sets Q that permit Hanf
normal forms in terms of ultimately periodic sets:

Theorem 3.2. A set Q ⊆ P(N) of unary counting quantifiers
permits Hanf normal forms if, and only if, every quantifier
Q ∈ Q is ultimately periodic.

For the “only if” direction of Theorem 3.2, we consider
a unary counting quantifier S ∈ Q that is not ultimately
periodic and show that already for the signature σP := {P}
with P unary, no sentence in HNF can express “|A| ∈ S”.
I.e., we show that the formula Sy y=y is not equivalent to any
FO(Q)[σP ]-sentence in HNF. For achieving this, we utilize
that no finite factor of χS determines the remainder of the
characteristic word. The proof details are given in Section 4.

For the “if” direction, consider a set Q ⊆ P(N) of
ultimately periodic sets. Furthermore, let D ⊆ P(N) be the
set which contains for each Q ∈ Q with period p > 2 the
divisibility quantifier Dp.4 The proof of the “if” direction
proceeds by showing the following:

(1) Any FO(Q)-formula ϕ can be translated into an FO(D)-
formula that is equivalent to ϕ on all finite structures
(irrespective of their degree).

(2) For t > 1 let σ[1,t] be the signature consisting of the
unary relation symbols P1, . . . , Pt. The properties “|A| ∈

4 I.e., for each Q ∈ Q of period p > 2 we have Dp ∈ D, and for each
Dp ∈ D there exists a Q ∈ Q of period p.

(∃+k)” and “|A| ∈ (Dp+k)” can be expressed by sen-
tences in HNF from FO[σ[1,t]] and FO({Dp})[σ[1,t]], resp.
(for all k ∈ N and all p > 2).

(3) The set D permits Hanf normal forms.

(4) If Q ⊆ N is ultimately periodic with period p > 2 and
ψ = (Dp+k)y ϕ, then there is a Boolean combination of
formulas (Q+`)y ϕ and (∃+`)y ϕ for suitable numbers
` ∈ N that is equivalent to ψ on all finite structures
(irrespective of their degree).

Step (1) is straightforward. Steps (2) and (3) are the crucial
steps (and (2) is used for proving (3)). Step (4) is obtained
by an application of a basic result on word combinatorics.
Note that the “if” direction of Theorem 3.2 is an immediate
consequence of steps (1), (3), and (4). Proof details for the
steps (1)–(4) can be found in Section 5.

Our second main result provides a worst-case optimal
algorithm for transforming formulas into Hanf normal form:

Theorem 3.3. There is an algorithm which receives as input
a degree bound d ∈ N and a ϕ ∈ FO(Q), where Q ⊆ P(N)
is a set of ultimately periodic sets, and constructs a d-
equivalent HNF ψ ∈ FO(Q) of the same signature as ϕ.
For d > 3, the formula ψ has locality radius 6 4qr(ϕ) and
displacement in d2

O(||ϕ||)
, and the algorithm’s runtime is in

2d
2O(||ϕ||)

.

We will present the proof of the “if” direction of Theo-
rem 3.2 in a way which allows it to be read as the algorithm
of Theorem 3.3. An upper bound on the algorithm’s runtime
is obtained by a careful analysis of the time required for
performing each of the steps of that proof; see Section 6 for
details. For obtaining the 3-fold exponential upper bound, it is
crucial that the main construction within our proof of Step (2)
is done via a divide and conquer approach (a more straightfor-
ward brute-force approach only yields a 4-fold exponential
upper bound).

A 3-fold exponential lower bound (for d = 3) was shown
in [1] already for plain first-oder logic, i.e., for the special
case where Q = {∃}.

4. Proof of the “only if” direction of
Theorem 3.2

In this section we show that, whenever a set Q of quantifiers
contains some quantifier that is not ultimately periodic, then
Q does not permit Hanf normal forms. For this, it suffices
to consider a signature consisting of a single unary relation
symbol.

Lemma 4.1. Let σP := {P} be the signature consisting of
a unary relation symbol P . Let Q ⊆ P(N) be a set of unary
counting quantifiers which contains a quantifier S ⊆ N that
is not ultimately periodic. There is no FO(Q)[σP ]-sentence
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δ in Hanf normal form, such that for all σP -structures A we
have A |= δ ⇐⇒ |A| ∈ S.

Proof. For contradiction, assume that δ is an FO(Q)[σP ]-
sentence in HNF expressing “|A| ∈ S”.

Since P is unary, any r-neighbourhood of an element a in
a σP -structure A consists of its center a, only. Consequently,
P (y) and ¬P (y) are the only formulas sphτ (y), where τ is
a type with one center. Hence, there are a finite set Q′ ⊆ Q
and a natural number k > 1 such that δ is a Boolean
combination of sentences of the following form, with Q ∈ Q′

and ` ∈ [0, k−1]:

(Q+`)y P (y) or (Q+`)y ¬P (y).

Let Q1, . . . ,Qj be a list of all Q ∈ Q′. For each a ∈ N with
a > k consider the word wa of length k · j defined as the
concatenation of the bitstrings χQi(a−k, a] for i = 1, . . . , j.

Clearly, there exist natural numbers b > a > k with
wa = wb. Consequently, χQ(a−k, a] = χQ(b−k, b] for all
Q ∈ Q′.

If, for all c > 0, we have a + c ∈ S ⇐⇒ b + c ∈ S,
then S is ultimately periodic (with period dividing b−a and
offset a). Since this is not the case, there is c > 0 with
a+ c ∈ S ⇐⇒ b+ c /∈ S.

Now consider σP -structures A and B with |A| = a+c,
|B| = b+c, and |PA| = |PB| = c. By choice of a, b, c, we
have |A| ∈ S ⇐⇒ |B| /∈ S, and thus, A |= δ ⇐⇒ B 6|= δ.

Nevertheless, A and B cannot be distinguished by any of
the Hanf-sentences that occur in δ: To this end, let Q ∈ Q′

and ` ∈ [0, k−1]. Then A |= (Q+`)y P (y) iff |PA| ∈
(Q+`). This is equivalent to |PB| ∈ (Q+`) since |PA| =
|PB|, and therefore to B |= (Q+`)y P (y). On the other hand,
A |= (Q+`)y ¬P (y) iff a−` ∈ Q, since |A\PA| = a. This
is equivalent to b− ` ∈ Q, since χQ(a−k, a] = χQ(b−k, b].
Finally, b−` ∈ Q is equivalent to B |= (Q+`)y ¬P (y), since
|B \ PB| = b. In summary, the structures A and B satisfy
the same Hanf-sentences that occur in δ. As δ is a Boolean
combination of these Hanf-sentences, we obtain that A |= δ
iff B |= δ. This is a contradiction, completing the proof of
Lemma 4.1.

The “only if” direction of Theorem 3.2 is an immediate
consequence: For S ∈ Q, the FO(Q)[σP ]-sentence Sy y=y
expresses “|A| ∈ S”. But if S is not ultimately periodic, this
cannot be expressed by any FO(Q)[σP ]-sentence in HNF by
Lemma 4.1.

5. Proof of the “if” direction of Theorem 3.2
For the proof of the “if” direction of Theorem 3.2, we have to
show that for every set Q ⊆ P(N) of ultimately periodic sets,
for every relational signature σ, for every degree bound d > 0,
and for every FO(Q)[σ]-formula ϕ, there is a d-equivalent
FO(Q)[σ]-formula ψ in Hanf normal form.

For this, we introduce the notion of the generalised quanti-
fier rank gqr(ϕ) of a formula ϕ, which is defined in the same

way as the quantifier rank, with the only exception that a
formula ψ of the shape (Q+k)y ϕ has generalised quantifier
rank gqr(ψ) = gqr(ϕ) + 1 (in contrast, ψ has quantifier rank
qr(ψ) = qr(ϕ) + k + 1).

For the remainder of this section we denote by Q ⊆ P(N)
a set of ultimately periodic quantifiers. Furthermore, we let
D ⊆ P(N) be the set which contains for each Q ∈ Q with
period p > 2 the divisibility quantifier Dp.

The proof follows the four steps outlined in Section 3.

5.1 Step (1)
Step (1) is established by the following lemma.

Lemma 5.1. Let Q ⊆ N be ultimately periodic with period p
and offset n0. Every formula of the shape Qy ϕ is equivalent
to a Boolean combination of formulas of the form (Dp+`)y ϕ
and (∃+`)y ϕ, for ` < n0+p.
This Boolean combination has size O((n0+p)3 · ||ϕ||), and it
has the same generalised quantifier rank as Qy ϕ.

Proof. Let n1 ∈ N be the (unique) number in [n0, n0+p)
that is divisible by p. Clearly, Q is also ultimately periodic
with period p and offset n1. Let Q1 := Q ∩ [0, n1) and
R := {r ∈ [0, p) : n1+r ∈ Q}. It is straightforward to
verify that Qy ϕ is equivalent to the formula( ∨

`∈Q1

∃=`y ϕ
)
∨
(
∃>n1y ϕ ∧

∨
r∈R

(Dp+r)y ϕ
)
. (3)

Clearly, this formula has the same generalised quantifier
rank as Qy ϕ, it has displacement < n0+p, and it is of size
O((n0+p)3 · ||ϕ||).

5.2 Step (2)
For every t ∈ N>1 let σ[1,t] be the signature consisting of
t unary relation symbols P1, . . . , Pt. Step (2) consists of
proving the following lemma.

Lemma 5.2. There is an algorithm which receives as input
numbers i, j, t, k ∈ N with 1 6 i 6 j < t, and a quantifier
Q ∈ {∃} ∪ D with period p > 1, and constructs a formula
δ
(Q+k)
[i,j] ∈ FO(D)[σ[1,t]] in HNF such that for every σ[1,t]-

structure B where the relations PB1 , . . . , P
B
t are mutually

disjoint,

B |= δ
(Q+k)
[i,j] ⇐⇒

∣∣∣∣∣
j⋃
s=i

PBs

∣∣∣∣∣ ∈ (Q+k).

The displacement of δ(Q+k)
[i,j] is 6 max{k, p}.

From this lemma, one can even construct a formula in
HNF that works without the assumption on the relations PBi
to be mutually disjoint. But this formula would be larger and
we later need the small formula (see Cor. 6.2).

Proof. In the following, let C denote the class of all σ[1,t]-
structures B whose relations PBs are mutually disjoint.
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Observe that for every B ∈ C, we have∣∣∣∣∣
j⋃
s=i

PBs

∣∣∣∣∣ ∈ (Q+k) ⇐⇒ B |= (Q+k)y

j∨
s=i

Ps(y).

Thus, if i = j, we are done.
The algorithm proceeds by a recursive subdivision of the

interval [i, j]. For this, let h :=
⌊
j−i
2

⌋
.

Case 1: Q = ∃. The formula (∃+k)y
∨j
s=i Ps(y) is C-

equivalent (but not equivalent on all structures) to

(∃+k)y
h∨
s=i

Ps(y) ∨ (∃+k)y
j∨

s=h+1

Ps(y) ∨

k∨
`=1

(
(∃+(`−1))y

h∨
s=i

Ps(y) ∧ (∃+(k−`))y
j∨

s=h+1

Ps(y)
)
.

The algorithm proceeds recursively by decomposing the
quantified subformulas in the same manner, and arrives at a
Boolean combination δ(∃+k)[i,j] of Hanf-formulas of the shape
(∃+`)y Ps(y) with ` 6 k.

Case 2: Q = Dp with p > 2 and k < p. The formula
(Dp+k)y

∨j
s=i Ps(y) is C-equivalent (but not equivalent on

all structures) to

∨
k1,k2∈[0,p),

k1+k2≡kmod p

(
(Dp+k1)y

h∨
s=i

Ps(y) ∧ (Dp+k2)y

j∨
s=h+1

Ps(y)
)
.

In the same way as in Case 1, the algorithm proceeds re-
cursively and arrives at a Boolean combination δ(Dp+k)[i,j] of
Hanf-formulas of the shape (Dp+`)y Ps(y) for ` < p.

Case 3: Q = Dp with p > 2 and k > p. Let k′ ∈ [0, p−1]
with k′ ≡ k mod p. For every B ∈ C, we have∣∣∣∣∣
j⋃
s=i

PBs

∣∣∣∣∣ ∈ (Q+k) ⇐⇒

∣∣∣∣∣
j⋃
s=i

PBs

∣∣∣∣∣ ∈ (∃+(k−1)) ∩ (Q+k′)

Therefore, the algorithm can output the HNF

δ
(Dp+k)
[i,j]

:= δ
(∃+(k−1))
[i,j] ∧ δ

(Dp+k
′)

[i,j] ,

where δ(∃+(k−1))
[i,j] and δ(Dp+k)[i,j] are HNFs, constructed accord-

ing to Case 1 and Case 2, respectively. Note that in this case,
the HNF δ(Dp+k)[i,j] has displacement 6 max{k, p}.

5.3 Step (3)
The following lemma states this subsection’s main result.
In particular, it implies that the set D permits Hanf normal
forms.

Lemma 5.3. There is an algorithm which receives as input
a degree bound d > 3 and a ϕ ∈ FO(D)[σ] (where σ is a

relational signature), and constructs a HNF ψ ∈ FO(D)[σ]
that is d-equivalent to ϕ.

Furthermore, ψ has locality radius 6 4q and displacement
6 (q+1) · ||ϕ|| · d4q+1 + max{K,P}, where q > 0 is the
generalised quantifier rank of ϕ, K > 0 is the displacement
of ϕ, and P > 2 is an upper bound on the periods of the
quantifiers occurring in ϕ.

In the following, we let σ be a finite relational signature.
For every d > 3, we write Cd for the class of all d-bounded
σ-structures. For each n > 1 and each r > 0 we write T dr (n)
for a set of all (up to isomorphism) d-bounded r-types with
n centres. I.e., for every d-bounded r-type τ with n centres,
there is precisely one τ ′ ∈ T dr (n) such that τ ∼= τ ′.

Furthermore, we write > for a fixed tautological FO[σ]-
sentence in HNF; e.g., we can choose > := ∃y sphτ (y) ∨
¬∃y sphτ (y), where τ is an arbitrary, fixed type of radius
0 with one centre. We let ⊥ := ¬> be the corresponding
unsatisfiable sentence in HNF.

For the proof of Lemma 5.3, we generalise a construction
by Bollig and Kuske [1], proceeding by induction on the
shape of FO(D)[σ]-formulas. While the case of quantifier-
free formulas is straightforward, much more work is needed
to transform a formula ϕ(x) of the shape (Q+k)y ψ′(x, y)
into a d-equivalent HNF. Suppose that ψ′(x, y) is already
in HNF. Our construction is carried out along the following
steps:

• For each structure A ∈ Cd and each tuple a ∈ An, we let

BA(a) := {b ∈ A : A |= ψ′[a, b]}.

Clearly, A |= ϕ[a] ⇐⇒ |BA(a)| ∈ (Q+k).
Suppose that ϕ(x) has n > 0 free variables and that the
HNF ψ′(x, y) has locality radius r > 0. Observe that for
every b ∈ BA(a), there is exactly one τ ∈ T d4r(n+1)
such that NA4r(a, b) ∼= τ .
Let τ1, . . . , τt, for t := |T d4r(n+1)|, be an enumeration of
T d4r(n+1). Let B be the σ[1,t]-structure (B,PB1 , . . . , P

B
t )

with universe B := BA(a) and, for each s ∈ [1, t], the
set PBs := {b ∈ B : NA4r(a, b) ∼= τs}. In the following
we will denote the structure B also by BA4r(a).
Clearly, B is the disjoint union of the sets PB1 , . . . , P

B
t .

Hence, for the HNF sentence δ(Q+k)
[1,t] ∈ FO(D)[σ[1,t]],

obtained from Lemma 5.2 in Step (2), we have that

|B| ∈ (Q+k) ⇐⇒ B |= δ
(Q+k)
[1,t] .

• For every quantifier R ∈ {∃} ∪ D, each ` > 0, and each
s ∈ [1, t] we construct a HNF ψ

(R+`)
s (x) ∈ FO(D)[σ],

such that for every σ-structure A, for every tuple a ∈ An,
and for the σ[1,t]-structure B := BA4r(a), we have that

A |= ψ(R+`)
s [a] ⇐⇒ |PBs | ∈ (R+`).

I.e., we interpret the σ[1,t]-structure BA4r(a) in (A, a).
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• In the HNF δ(Q+k)
[1,t] , we replace every Hanf-formula of the

shape (R+`)y Ps(y) by the HNF ψ(R+`)
s (x).

Clearly, the resulting FO(D)[σ]-formula ψ(x) is in HNF and,
furthermore, d-equivalent to ϕ(x).

The details of the above construction are carried out as
follows.

Proof of Lemma 5.3. We describe the algorithm on input of
a degree bound d > 3 and an FO(D)[σ]-formula ϕ(x) over
a finite relational signature σ. Let q > 0 be the generalised
quantifier rank of ϕ. Furthermore, let K > 0 be the displace-
ment of ϕ and let P > 2 be an upper bound on the periods of
the quantifiers occurring in ϕ.

The algorithm proceeds by induction on the shape of ϕ(x).
We will show that for the HNF ψ(x) ∈ FO(D)[σ], which the
algorithm constructs, the following claim holds:

Claim 5.4. (a) ψ(x) has locality radius 6 4q .

(b) ψ(x) is d-equivalent to ϕ(x).

(c) ψ(x) has displacement 6 (q+1) ·N +max{K,P},
for N := ||ϕ|| · d4q+1.

In the following, the main steps of the algorithm are
numbered. In Appendix D, an analysis of the time complexity
of each of these steps can be found by the same number.

Suppose that ϕ is quantifier-free, i.e., q = 0. Here, ϕ is
d-equivalent to a disjunction over all types in T d0 (n) that
satisfy ϕ(x). The only minor technical difficulty here is to
express this disjunction as a proper HNF. The algorithm
proceeds in the following steps:

(1) Compute the set T d0 (n+1).

(2) Let c = (c1, . . . , cn) and compute the set T ⊆ T d0 (n+1)
that contains precisely the types τ = (T , c, cn+1) from
T d0 (n+1) with T |= ϕ[c].

(3) It T is the empty set, then ϕ is unsatisfiable and, hence,
equivalent to the HNF ⊥. Otherwise, let

ψ(x) :=
∨
τ∈T
∃>1y sphτ (x, y).

It is clear that in both cases, ψ(x) is a HNF which in
particular satisfies Claim 5.4 (a) and (c).

For a proof of Claim 5.4 (b), consider a structure A ∈ Cd and
a tuple a = (a1, . . . , an) ∈ An.

“=⇒”: If A |= ϕ[a] then, by definition of T , there is a
type τ ∈ T such that NA0 (a, a1) ∼= τ . By interpreting the
variable y with a1 it follows that (A, a) |= ∃>1y sphτ (x, y)
and therefore A |= ψ[a].

“⇐=”: If A |= ψ[a] then, by construction of ψ, there is a
type (T , c, cn+1) ∈ T such that (A, a) |= ∃>1y sphτ (x, y).
In particular, there is an element an+1 ∈ A such that
NA0 (a, an+1) ∼= τ . Since, by construction of T we know
that T |= ϕ[c], also A |= ϕ[a].

Suppose that ϕ is a Boolean combination with generalised
quantifier rank q > 1. If ϕ = ¬ϕ′ then let ψ′ be an
FO(D)[σ]-formula in HNF that is d-equivalent to ϕ′ and
let ψ := ¬ψ′. If ϕ = (ϕ1 ∨ ϕ2), then let ψ1 and ψ2 be
FO(D)[σ]-formulas in HNF that are d-equivalent to ϕ1 and
ϕ2, respectively, and let ψ := (ψ1 ∨ ψ2).
In both cases, Claim 5.4 (a)–(c) is obviously satisfied.

Suppose that ϕ(x) = (Q+k)y ϕ′(x, y). Let p ∈ [1, P ] be
the period of Q. Recall that k 6 K. The algorithm proceeds
as follows:

(4) By Claim 5.4 (a)–(c), there is a HNFψ′(x, y) ∈ FO(D)[σ]
that is d-equivalent to ϕ′(x, y) and which has locality
radius 6 r := 4q−1 and displacement 6 k′ for

k′ := q · (N−1) + max{K,P}.

(5) Let t := |T d4r(n+1)| and let τ1, . . . , τt be an enumeration
of the set T d4r(n+1). Recall that for every A ∈ Cd and
every tuple a, b ∈ An+1, there is exactly one s ∈ [1, t]
such that NA4r(a, b) ∼= τs.

(6) By Lemma 5.2, there is an FO(D)[σ[1,t]]-sentence δ(Q+k)
[1,t]

such that for every σ[1,t]-structure B where the universe
B is a disjoint union of the sets PB1 , . . . , P

B
t , we have that

B |= δ
(Q+k)
[1,t] ⇐⇒ |B| ∈ (Q+k).

Furthermore, δ(Q+k)
[1,t] is a Boolean combination of Hanf-

formulas of the shape (R+`)y Ps(y) with R ∈ {∃} ∪ D,
s ∈ [1, t], and ` < max{k, p} 6 max{K,P}.

(7) For every s ∈ [1, t], we apply the following Lemma 5.5 to
every Hanf-formula in ψ′ that is not already a sentence, to
obtain an FO(D)[σ]-sentence ψ′s in HNF that is equivalent
to ψ′(x, y) in respect to τs, i.e., for every σ-structure A
and for every tuple a, b ∈ An+1 with NA4r(a, b) ∼= τs,

A |= ψ′[a, b] ⇐⇒ A |= ψ′s.

Lemma 5.5. There is an algorithm which receives as
input a degree bound d > 3, a Hanf-formula α(x) ∈
FO(D)[σ] (where σ is a relational signature) with n > 1
free variables and locality radius r > 0, and a type
τ ∈ T d4r(n), and constructs a HNF sentence ατ ∈
FO(D)[σ] that is equivalent to α(x) in respect to τ .
Furthermore, ατ has locality radius 6 r and displacement
6 k + n · d(2r+1)+1, where k is the displacement of α.

We will prove Lemma 5.5 after having completed the
proof of Lemma 5.3.
It follows from Lemma 5.5 that for every s ∈ [1, t],
the HNF ψ′s has locality radius 6 r. Furthermore, since
(n+1) · d(2r+1)+1 6 N , the formula ψ′s has displacement

6 q·(N−1) + max{K,P}+N

6 (q+1)·N +max{K,P}.
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(8) For every Hanf-formula of the shape (R+`)y Ps(y) in the
HNF δ(Q+k)

[1,t] , we let

ψ(R+`)
s (x) := ψ′s ∧ (R+`)y sphτs(x, y).

Note that ψ(R+`)
s (x) has locality radius 6 4r = 4q.

Since ` < max{k, p} 6 max{K,P}, ψ
(R+`)
s (x) has

displacement 6 (q+1) ·N +max{K,P}. Furthermore,
for every σ-structure A and every tuple a ∈ An, we have

A |= ψ(R+`)
s [a] ⇐⇒ BA4r(a) |= (R+`)y Ps(y). (4)

Let ψ(x) be the FO(D)[σ]-formula which we obtain from
δ
(Q+k)
[1,t] when we replace every Hanf-formula of the shape

(R+`)y Ps(y) by the HNF ψ(R+`)
s (x). It is easy to verify

that ψ(x) satisfies Claim 5.4 (a) and (c).

To verify that ψ(x) also satisfies Claim 5.4 (b), consider a
structure A ∈ Cd and a tuple a ∈ An. Let B denote the
σ[1,t]-structure BA4r(a). The following equivalence holds:

A |= ϕ[a] ⇐⇒ (A, a) |= (Q+k)y ϕ′(x, y)

⇐⇒ (A, a) |= (Q+k)y ψ′(x, y)

⇐⇒ |B| ∈ (Q+k)

⇐⇒ B |= δ
(Q+k)
[1,t]

⇐⇒ A |= ψ[a].

The last equivalence follows from the construction of ψ(x)
and equivalence (4).

It remains to prove Lemma 5.5.

Proof of Lemma 5.5. We describe the algorithm on input of
a degree bound d > 3, a Hanf-formula α(x) ∈ FO(D)[σ]
(where σ is a finite relational signature) with locality radius
r > 0 and n > 1 free variables, and for a type τ ∈ T d4r(n).

Suppose that x = (x1, . . . , xn) are the free variables
of α(x) and that α(x) := (Q+k)y sphρ(x, y) with Q ∈
{∃} ∪ D, displacement k > 0, and ρ ∈ T dr (n+1). Fur-
thermore, suppose that ρ = (R, c, d) for the centres
c = (c1, . . . , cn) and that τ = (T , e) for the centres
e = (e1, . . . , en).

The algorithm proceeds by the following case distinction:

Suppose that distρ(c, d) 6 2r + 1. Here, it holds that

|{b ∈ A : NAr (a, b) ∼= ρ}|
= |{b ∈ NA2r+1(a) : NAr (a, b) ∼= ρ}|.

(5)

Furthermore, we have that Nρ
r (d) ⊆ Nρ

3r+1(e). Note that,
since 2r+1+r 6 3r+1 6 4r, this implies that for every
σ-structure A and every tuple a ∈ An with NA4r(a) ∼= τ ,

|{b ∈ NA2r+1(a) : NAr (a, b) ∼= ρ}|
= |{f ∈ Nτ

2r+1(e) : N τ
r (e, f)

∼= ρ}|︸ ︷︷ ︸
=: kτ

(6)

Hence, putting (5) and (6) together, the algorithm outputs
ατ := ⊥ if kτ 6∈ (Q+k) and ατ := > if kτ ∈ (Q+k).

Suppose that distρ(c, d) > 2r + 1. In this case, the sets
Nρ
r (c) and Nρ

r (d) are disjoint and there are no edges in the
Gaifman graph of ρ between the nodes from Nρ

r (c) and the
nodes from Nρ

r (d).
If N ρ

r (c) and N τ
r (e) are not isomorphic then we have for

every σ-structure A and for each a ∈ An with NA4r(a) ∼= τ ,
that |{b ∈ A : NAr (a, b) ∼= ρ}| = 0. Hence, if 0 ∈ (Q+k)
we let ατ := > and if 0 6∈ (Q+k) we let ατ := ⊥.

In the following we assume that N ρ
r (c) and N τ

r (e) are
isomorphic. In this case we have for each σ-structure A and
every tuple a ∈ An, that

|{b ∈ A : NAr (a, b) ∼= ρ}|
= |{b ∈ A \NA2r+1(a) : NAr (b) ∼= N ρ

r (d)}|.
(7)

Since 2r+1+r 6 3r+1 6 4r, the following equivalence
holds for every σ-structure A and every tuple a ∈ An with
NA4r(a) ∼= τ :

|{b ∈ NA2r+1(a) : NAr (b) ∼= N ρ
r (d)}|

= |{f ∈ Nτ
2r+1(e) : N τ

r (f)
∼= N ρ

r (d)}|︸ ︷︷ ︸
=: `τ

. (8)

Hence, putting (7) and (8) together, we know that

|{b ∈ A : NAr (a, b) ∼= ρ}|
= |{b ∈ A : NAr (b) ∼= N ρ

r (d)}| − `τ .

It follows, that the algorithm can output the the Hanf-formula

ατ := (Q+(k+`τ ))y sphNρr (d)(y).

Finally, observe that `τ 6 n · d(2r+1)+1 and hence, ατ has
displacement 6 k + n · d(2r+1)+1.

5.4 Step (4)
Step (4) is established by the following lemma.

Lemma 5.6. Let Q ⊆ N be ultimately periodic with period
p > 2 and offset n0. Every formula of the shape (Dp+k)y ϕ,
for a k > 0, is equivalent to a Boolean combination of
formulas of the shape (Q+`)y ϕ and (∃+`)y ϕ with ` <
n0+k+2p. Furthermore, such a Boolean combination can
be computed in time O((||Q||+k)3 · ||ϕ||).

Proof. Let n1 ∈ N>1 be the smallest number > max{n0, k}
such that n1−1 ≡ k mod p. Clearly, Q is ultimately periodic
with period p also for the offset n1. From Fact 2.1 we obtain
bitstrings α and π of length |α| = n1 and |π| = p such that
χQ = α · πω . I.e., χQ[0, n1−1] = α, and

χQ[n1, n1+p−1] = π = χQ[n1+(s−1)p, n1+sp−1], (9)

for every s > 1.

Claim 5.7. For all n ∈ N with n > n1+p−1 we have
n ∈ (Dp+k) ⇐⇒ χQ(n−p, n] = π.
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Before presenting the proof of the claim, let us first show
how the claim can be used to prove Lemma 5.6.

Letting π0, π1, . . . , πp−1 ∈ {0, 1} such that π =
πp−1 · · · π1 π0, it is straightforward to see that for all n ∈ N
with n > n1+p−1 we have

χQ(n−p, n] = π

⇐⇒
∧

i∈[0,p) :
πi=1

n ∈ (Q+ i) ∧
∧

j∈[0,p) :
πj=0

n 6∈ (Q+ j).

Thus, the formula (Dp+k)y ϕ is equivalent to the formula∨
`∈S

∃=`y ϕ ∨
(
∃>n1+p−1y ϕ

∧
∧

i∈[0,p) :
πi=1

(Q+i)y ϕ ∧
∧

j∈[0,p) :
πj=0

¬ (Q+j)y ϕ
)
,

(10)

where S is the set of all n ∈ (Dp+k) with n < n1+p−1.
Since n1 6 max{n0, k}+p, each of the quantifiers that
explicitly occur in the formula (10) has displacement <
n0+k+2p 6 2||Q||+ k. Using this, it is straightforward to
see that the formula (10) has sizeO((||Q||+k)3 · ||ϕ||) and can
easily be computed within the same time bound.

To complete the proof of Lemma 5.6, it only remains to
prove Claim 5.7.

Proof of Claim 5.7.
Fix an arbitrary n ∈ N with n > n1+p−1.
The direction “=⇒” is an immediate consequence of equa-
tion (9).
Note that for proving the direction “⇐=”, it suffices to
prove the following: If χQ = β · πω for some word
β ∈ {0, 1}∗ with |α| 6 |β|, then |α| ≡ |β| mod p (in our
case, β = χQ[0, n−1]). Since α is not longer than β, there
exist i ∈ N, a word u ∈ {0, 1}∗ with |u| < |π|, and a
word v ∈ {0, 1}+ with απiu = βπ and βπv = απi+1.
Hence απiuv = απi+1 implies π = uv. Consequently,
βπvu = απi+1u is a prefix of απω = βπω which implies
that vu is a prefix of πω of length |vu| = |uv| = |π|, i.e.,
vu = π. Since u and v commute (i.e., uv = vu), a basic
result in word combinatorics [14, Proposition 1.3.2] implies
the existence of some word w ∈ {0, 1}+ such that u, v ∈ w∗
and therefore π = uv ∈ w∗. But then χQ = απω = αwω

implies |π| = |w| since p = |π| was the period of χQ, and
hence minimal. Hence, w = π = uv. Consequently, u = ε
and therefore β = απi. This ensures |α| ≡ |β| mod p. This
completes the proof of Claim 5.7 and therefore the proof of
Lemma 5.6.

Note that the “if” direction of Theorem 3.2 is an immediate
consequence of the Lemmas 5.1, 5.3, and 5.6.

6. Complexity
This section is devoted to the proof of Theorem 3.3. We
proceed along the steps outlined in Section 3 and provide a

runtime analysis of the algorithm obtained from the proof
presented in Section 5. Due to space restrictions, most proofs
had to be deferred to an appendix.

The following Corollary 6.1 shows how to use Lemma 5.1
to compute, for a given FO(Q)-formula, an equivalent
FO(D)-formula. Here, we let w(ϕ) := 1 if ϕ is quantifier-
free. Otherwise, we denote by w(ϕ) the largest number ||Q||
for all quantifiers Q occurring in ϕ.

Corollary 6.1. There is an algorithm which receives as input
a ϕ ∈ FO(Q) of quantifier rank q, and constructs in time

||ϕ|| · w(ϕ)O(q)

an equivalent ψ ∈ FO(D) of the same signature as ϕ and
with displacement 6 w(ϕ) and generalised quantifier rank q.

Corollary 6.2. The algorithm from Lemma 5.2 runs in time

max{k, p}O(log(j−i+1)).

We proceed with a runtime analysis of the algorithms
constructed in Step (3). We start with the algorithm provided
by Lemma 5.5, and afterwards proceed to the algorithm
provided by Lemma 5.3.

A task needed within both algorithms is to check whether
two structures of size 6 N (for some number N > 1) are
isomorphic to each other. By using a brute-force algorithm,
this can be done in time at most N cI · NN , where cI > 1
is a suitable number of size O(||σ||): for each of the at most
NN bijections, it can be checked in time N cI whether the
bijection is indeed an isomorphism.

Corollary 6.3. The algorithm from Lemma 5.5 runs in time

k · 2(n·d
4r+1)O(||σ||)

.

Corollary 6.4. The algorithm from Lemma 5.3 runs in time

max{K,P}(||ϕ||·d
4q+1)O(||σ||)

.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3.
We analyse the algorithm’s runtime when receiving as input a
degree bound d > 3 and a formula ϕ ∈ FO(Q). Let σ denote
the relational signature consisting of all relation symbols that
occur in ϕ, and let q > 0 be the quantifier rank of ϕ.

• In Step (1), the algorithm of Corollary 6.1 computes an
FO(D)[σ]-formula ϕ̃ that is equivalent to ϕ and that has
displacement 6 w(ϕ) and generalised quantifier rank q.
This takes time in

||ϕ|| · w(ϕ)O(q) ⊆ 2||ϕ||
O(1)

For the latter inclusion, recall that q, w(ϕ), ||σ|| < ||ϕ||.
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• In Step (3), the algorithm of Lemma 5.3 computes a HNF
ψ̃ ∈ FO(D)[σ] that is d-equivalent to ϕ̃. According to
Corollary 6.4, for K,P 6 ||ϕ|| this takes time

max{K,P}
(
||ϕ̃||·d4

q+1
)O(||σ||)

⊆ 2d
2O(||ϕ||)

.

Note that ψ̃ has locality radius 6 4q and displacement 6

(q+1) · (||ϕ̃|| · d4
q+1 +max{K,P}) ⊆ d2

O(||ϕ||)
.

• In Step (4), the algorithm of Lemma 5.6 computes for each
Hanf-formula in ψ̃ an equivalent FO(Q)[σ]-formula in
HNF. For each Hanf-formula in ψ̃ of the shape (Q+k)y γ,
this takes time O((||Q||+k)3 · ||γ||). Hence, to compute a
HNF ψ ∈ FO(Q)[σ] that is equivalent to ψ̃, takes time

||ψ̃|| ·
(
||ϕ||+ d2

O(||ϕ||))3 ⊆ 2d
2O(||ϕ||)

.

ψ has locality radius 6 4q and displacement in d2
O(||ϕ||)

.

Altogether, the proof of Theorem 3.3 is complete, since ψ is
d-equivalent to ϕ and can be computed in time

2d
2O(||ϕ||)

.

7. Conclusion
We have generalised the notion of Hanf normal forms (HNF,
for short) from first-order logic FO to first-order logic with
unary counting qantifiers FO(Q).

Our first main result (see Theorem 3.2) completely charac-
terizes those sets Q of unary counting quantifiers that permit
HNF: the logic FO(Q) permits HNF if, and only if, all sets
in Q are ultimately periodic.

Our second main result (see Theorem 3.3) provides an
algorithm which, for any set Q of ultimately periodic sets
and any degree bound d ∈ N, transforms an input FO(Q)-
formula ϕ into an FO(Q)-formula in HNF that is equivalent
to ϕ on all (finite) structures of degree at most d. We showed
that this algorithm uses time at most 3-fold exponential in the
size of ϕ. A lower bound of [1] shows that already for d = 3
and plain first-order logic FO, this is worst-case optimal. A
more refined runtime analysis (that will be included in the
paper’s full version) shows that for the degree bound d = 2,
our algorithm can be implemented in such a way that its
runtime is only 2-fold exponential in the size of ϕ ∈ FO(Q).

For future work, we plan to consider relaxed variants
of HNF, where instead of the Hanf-formulas defined in
the current paper, more general formulas are allowed. E.g.,
formulas of the form (Q+k)y sphτ (x, y), stating that “the
number of tuples y satisfyingNr(x, y) ∼= τ , belongs to the set
(Q+k)”. Or, formulas of the form (Q+k)y ψ(x, y), where
ψ(x, y) is local around its free variables, but is not required to
describe the isomorphism type of an r-neighbourhood around
x, y. Finally, it is not clear whether the results of this paper
can be extended to infinite structures.
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APPENDIX
This appendix contains proofs omitted in Section 6.

A. Proof of Corollary 6.1
Let ϕ be an FO(Q)-formula of quantifier rank q > 0. The
algorithm proceeds by induction on the shape of ϕ, and uses
the formulas constructed in the proof of Lemma 5.1.

The only interesting step is the case of an FO(Q)-formula
ϕ of shape Qy ϕ′ for a Q ∈ Q and with quantifier rank q > 1.
As the first step, the algorithm is called recursively to compute
an FO(D)[σ]-formula ψ′ that is equivalent to ϕ′ and that has
displacement 6 w(ϕ′) and generalised quantifier rank q−1.

If Q is the existential quantifier, the algorithm can output
ψ := ∃y ψ′. Otherwise, the algorithm uses formula (3) from
the proof of Lemma 5.1 to obtain an FO(D)-formula ψ that
is equivalent to Qy ψ′. Recall that w(ϕ) > ||Q|| = n0+p+1,
where p and n0 are the minimal period and the minimal offset
of Q. Hence, ψ has size O(w(ϕ)3 · ||ψ′||), displacement
6 w(ϕ) and generalised quantifier rank q.

For the algorithm’s runtime analysis note that the only step
which increases the formula size is the one for the quantifiers
in Q. Hence, ||ψ|| is at most ||ϕ|| · w(ϕ)O(q). It is easy to
see that ψ can also be constructed within the same time
bound.

B. Proof of Corollary 6.2
We proceed along the three cases provided in the proof of
Lemma 5.2. Note that in any case, the algorithm has recursion
depth O(log(j−i+1)).

Observe that the formula used in Case 1 is a Boolean com-
bination of 2k quantified subformulas. Hence, the number of
Hanf-formulas in δ(∃+k) is in kO(log(j−i+1)). Furthermore,
each of these Hanf-formulas has size O(k2).

In the same way it can be shown for Case 2 that the number
of Hanf-formulas in δ(Dp+k) (for k < p) is pO(log(j−i+1)),
and that each of these Hanf-formulas has size in O(p2).

It follows, that the number of Hanf-formulas in the
HNF δ(Dp+k) (for k > p), constructed in Case 3, is
max{k, p}O(log(j−i+1)). Furthermore, each of these Hanf-
formulas has size O(max{k, p}2).

Altogether, it follows that the HNF δ(Q+k) can be con-
structed in time max{k, p}O(log(j−i+1)).

C. Proof of Corollary 6.3
In the following, we let N := n · d4r+1, and we use the same
notation as in the proof of Lemma 5.5.

Recall that ρ has at most (n+1)·dr+1 elements. Therefore,
the time needed do decide whether distρ(c, d) 6 2r+1 or
distρ(c, d) > 2r+1 is in NO(||σ||).

If distρ(c, d) 6 2r+1, we have to compute the number
kτ defined in equation (6). This requires us to check at most
n ·d(2r+1)+1 6 N d-bounded σ-structures with each at most

(n+1) · dr+1 6 N elements for isomorphism. Hence, in this
case, the algorithm uses time 2N

O(||σ||)
.

If distρ(c, d) > 2r+1, we have to check whether the two
structures N ρ

r (c) and N τ
r (e) (each with 6 N elements) are

isomorphic. If this is the case, we have to compute the number
`τ defined in equation (8). This requires us to check at most
n · d(2r+1)+1 d-bounded σ-structures, each with at most
n · dr+1 6 N elements, for isomorphism. This can be done
in time 2N

O(||σ||)
. Since `τ 6 N , the formula ατ can be

computed in time O((k+N)2) +NO(||σ||).
We can conclude that altogether, the algorithm of Lemma 5.5

can be carried out in time

(k+N)O(1) + 2N
O(||σ||)

⊆ k · 2(n·d
4r+1)O(||σ||)

.

D. Proof of Corollary 6.4
For proving Corollary 6.4, it suffices to extend the statement
of Claim 5.4 by

(d) There is a number c > 3 of size O(||σ||) such that the
algorithm terminates after at most max{K,P}Nc time
steps, where N := ||ϕ|| · d4q+1.

In the following, the steps of the computation are numbered in
the same way as in the description of the algorithm provided
in the proof of Lemma 5.3.

If ϕ is quantifier-free, i.e., q = 0, the algorithm proceeds
along the following steps:

(1) Compute the set T d0 (n+1). Note that each type in
T d0 (n+1) has size 6 n+1 < N . Furthermore, there
is a number c1 > 1 of size O(||σ||) such that T d0 (n+1)
contains at most 2(n+1)c1 < 2N

c1 types. Hence, there is
a number c2 > c1 of size O(||σ||) such that T d0 (n+1) can
be enumerated in 6 2N

c2 time steps.

(2) Compute the set T ⊆ T d0 (n+1) of all types τ = (T , c, d)
in T d0 (n+1) where T |= ϕ[c]. Since ϕ is quantifier-free,
this can be done in at most 2N

c3 time steps for a number
c3 > c1 of size O(||σ||).

(3) The construction of the formula ψ(x) takes at most 2N
c4

time steps, for a number c4 > c1 of size O(||σ||).
Hence, for a suitable c > 1 of size O(||σ||), the algorithm can
be carried out in at most 2N

c

time steps.
For ϕ with generalised quantifier rank q > 1, the case

of Boolean combinations is trivial. For ϕ of the shape
(Q+k)y ϕ′(x, y), where Q ∈ {∃} ∪ D has period p > 1
and where k 6 K, the algorithm proceeds along the follow-
ing steps:

(4) By the induction hypothesis (Claim 5.4 (d)), the algorithm
computes the HNF ψ′(x, y) in 6 max{K,P}(N−1)c

time steps.
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(5) Since the set T d4q (n+1) contains t 6 2N
c1 types of size

< N , it can be enumerated in 6 2N
c2 time steps.

(6) By Corollary 6.2, there is a c4 > c1 of size O(||σ||), such
that it takes 6 max{k, p}Nc4 6 max{K,P}Nc4 time
steps to construct the HNF δ(Q+k)

[1,t] ∈ FO(D)[σ[1,t]].

(7) For each s ∈ [1, t], compute the FO(D)[σ]-sentence ψ′s.
Since we know that (n+1) · d4r+1 6 N and that
furthermore k′ := q · (N−1) + max{K,P}, we obtain
from Corollary 6.3 that this takes time k′ · 2NO(||σ||) ⊆
max{K,P}NO(||σ||)

for each Hanf-formula in ψ′. Since
||ψ′|| 6 2(N−1)

c

, there is a number c5 > 1 of size O(||σ||)
such that it takes 6 max{K,P}(N−1)c ·max{K,P}Nc5

time steps to construct ψ′s.

(8) Replace each Hanf-formula of the shape (R+`)y Ps(y) in
δ
(Q+k)
[1,t] by the HNF ψ(R+`)

s (x). By the size of δ(Q+k)
[1,t] , this

takes at most max{K,P}Nc5 time steps, for a number
c6 > c4 of size O(||σ||).

Altogether, the algorithm takes 6 max{K,P}(N−1)c+Nc6

time steps, for a number c7 > max{c2, c4, c5, c6} of
size O(||σ||).

Choosing c := c7+1 enforces that (N−1)c+N c7 6 N c,
since

(N−1)c+Nc−1

Nc =
(
N−1
N

)c
+ 1

N 6 N−1
N + 1

N = 1.

It follows, that, the algorithm terminates after at most
max{K,P}Nc = max{K,P}(n·d4

q+1)c time steps.
This completes the proof of Claim 5.4 (d) and hence, the

proof of Corollary 6.4.
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