
The transformation monoid of a partially lossy

queue

Chris Köcher⋆ and Dietrich Kuske⋆

Technische Universität Ilmenau, Institut für Theoretische Informatik

Abstract. We model the behavior of a lossy fifo-queue as a monoid of
transformations that are induced by sequences of writing and reading. To
have a common model for reliable and lossy queues, we split the alphabet
of the queue into two parts: the forgettable letters and the letters that
are transmitted reliably.
We describe this monoid by means of a confluent and terminating semi-
Thue system and then study some of the monoids algebraic properties.
In particular, we characterize completely when one such monoid can be
embedded into another as well as which trace monoids occur as sub-
monoids. The resulting picture is far more diverse than in the case of
reliable queues studied before.

1 Introduction

Queues (alternatively: fifo queues or channels) form a basic storage mechanism
that allows to append items at the end and to read the left-most item from
the queue. Providing a finite state automaton with access to a queue results in a
Turing complete computation model [2] such that virtually all decision problems
on such devices become undecidable.

Situation changes to the better if one replaces the reliable queue by some
forgetful version. The most studied version are lossy queues that can nondeter-
ministically lose any item at any moment [7,3,1,13]: in that case reachability,
safety properties over traces, inevitability properties over states, and fair ter-
mination are decidable (although of prohibitive complexity, see, e.g., [4]). A
practically more realistic version are priority queues where items of high priority
can erase any previous item of low priority. If items of priority i can be erased by
subsequent items of priority at least i, then safety and inevitability properties
are decidable, if items of priority i can be erased by subsequent items of priority
strictly larger than i, only, then these problems become undecidable [8].

In this paper, we study partially lossy queues that can be understood as
a model between lossy and priority queues. Seen as a version of lossy queues,
their alphabet is divided into two sets of reliable and forgettable letters where
only items from the second set can be lost. Seen as a version of priority queues,
partially lossy queues use only two priorities (0 and 1) where items of priority 0
can be erased by any item of priority at least 0 (i.e., by all items) and items of

⋆ Supported by the DFG-Project “Speichermechanismen als Monoide”, KU 1107/9-1.

priority 1 can only be erased by items of strictly larger priority (which do not
exist).

We describe the behavior of such a partially lossy queue by a monoid as was
done, e.g., for pushdowns in [10] and for reliable queues in [9,12]: A partially lossy
queue is given by its alphabet A as well as the subset X ⊆ A of letters that the
queue will transmit reliably. Note that writing a symbol into a queue is always
possible (resulting in a longer queue), but reading a symbol is possible only if the
symbol is at the beginning of the queue (or is preceded by forgettable symbols,
only). Thus, basic actions define partial functions on the possible queue contents.
The generated transformation monoid is called partially lossy queue monoid or
plq monoid Q(A,X). Then Q(A,A) models the behaviour of a reliable queue
with alphabet A [9,12] and Q(A, ∅) the fully lossy queue that can forget any
symbol [11].

The first part of this paper presents a complete infinite semi-Thue system for
the monoid Q(A,X). The resulting normal forms imply that two sequences of
actions are equivalent if their subsequences of write and of read actions, respec-
tively, coincide and if the induced transformations agree on the shortest queue
that they are defined on.

This result is rather similar, although technically more involved, than the
corresponding result on the monoid Q(A,A) of the reliable queue from [9]. In
that paper, it is also shown that Q(A,A) embeds into Q(B,B) provided B is
not a singleton. This is an algebraic formulation of the wellknown fact that
the reliable queue with two symbols can simulate any other reliable queue. The
second part of the current paper is concerned with the embeddability relation
between the monoids Q(A,X). Clearly, the monoid Q(A, ∅) of the fully lossy
queue embeds into Q(B, ∅) whenever |A| ≤ |B| by looking at A as a subset of B.
Joining this almost trivial idea with the (nontrivial) idea from [9], one obtains
an embedding of Q(A,X) into Q(B, Y) provided the second queue has at least
as many forgettable letters as the first and its number of unforgettable letters is
at least the number of unforgettable letters of the first queue or at least two (i.e.,
|A \X| ≤ |B \Y | and min{|X|, 2} ≤ |Y |). We prove that, besides these cases, an
embedding exists only in case the second queue has precisely one non-forgettable
letter and properly more forgettable letters than the first queue (i.e., |Y | = 1
and |A \X| < |B \ Y |). As for the reliable queue, this algebraically mirrors the
intuion that a partially lossy queue can simulate another partially lossy queue
in these cases, only. In particular, a reliable queue does not simulate a fully lossy
queue and vice versa and a fully lossy queue cannot simulate another fully lossy
queue with more (forgettable) letters.

These results show that the class of submonoids of a plq monoid Q(A,X)
depends heavily on the number of forgettable and non-forgettable letters. In [9],
it is shown that the direct product of two free monoids embeds into the monoid
of the reliable queue Q(A,A) (with |A| ≥ 2). The paper [12] elaborates on this
and characterizes the class of trace monoidsM(Γ, I) [6] that embed into Q(A,A).
In particular, it shows that N3 is not a submonoid of Q(A,A). The final section
of this paper studies this question for plq monoids. The – at least for the authors

– surprising answer is that, provided the queue has at least one non-forgettable
or at least three forgettable letters, a trace monoid embeds into Q(A,X) if
and only if it embeds into Q(A,A). By [12], this is the case if all letters in the
independence alphabet (Γ, I) have degree at most 1 or the independence alphabet
is a complete bipartite graph with some additional isolated vertices. We provide
a similar characterization for trace monoids embedding into Q({a, b}, ∅): here,
the complete bipartite component is replaced by a star graph. In any case, the
direct product of (N,+) and {a, b}∗ embeds into Q(A,X). Since in this direct
product, the inclusion problem for rational sets is undecidable (cf. [15]), the same
applies to Q(A,X).

In summary, we study properties of the transformation monoid of a partially
lossy queue that were studied for the reliable queue in [9,12]. We find expected
similarities (semi-Thue system), differences (embeddability relation) and sur-
prising similarities (trace submonoids).

2 Preliminaries

At first we need some basic definitions. So let A be an alphabet. A word u ∈ A∗

is a prefix of v ∈ A∗ iff v ∈ uA∗. Similarly, u is a suffix of v iff v ∈ A∗u.
Furthermore u is a subword of v iff there are k ∈ N, a1, . . . , ak ∈ A and
w1, . . . , wk+1 ∈ A∗ such that u = a1 . . . ak and v = w1a1w2a2 . . . wkakwk+1,
i.e., we obtain u if we drop some letters from v. In this case we write u � v. Note
that � is a partial ordering on A∗. Let X ⊆ A. Then we define the projection
πX : A∗ → X∗ on X by

πX(ε) = ε and πX(au) =

{

aπX(u) if a ∈ X

πX(u) otherwise

for each a ∈ A and u ∈ A∗. Moreover, u is an X-subword of v (denoted u �X v)
if πX(v) � u � v, i.e., if we obtain u from v by dropping some letters not in X.
Note that �∅ is the subword relation � and �A is the equality relation.

2.1 Definition of the Monoid

We want to model the behaviour of an unreliable queue that stores entries from
the alphabet A. The unreliability of the queue stems from the fact that it can
forget certain letters that we collect in the set A\X. In other words, letters from
X ⊆ A are non-forgettable and those from A \X are forgettable. Note that this
unreliability extends the approach from [9] where we considered reliable queues
(i.e., A = X).

So let A be an alphabet of possible queue entries and let X ⊆ A be the
set of non-forgettable letters. The states of the queue are the words from A∗.
Furthermore we have some basic controllable actions on these queues: writing of
a symbol a ∈ A (denoted by a) and reading of a ∈ A (denoted by a). Thereby we
assume that the set A of all these reading operations a is a disjoint copy of A. So

Σ := A ∪A is the set of all controllable operations on the partially lossy queue.
For a word u = a1 . . . an ∈ A∗ we write u for the word a1 a2 . . . an.

Formally, the action a ∈ A appends the letter a to the state of the queue.
The action a ∈ A tries to cancel the letter a from the beginning of the current
state of the queue. If this state does not start with a then the operation a is not
defined. The lossiness of the queue is modeled by allowing it to forget arbitrary
letters from A \X of its content at any moment.

This semantics is similar to the “standard semantics” from [4, Appendix A]
where a lossy queue can lose any message at any time. The main part of that
paper considers the “write-lossy semantics” where lossiness is modeled by the
effect-less writing of messages into the queue. The authors show that these two
semantics are equivalent [4, Appendix A] and similar remarks can be made about
priority queues [8]. A third possible semantics could be termed “read-lossy se-
mantics” where lossiness is modeled by the loss of any messages that reside in
the queue before the one that shall be read. In that case, the queue forgets letters
only when necessary and this necessity occurs when one wants to read a letter
that is, in the queue, preceeded by some forgettable letters.

In the complete version of this paper, we define both, the “standard seman-
tics” and the “read-lossy semantics” and prove that the resulting transformation
monoids are isomorphic; here, we only define the “read-lossy semantics” as this
semantics is more convenient for our further considerations.

Definition 2.1. Let X ⊆ A be two finite sets and ⊥ /∈ A. Then the map
◦X : (A∗ ∪ {⊥}) × Σ∗ → (A∗ ∪ {⊥}) is defined for each q ∈ A∗, a ∈ A and
u ∈ Σ∗ as follows:

(i) q ◦X ε = q
(ii) q ◦X au = qa ◦X u

(iii) q ◦X au =

{

q′ ◦X u if q ∈ (A \ (X ∪ {a}))∗ a q′

⊥ otherwise

(iv) ⊥ ◦X u = ⊥

Consider the definition of q◦X au. There, the word aq′ is the smallest suffix of
q that contains all the occurrences of the letter a (it follows that the operation ◦X
is welldefined) and the complementary prefix consists of forgettable entries, only.
Hence, to apply a, the queue first “forgets” the prefix and then “delivers” the
letter a that is now at the first position.

Lemma 2.2. Let q, u ∈ A∗ such that q ◦X u 6= ⊥. Then q ◦X u is the longest
suffix of q with πX(p) � u � p where p is the complementary prefix.

Example 2.3. Let a ∈ A \X, b ∈ X, q = aabaabba and u = aba. Then we have
q ◦X u = abaabba ◦X ba = aabba ◦X a = abba.

On the other hand, the words aaba and aabaa are the only prefixes p′ of q
with πX(p′) � u � p′. Their complementary suffixes are abba and bba, the longer
one equals q ◦X u as claimed by the lemma.

Two sequences of actions that behave the same on each and every queue will
be identified:

Definition 2.4. Let X ⊆ A be two finite sets and u, v ∈ Σ∗. Then u and v act
equally (denoted by u ≡X v) if q ◦X u = q ◦X v holds for each q ∈ A∗.

The resulting relation ≡X is a congruence on the free monoid Σ∗. Hence,
the quotient Q(A,X) := Σ∗/≡X

is a monoid which we call partially lossy queue
monoid or plq monoid induced by (A,X).

Example 2.5. Let a, b ∈ A be distinct. Then we have ε ◦∅ baa = ba ◦∅ a = ε and
ε ◦∅ baa = ⊥ implying baa 6≡∅ baa.

On the other hand, ε ◦A baa = ba ◦A a = ⊥ = ε ◦A baa. It can be verified
that, even more, q ◦A baa = q ◦A baa holds for all q ∈ A∗ (since a 6= b) implying
baa ≡A baa.

General assumption Suppose A = {a} is a singleton. Then an+1 ◦X a = an for
any n ≥ 0 (independent of whether X = A or X = ∅). Hence Q(A,A) = Q(A, ∅)
is the bicyclic semigroup. From now on, we exclude this case and assume |A| ≥ 2.

2.2 A semi-Thue system for Q(A,X)

Lemma 2.6. Let a, b ∈ A, x ∈ X and w ∈ A∗. Then the following hold:

(i) ba ≡X ab if a 6= b
(ii) aab ≡X aab

(iii) xwaa ≡X xwaa
(iv) awaa ≡X awaa

At first we take a look at equations (i)-(iii) (with |w|a = 0 for simplicity). In
order for a queue q ∈ A∗ to be defined after execution of the actions, the letter
a must already be contained in q preceded by forgettable letters only. Since, in
all cases, a is the first read operation, a reads this occurrence of a from q. Hence
it does not matter whether we write b (a, resp.) before or after this reading
of a. In equation (iv) we are in the same situation after execution of the leading
write operation a. Therefore we can commute the read and write operations in
all these situations.

In case of X = A, (iv) is a special case of (iii). Furthermore (i), (ii), and (iii)
with w = ε are exactly the equations that hold in Q(A,A) by [9, Lemma 3.5].

Ordering the equations from Lemma 2.6, the semi-Thue system RX consists
of the following rules for a, b ∈ A, x ∈ X and w ∈ A∗:

(a) ba → ab if a 6= b
(b) aab → aab

(c) xwaa → xwaa
(d) awaa → awaa

Since all the rules are length-preserving and move letters from A to the left,
this semi-Thue system is terminating. Since it is also locally confluent, it is
confluent. Hence for any word u ∈ Σ∗, there is a unique irreducible word nfX(u)
with u →∗

nfX(u), the normal form of u. Let NFX denote the set of words in
normal form.

Proposition 2.7. Let u, v ∈ Σ∗. Then u ≡X v if, and only if, nfX(u) = nfX(v).

Recall that aab ≡X aab and aa 6≡X aa, i.e., in general, we cannot cancel in
the monoid Q(A,X). Since rules from RX move letters from A to the left, we
obtain the following restricted cancellation property.

Corollary 2.8. Let u, v ∈ Σ∗ and x, y ∈ A∗ with xuy ≡X xvy. Then u ≡X v.

To describe the shape of words from NFX we use a special shuffle operation
on two words u, v ∈ A∗: Each symbol a of v is placed directly behind the first
occurrence of a such that we preserve the relative order of symbols in v and such
that there is no symbol from X between the preceding reading symbol and aa.

Example 2.9. Let a, b ∈ A with a 6= b and q = aabbab. If a /∈ X then we have

aabbab → aababb → aaabbb → aaabbb → aaabbb

and therefore aaabbb = nfX(aabbab). Otherwise, i.e., if a ∈ X, we can apply rule
(c) to aaabbb and hence obtain nfX(aabbab) = abaabb.

The “special shuffle” alluded to above in these cases is 〈〈aabb, ab〉〉 = aaabbb
if a /∈ X and 〈〈aabb, ab〉〉 = abaabb otherwise.

The inductive definition of the special shuffle looks as follows:

Definition 2.10. Let u, v ∈ A∗ and a ∈ A. Then we set

〈〈u, ε〉〉 := u

〈〈u, av〉〉 :=

{

u1aa〈〈u2, v〉〉 if u = u1au2 where u1 ∈ (A \ (X ∪ {a}))∗, u2 ∈ A∗

undefined otherwise.

By induction on the length of the word v, one obtains that 〈〈u, v〉〉 is defined if,
and only if, u has a prefix u′ with v �X u′. We denote this property by v ≤X u
and call v an X-prefix of u. Clearly, the binary relation ≤X is a partial order.
Note that ≤∅ is the subword relation � and ≤A is the prefix relation on A∗.

Definition 2.11. The projections π, π : Σ∗ → A∗ on write and read operations
are defined for any u ∈ Σ∗ by π(u) = πA(u) and π(u) = πA(u).

In a nutshell, the projection π deletes all letters from A from a word. Dually,
the projection π deletes all letters from A from a word and then surpresses the
overlines. For instance π(aab) = ab and π(aab) = a.

Remark 2.12. Since a word is in normal form if no rule from the semi-Thue
system RX can be applied to it, we get

NFX = {u〈〈v, w〉〉 | u, v, w ∈ A∗, v ≤X w} = A
∗

(

⋃

a∈A

(A \ (X ∪ {a}))∗aa

)∗

.

Thus, for u ∈ Σ∗, there are unique words u1, u2, u3 ∈ A∗ with nfX(u) =
u1〈〈u2, u3〉〉; we set π1(u) = u1 and π2(u) = u3. As a consequence, we get

nfX(u) = π1(u)〈〈π(u), π2(u)〉〉.

While π1(u) is defined using the semi-Thue system RX , it also has a natural
meaning in terms of the function ◦X : π1(u)◦Xu is defined and, if q◦Xu is defined,
then |π1(u)| ≤ |q|. Hence π1(u) is the shortest queue such that execution of u
does not end up in the error state.

Example 2.13. Recall Example 2.9. In case of a /∈ X we have π1(q) = ε and
π2(q) = ab. Otherwise we have π1(q) = ab and π2(q) = ε.

For words u, v ∈ A∗ with nfX(uv) = w1〈〈w2, w3〉〉, we have w2 = π(uv) = u
and w1w3 = π(uv) = v. Hence, to describe the normal form of uv, we have to
determine w3 = π2(uv) which is accomplished by the following lemma.

Lemma 2.14. Let u, v ∈ A∗. Then π2(uv) is the longest suffix v′ of v that
satisfies v′ ≤X u, i.e., such that 〈〈u, v′〉〉 is defined.

3 Fully Lossy Queues

The main result of this section is Theorem 3.4 that provides a necessary condition
on a homomorphism into Q(A,X) to be injective. We derive this condition by
considering first queue monoids where all letters are forgettable, i.e., monoids
of the form Q(A, ∅). Note that the relations �∅ and ≤∅ are both equal to the
subword relation �. Hence we will use this in the following statements.

The first result of this section (Theorem 3.2) describes the normal form
of the product of two elements from Q(A, ∅) in terms of their normal forms
(Lemma 2.14 solves this problem in case the first factor belongs to [A∗] and the

second to [A
∗
] for arbitrary sets X ⊆ A.)

Definition 3.1. Let u, v ∈ A∗. The overlap of u and v is the longest suffix
ol(u, v) of v that is a subword of u.

Assuming X = ∅ the relation ≤X equals the subword relation �. Hence, in this
situation, Lemma 2.14 implies π2(uv) = ol(u, v) for any words u, v ∈ A∗.

Recall that Lemma 2.14 describes the shape of nfX(uv) for arbitrary X,

u ∈ A∗ and v ∈ A
∗
. The following Theorem describes this normal form for

X = ∅, but arbitrary u, v ∈ Σ∗.

Theorem 3.2. Let X = ∅, u, v ∈ Σ∗, and w = ol(π(u), π2(u)π1(v)). Then

π2(uv) = w π2(v) and
π(u)π1(v) = π1(uv) w.

We next infer that if u and v agree in their subsequences of read and write
operations, respectively, then they can be equated by multiplication with a large
power of one of them.

Proposition 3.3. Let u, v ∈ Σ∗ with π(u) = π(v), π(u) = π(v), and π1(u) ∈
π1(v)A

∗. Then there is a number i ∈ N with nf∅(u
ivui) = nf∅(u

iuui).

Proof. If there is i ≥ 1 with |π(v)| ≤ |π1(u
i)|, then π2(vu

i) = π2(uu
i) can

be derived from Theorem 3.2 by inductively proving a similar statement for
powers of u. Otherwise, let i ≥ 1 such that |π1(u

i)| is maximal (this maxi-
mum exists since |π1(u

j)| < |π(v)| for any j ∈ N). Again by Theorem 3.2,
one obtains π2(u

iv) = π2(u
iu). Hence, in any case, π2(u

ivui) = π2(u
iuui).

Note that π(uivui) = π(uiuui) follows from π(u) = π(v) and similarly for
π(uivui) = π(uiuui). Consequently nf∅(u

ivui) = nf∅(u
iuui). ⊓⊔

From this proposition, we can infer the announced necessary condition for
a homomorphism into Q(A,X) to be injective. This condition will prove im-
mensely useful in our investigation of submonoids of Q(A,X) in the following
two sections. It states that if the images of x and y under an embedding φ per-
form the same sequences of read and write operations, respectively, then x and
y can be equated by putting them into a certain context.

Theorem 3.4. Let M be a monoid, φ : M →֒ Q(A,X) an embedding, and
x, y ∈ M such that π(φ(x)) = π(φ(y)) and π(φ(x)) = π(φ(y)).

Then there is z ∈ M with zxz = zyz.

Proof. For notational simplicity, let φ(x) = [u] and φ(y) = [v].

We can, without loss of generality, assume that |π1(u)| ≤ |π1(v)|. Since
π(u) = π(v), the word π1(u) is a prefix of the word π1(v). By Proposition 3.3,
there is i ∈ N such that nf∅(u

ivui) = nf∅(u
iuui). As the semi-Thue system RX

contains all the rules from R∅ we get nfX(uivui) = nfX(uiuui) and therefore
uivui ≡X uiuui. In other words, φ(xiyxi) = φ(xixxi). The injectivity of φ now
implies xiyxi = xixxi. Setting z = xi yields zxz = zyz as claimed. ⊓⊔

4 Embeddings between PLQ Monoids

We now characterize when the plq monoid Q(A,X) embeds into Q(B, Y).

Theorem 4.1. Let A,B be alphabets with |A|, |B| ≥ 2, X ⊆ A and Y ⊆ B.
Then Q(A,X) →֒ Q(B, Y) holds iff all of the following properties hold:

(A) |A \ X| ≤ |B \ Y |, i.e., (B, Y) has at least as many forgettable letters
as (A,X).

(B) If Y = ∅, then also X = ∅, i.e., if (B, Y) consists of forgettable letters only,
then so does (A,X).

(C) If |Y | = 1, then |A \ X| < |B \ Y | or |X| ≤ 1, i.e., if (B, Y) has exactly
one non-forgettable letter and exactly as many forgettable letters as (A,X),
then A contains at most one non-forgettable letter.

In particular, Q(A,A) embeds into Q(B,B) whenever |B| ≥ 2, i.e., this theorem
generalizes [9, Corollary 5.4]. We prove it in Propositions 4.2 and 4.5.

4.1 Preorder of Embeddability

The embeddability of monoids is reflexive and
transitive, i.e., a preorder. Before diving into
the proof of Theorem 4.1, we derive from it an
order-theoretic description of this preorder on
the class of all plq monoids (see the reflexive
and transitive closure of the graph on the right).
The plq monoid Q(A,X) is, up to isomorphism,
completely given by the numbers m = |X| and
n = |A \X| of unforgettable and of forgettable
letters, respectively. Therefore, we describe this
preorder in terms of pairs of natural numbers.
We write (m,n) → (m′, n′) if

Q([m+ n], [m]) →֒ Q([m′ + n′], [m′])

where, as usual, [n] = {1, 2, . . . , n}. Then Theo-
rem 4.1 reads as follows: If m,n,m′, n′ ∈ N with
m+n,m′+n′ ≥ 2, then (m,n) → (m′, n′) iff all
of the following properties hold:

(A) n ≤ n′

(B) If m′ = 0, then m = 0
(C) If m′ = 1, then m ≤ 1 or n < n′

Then we get immediately for all appropriate nat-
ural numbers m,n, n′ ∈ N:

– if k ≥ 2, then (2, n) → (k, n) → (2, n)
– (2, n) → (2, n′) iff n ≤ n′

– (1, n) → (2, n′) iff n ≤ n′

– (0, n) → (2, n′) iff n ≤ n′

– (2, n) → (1, n′) iff n < n′

– (1, n) → (1, n′) iff n ≤ n′

– (0, n) → (1, n′) iff n ≤ n′

– (2, n) 6→ (0, n′)
– (1, n) 6→ (0, n′) iff n ≤ n′

– (0, n) → (0, n′) iff n ≤ n′

(k, 0)

(k, 1)

(k, 2)

(k, 3)

(2, 0)

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(0, 2)

(0, 3)

(0, 4)

These facts allow to derive the above graph (where k stands for an arbitrary
number at least 3).

First look at the nodes not of the form (0, n). They form an alternating
chain of infinite equivalence classes {(k, n) | k ≥ 2} and single nodes (1, n).
The infinite equivalence class at the bottom corresponds to the monoids of fully
reliable queues considered in [9].

The nodes of the form (0, n) also form a chain of single nodes (these nodes
depict the fully lossy queue monoids from [11]). The single node number n (i.e.,

(0, 2 + n)) from this chain is directly below the single node number 2 + n (i.e.,
(1, 2 + n)) of the alternating chain.

4.2 Sufficiency in Theorem 4.1

Proposition 4.2. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B satisfy-
ing Conditions (A)-(C) from Theorem 4.1. Then Q(A,X) embeds into Q(B, Y).

Proof. First suppose |X| ≤ |Y |. By Condition (A), we can assume A\X ⊆ B \Y
and X ⊆ Y . Then Proposition 2.7 implies that Q(A,X) is a submonoid of
Q(B, Y) since the rules of the semi-Thue system only permute letters in words.

Now assume |X| > |Y |. By Condition (A), there exists an injective mapping
φ1 : A\X →֒ B\Y . Since |X| > |Y |, Condition (B) implies Y 6= ∅. Let b1 ∈ Y be
arbitrary. If |Y | > 1, then choose b2 ∈ Y \{b1}. Otherwise, we have 1 = |Y | < |X|.
Hence, by Condition (C), the mapping φ1 is not surjective. So we can choose
b2 ∈ B \(Y ∪{φ1(a) | a ∈ A\X}). With X = {x1, x2, . . . , xn}, we set (for a ∈ A)

φ′(a) =

{

φ1(a) if a ∈ A \X

b
|A|+i
1 b2b

|A|−i
1 b2 if a = xi

and φ′(a) = φ′(a) .

Then φ′ maps (A ∪ A)∗, A∗, and A
∗
injectively into (B ∪ B)∗, B∗, and B

∗
,

respectively.
We prove that φ′ induces an embedding φ : Q(A,X) →֒ Q(B, Y) by φ([u]) =

[φ′(u)].
First let u ≡X v with u, v ∈ (A∪A)∗ be any of the equations in Lemma 2.6.

In each of the four cases, one obtains φ′(u) ≡Y φ′(v). Consequently, u ≡X v
implies φ′(u) ≡Y φ′(v) for any u, v ∈ (A ∪ A)∗ by Proposition 2.7. Hence φ is
welldefined.

To prove its injectivity, let u, v ∈ (A ∪A)∗ with φ′(u) ≡Y φ′(v).
Set nfX(u) = u1〈〈u2, u3〉〉 and similarly nfX(v) = v1〈〈v2, v3〉〉. The crucial part

of the proof demonstrates that φ′ commutes with the shuffle operation, more

precisely, φ′(〈〈u2, u3〉〉) ≡Y 〈〈φ′(u2), φ′(u3)〉〉 and similarly for v.
Since φ′ is a homomorphism, we then get

φ′(u1)〈〈φ′(u2), φ′(u3)〉〉 ≡Y φ′(u1 〈〈u2, u3〉〉) ≡Y φ′(u)

and similarly φ′(v) ≡Y φ′(v1)〈〈φ′(v2), φ′(v3)〉〉.
Thus the words φ′(u1)〈〈φ′(u2), φ′(u3)〉〉 and φ′(v1)〈〈φ′(v2), φ′(v3)〉〉 in normal

form are equivalent and therefore equal. Hence we get

φ′(u1) = φ′(v1) , φ′(u2) = φ′(v2) and φ′(u3) = φ′(v3) .

Since φ′ : (A ∪ A)∗ → (B ∪ B)∗ is injective, this implies u1 = v1, u2 = v2,
and u3 = v3 and therefore u ≡X nf(u) = nf(v) ≡X v. Thus, indeed, φ is an
embedding of Q(A,X) into Q(B, Y). ⊓⊔

4.3 Necessity in Theorem 4.1

Now we have to prove the other implication of the equivalence in Theorem 4.1.
Recall the embedding φ we constructed in the proof of Proposition 4.2. In par-
ticular, it has the following properties:

(1) If a ∈ A, then φ(a) ∈ [B+] and φ(a) = φ(a). In particular, the image of every
write operation a performs write operations, only, and the image of every
read operation a is the “overlined version of the image of the corresponding
read operation” and therefore performs read operations, only.

(2) If a ∈ A \ X, then φ(a) ∈ B \ Y . In particular, the image of every write
operation of a forgettable letter writes only forgettable letters.

(3) If x ∈ X, then φ(x) ∈ [B∗Y B∗]. In particular, the image of every write
operation of a non-forgettable letter writes at least one non-forgettable letter.

The proof of the necessity in Theorem 4.1 first shows that any embedding satisfies
slightly weaker properties. We start with our weakenings of properties (1) and
(2). The first statement of the following lemma is a weakening of (1) since it
only says something about the letters in φ(a) and φ(a) but not that these two
elements are dual. Similarly the second statement is a weakening of (2) since it
does not say anything about the length of φ(a) but only something about the
letters occurring in φ(a).

Lemma 4.3. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B, and φ an
embedding of Q(A,X) into Q(B, Y). Then the following holds:

(i) φ(a) ∈ [B+] and φ(a) ∈ [B
+
] for each a ∈ A.

(ii) φ(a) ∈ [(B \ Y)∗] for each a ∈ A \X.

Proof. To prove (i), let a ∈ A and suppose φ(a) /∈ [B∗]. One first shows that

φ(a) performs at least one write operation, i.e., φ(a) /∈ [B
∗
]. Let p, q ∈ B+ be

the primitive roots of the nonempty words π(φ(a)) and π(φ(a)), respectively.
Since |A| ≥ 2, there exist distinct letters a1, a2 ∈ A. A crucial property

of φ is that then π(φ(ai)) ∈ p∗ and π(φ(ai)) ∈ q∗. Consequently, π(φ(a1 a2)) =
π(φ(a1))π(φ(a2)) = π(φ(a2))π(φ(a1)) = π(φ(a2 a1)) (the equality π(φ(a1 a2)) =
π(φ(a2 a1)) follows similarly). Since φ is an embedding, Theorem 3.4 implies the
existence of u ∈ (A ∪ A)∗ with ua1 a2u ≡X ua2 a1u. It follows that these two
words have the same sequence of read operations and therefore in particular
a1 a2 = a2 a1. But this implies a1 = a2 which contradicts our choice of these
two letters. Hence, indeed, φ(a) ∈ [B∗] which proves the first claim from (i), the
second follows similarly.

Statement (ii) is shown by contradiction. Let a ∈ A\X with φ(a) /∈ [(B\Y)∗].
Since |A| ≥ 2, there exists a distinct letter b ∈ A \ {a}. Using (i) and the
assumption on φ(a), one obtains φ(anbb) = φ(anbb) with n the length of φ(b).
Injectivity of φ and Proposition 2.7 lead to a contradiction. ⊓⊔

We next come to property (3) that we prove for every embedding.

Lemma 4.4. Let A,B be non-singleton alphabets, X ⊆ A, Y ⊆ B, and φ an
embedding of Q(A,X) into Q(B, Y). Then we have φ(x) ∈ [B∗Y B∗] for each
x ∈ X.

Proof. Let x ∈ X. Since |A| ≥ 2, there is a distinct letter a ∈ A \ {x}. By
Lemma 4.3, there are words u, v, w ∈ B+ with φ(a) = [u], φ(a) = [v] and
φ(x) = [w]. One then shows π2(wuv) = ε 6= π2(uv).

By Lemma 2.14, v′ = π2(uv) 6= ε is a suffix of v with v′ ≤X u′ for some prefix
u′ of u implying v′ � wu. Since π2(wuv) = ε, Lemma 2.14 implies πY (wu

′) 6=
πY (v

′) = πY (u
′), i.e., w contains some letter from Y . ⊓⊔

Finally we obtain the remaining implication in Theorem 4.1.

Proposition 4.5. Let A and B be non-singleton alphabets, X ⊆ A and Y ⊆ B
such that Q(A,X) →֒ Q(B, Y). Then the Conditions (A)-(C) from Theorem 4.1
hold.

Proof. First suppose X 6= ∅. Then, Y 6= ∅ by Lemma 4.4, i.e., we have (B).
Condition (A) is trivial if A\X = ∅. If A\X is a singleton, then Lemma 4.3(ii)

implies B \ Y 6= ∅ and therefore |A \X| ≤ |B \ Y |. So it remains to consider the
case that A \ X contains at least two elements. One then shows that the last
letters of the words π(φ(a)) for a ∈ A \X are mutually distinct.

To prove Condition (C), suppose Y = {y} and |A \X| = |B \ Y |. One then
proves |X| ≤ 1 by considering the last letters of π(φ(x)) for x ∈ X. ⊓⊔

5 Embeddings of Trace Monoids

Corollary 5.4 from [9] implies that all reliable queue monoids Q(A,A) for |A| ≥ 2
have the same class of submonoids. Our Theorem 4.1 shows that this is not the
case for all plq monoids Q(A,X) (e.g., Q(A,A) does not embed into Q(A, ∅)
and vice versa). This final section demonstrates a surprising similarity among
all these monoids, namely the trace monoids contained in them.

These trace (or free partially commutative) monoids are used for modeling
concurrent systems where the concurrency is governed by the use of joint re-
sources (cf. [14]). Formally such a system is a so called independence alphabet,
i.e., a tuple (Γ, I) of a non-empty finite set Γ and a symmetric, irreflexive re-
lation I ⊆ Γ 2, i.e., (Γ, I) can be thought of as an undirected graph. Given an
independence alphabet (Γ, I), we define the relation ≡I ⊆ (Γ ∗)2 as the least
congruence satisfying ab ≡I ba for each (a, b) ∈ I. The induced trace monoid is
M(Γ, I) := Γ ∗/≡I

. See [14,5,6] for further information on trace monoids.

5.1 Large alphabets

Theorem 2.7 from [12] describes when the trace monoid M(Γ, I) embeds into the
queue monoid Q(A,A) for |A| ≥ 2. The following theorem shows that this is the
case if, and only if, it embeds into Q(A,X) provided |A|+ |X| ≥ 3.

Theorem 5.1. Let A be an alphabet and X ⊆ A with |A|+|X| ≥ 3. Furthermore
let (Γ, I) be an independence alphabet. Then the following are equivalent:

(A) M(Γ, I) embeds into Q(A,X).
(B) M(Γ, I) embeds into Q(A,A).
(C) M(Γ, I) embeds into {a, b}∗ × {c, d}∗.
(D) One of the following conditions holds:
(D.a) All nodes in (Γ, I) have degree ≤ 1.
(D.b) The only non-trivial connected component of (Γ, I) is complete bipartite.

Since X ⊆ A, the condition |A| + |X| ≥ 3 implies in particular |A| ≥ 2. Hence
the equivalence between (B), (C), and (D) follows from [12, Theorem 2.7].

For the implication “(C)⇒(A)”, one considers the two cases |A| ≥ 3 and |A| =
2, X 6= ∅ separately. In the first case, one chooses pairwise distinct a, b, c ∈ A
and sets φ(a, ε) = a, φ(b, ε) = b, φ(ε, c) = ac, and φ(ε, d) = bc. In the second
case, the embedding is similar to the one from [9, Proposition 8.3] (proving the
implication “(C)⇒(B)”).

The implication “(A)⇒(D)” is proved under the slightly more general as-
sumption |A| ≥ 2. It is, by far, more involved. We nevertheless only give an
overview here since it follows the proof of the implication “(A)⇒(D)” from [12]
rather closely:

Suppose φ embeds the trace monoid M(Γ, I) into the plq monoid Q(A,X)
with |A| ≥ 2. This defines a partition of the independence alphabet into the

sets Γ+ := {α ∈ Γ |φ(α) ∈ [A+]}, Γ− := {α ∈ Γ |φ(α) ∈ [A
+
]}, and Γ± :=

Γ \ (Γ+ ∪ Γ−). The crucial steps are then to verify the following properties:

(i) (Γ+ ∪ Γ−, I) is complete bipartite with the partitions Γ+ and Γ−.
(ii) Let a ∈ Γ+ ∪ Γ− and b, c ∈ Γ with (b, c) ∈ I. Then (a, b) ∈ I or (a, c) ∈ I.
(iii) Let a ∈ Γ±. Then a has degree ≤ 1 in the undirected graph (Γ, I).
(iv) (Γ, I) is P4-free, i.e., the path on four vertices is no induced subgraph.

The proof of [12, Theorem 4.14] shows that any graph (Γ+ ⊎ Γ− ⊎ Γ±, I)
satisfying these graph theoretic properties also satisfies (D.a) or (D.b).

5.2 The binary alphabet

In Theorem 5.1 we have only considered partially lossy queues with |A| > 2 or
|X| 6= 0. For a complete picture, it remains to consider the case |A| = 2 and
|X| = 0. The following theorem implies in particular that Q({α, β}, ∅) does not
contain the direct product of two free monoids, i.e., it contains properly less
trace monoids than Q(A,X) with |A|+ |X| ≥ 3.

Theorem 5.2. Let A be an alphabet with |A| = 2 and (Γ, I) be an independence
alphabet. Then the following are equivalent:

(A) M(Γ, I) embeds into Q(A, ∅).
(B) One of the following conditions holds:
(B.1) All nodes in (Γ, I) have degree ≤ 1.
(B.2) The only non-trivial connected component of (Γ, I) is a star graph.

For the proof of the implication “(B)⇒(A)”, one provides the embeddings as
follows (with A = {α, β}):

(B.1) It suffices to consider the case that (Γ, I) is the disjoint union of the edges
(ai, bi) for 1 ≤ i ≤ n. Then we define wi = αiβ for 1 ≤ i ≤ n and the
embedding φ is given by φ(ai) = [wiwi] and φ(bi) = [wi wiwi].

(B.2) Let c be the center of the star graph, si for 1 ≤ i ≤ m its neighbors, and ri
for 1 ≤ i ≤ n the isolated nodes of (Γ, I). Then the embedding φ is given by
φ(c) = [α], φ(si) = [wi] and φ(rj) = [wjββ].

Note that these embeddings map letters to sequences containing both, read and
write operations.

For the more involved implication “(A)⇒(B)”, suppose Γ has a node of
degree ≥ 2 and, towards a contradiction, (B) does not hold. Since we proved
the implication “(A)⇒(D)” in Theorem 5.1 under the assumption |A| ≥ 2, we
obtain that (Γ, I) has a single nontrivial connected component C ⊆ Γ+ ∪ Γ−.
Furthermore, there are a, b ∈ Γ+ distinct and c ∈ Γ− such that (a, c), (c, b) ∈ I.
Using Lemma 2.14, one arrives at ab ≡I ba which contradicts a 6= b.

References

1. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In-

formation and Computation, 127(2):91–101, 1996.
2. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of

the ACM, 30(2), 1983.
3. G. Cécé, A. Finkel, and S. Purushotaman Iyer. Unreliable channels are easier to

verify than perfect channels. Information and Computation, 124(1):20–31, 1996.
4. P. Chambart and P. Schnoebelen. The ordinal recursive complexity of lossy channel

systems. In LICS’08, pages 205–216. IEEE Computer Society Press, 2008.
5. V. Diekert. Combinatorics on traces, volume 454. Springer Science & Business

Media, 1990.
6. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.
7. A. Finkel. Decidability of the termination problem for completely specified proto-

cols. Distributed Computing, 7(3):129–135, 1994.
8. C. Haase, S. Schmitz, and P. Schnoebelen. The power of priority channel systems.

Logical Methods in Computer Science, 10(4:4), 2014.
9. M. Huschenbett, D. Kuske, and G. Zetzsche. The monoid of queue actions. Semi-

group forum, 2017. To appear.
10. M. Kambites. Formal languages and groups as memory. Communications in Al-

gebra, 37(1):193–208, 2009.
11. C. Köcher. Einbettungen in das Transformationsmonoid einer vergesslichen

Warteschlange. Master’s thesis, TU Ilmenau, 2016.
12. D. Kuske and O. Prianychnykova. The trace monoids in the queue monoid and in

the direct product of two free monoids. arXiv preprint arXiv:1603.07217, 2016.
13. B. Masson and P. Schnoebelen. On verifying fair lossy channel systems. In

MFCS’02, Lecture Notes in Comp. Science vol. 2420, pages 543–555. Springer,
2002.

14. A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI

Report Series, 6(78), 1977.
15. A. Muscholl and H. Petersen. A note on the commutative closure of star-free

languages. Inf. Process. Lett., 57(2):71–74, 1996.

	The transformation monoid of a partially lossy queue

