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Abstract

We prove that the isomorphism of scattered tree-automatic linear orders as well as the
existence of automorphisms of scattered word-automatic linear orders are undecidable.
For the existence of automatic automorphisms of word- or tree-automatic linear orders,
we determine the exact level of undecidability in the arithmetical hierarchy.

1. Introduction

Automatic structures form a class of computable structures with much better algo-
rithmic properties: while, due to Rice’s theorem, nothing is decidable about a computable
structure (given as a tuple of Turing machines), validity of first-order sentences is de-
cidable in automatic structures (given as a tuple of finite automata). This property of
automatic structures was first observed and exploited in concrete settings by Büchi, by
Elgot [11], and by Epstein et al. [12]. Hodgson [14] attempted a uniform treatment, but
the systematic study really started with the work by Khoussainov and Nerode [19] and
by Blumensath and Grädel [3, 4]. Over the last decade, a fair amount of results have
been obtained, see e.g. the surveys [33, 2] as well as the list of open questions [20], for
very recent results not covered by the mentioned articles, see e.g. [18, 5, 10, 16, 15, 17].

A rather basic question about two automatic structures asks whether they are iso-
morphic. For word-automatic ordinals and Boolean algebras, this problem was shown
to be decidable via a characterisation of the word-automatic members of these classes of
structures [8, 22, 21]. The same applies to many classes of unary automatic structures
(i.e., structures over a unary alphabet) [26]. On the other hand, already Blumensath and
Grädel [4] observed that this problem is undecidable in general. In [21], it is shown that
the isomorphism problem is Σ1

1-complete; a direct interpretation yields the same result
for many natural classes of automatic structures [31]. Rubin [32] shows that the isomor-
phism problem for locally finite graphs is complete for Π0

3. Recently, Miasknikov and
Šunić proved that the isomomorphism of Cayley automatic groups is undecidable [29].
In [25], we show in particular that also the isomorphism problems of order trees and
of linear orders are Σ1

1-complete. For the handling of linear orders, our arguments rely
heavily on “shuffle sums”. Consequently, we construct linear orders that contain a copy
of the rational line (a linear order not containing the rational line is called scattered,
i.e., our result is shown for non-scattered linear orders). This is unavoidable since we
also show that the isomorphism problem for word-automatic scattered linear orders is
reducible to true arithmetic (i.e., the first-order theory of (N; +, ·)) and therefore much
“simpler” than the isomorphism problem for arbitrary linear orders (cf. [17] for further
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evidence that scattered automatic linear orders behave better than general automatic
linear orders). But it is still conceivable that the isomorphism problem for scattered
linear orders is decidable.

In this paper, we deal with automatic scattered linear orders. In particular, we prove
the following three results:

(1) There is a scattered linear order whose set of tree-automatic presentations is Π0
1-hard

(Theorem 4.11). Hence also the isomorphism problem for tree-automatic scattered
linear orders is Π0

1-hard (Corollary 4.12).

(2) The existence of a non-trivial automorphism of a word-automatic scattered linear
order is Σ0

1-hard (Theorem 3.4). The existence of an automatic non-trivial automor-
phism is Σ0

1-complete.

For regular languages ordered lexicographically, the existence of a non-trivial auto-
morphism is known to be decidable in polynomial time (provided the regular language
is given by a deterministic finite automaton, [27]), but we show it to be undecidable
for contextfree languages (Theorem 3.7).

(3) The existence of a non-trivial automorphism of a tree-automatic scattered linear
order is Σ0

2-hard (Theorem 4.17).

The proof of (2) uses, similarly to [25], an encoding of polynomials but avoids the use
of shuffle sums. The technique for proving (1) and (3) is genuinely new: One can un-
derstand a weighted automaton over the semiring (N ∪ {−∞}; max,+) as a classical
automaton with a partition of the set of transitions into two sets T0 and T1. The be-
havior of such a weighted automaton assigns numbers to words w, namely the maximal
number of transitions from T1 in an accepting run on the word w. Krob [23] showed that
the equivalence problem for such weighted automata is Π0

1-complete. This result was
sharpened in [9] where it is shown that there is a single weighted automaton A such that
the set of weighted automata equivalent to A is Π0

1-complete. Based on ideas from [1],
Section 4.1.3 contains a simplified proof of this sharpened result and a new sharpen-
ing, namely the existence of two fixed weighted automata such that it is undecidable
whether they behave the same on a given regular language. A closer analysis of this
proof, together with the techniques for proving (1) and (2), finally yields (3).

These results show that the existence of isomorphisms and of automorphisms is non-
trivial for scattered linear orders that are described by word- and tree-automata, resp.

2. Preliminaries

2.1. Tree- and word-automatic structures
Let Γ be some alphabet. A Γ-tree or just a tree is a finite partial mapping t : {0, 1}∗ 99K

Γ such that uv ∈ dom(t) implies u ∈ dom(t), and u1 ∈ dom(t) implies u0 ∈ dom(t) (note
that we allow the empty tree ∅ with dom(∅) = ∅). A (bottom up) tree-automaton is a tuple
A = (Q, ι,∆, F ) where Q is a finite set of states, ι is the initial state, ∆ ⊆ Q×Γ×Q2 is the
transition relation, and F ⊆ Q is the set of final states. A run of the tree-automaton A
on the tree t is a mapping ρ : dom(t) → Q such that

(ρ(u), t(u), ρ′(u0), ρ′(u1)) ∈ ∆ with ρ′(v) =

{

ρ(v) for v ∈ dom(t)

ι otherwise
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holds for all u ∈ dom(t). The run ρ is accepting if ρ(ε) ∈ F . The language of the tree-
automaton A is the set L(A) of all trees t that admit an accepting run of A on t. A set L
of trees is regular if there exists a tree-automaton A with L(A) = L.

It is convenient to understand a word as a tree t with dom(t) ⊆ 0∗ (then t(ε) is the
first letter of the word). Nevertheless, we will use standard notation for words like uv
for the concatenation or ε for the empty word. A word-automaton is a tree-automaton
A = (Q, ι,∆, F ) with

(q, a, p0, p1) ∈ ∆ =⇒ p1 = ι and q 6= ι .

This condition ensures that word-automata accept words, only.
Let t1, . . . , tn be trees and let # /∈ Γ. Then Γ# = Γ ∪ {#} and the convolution

⊗(t1, t2, . . . , tn) or t1 ⊗ t2 ⊗ · · · ⊗ tn is the Γn
#-tree t with dom(t) =

⋃

1≤i≤n dom(t) and

t(u) = (t′1(u), t
′
2(u), . . . , t

′
n(u)) with t′i(u) =

{

ti(u) if u ∈ dom(ti)

# otherwise.

Note that the convolution of a tuple of words is a word, again. For an n-ary rela-
tion R on the set of all trees, we write R⊗ for the set of convolutions ⊗(t1, . . . , tn) with
(t1, . . . , tn) ∈ R. A relation R on trees is automatic if R⊗ is a regular tree-language.

A relational structure S = (L;R1, . . . , Rk) is tree-automatic if the tree-languages L
and R⊗

i for 1 ≤ i ≤ k are regular; it is word-automatic if, in addition, L is a word-
language. A tuple of tree-automata accepting L and R⊗

i for 1 ≤ i ≤ k is called a tree-
or word-automatic presentation of the structure S.

2.2. Linear orders

For words u and v, we write u ≤pref v if u is a prefix of v. Let Γ be some set linearly
ordered by ≤. Then ≤lex denotes the lexicographic order on the set of words Γ∗: u ≤lex v
if u ≤pref v or there are x, y, z ∈ Γ∗, a, b ∈ Γ with u = xay, v = xbz, and a < b. From
the lexicographic order on Γ∗, we derive a linear order (denoted ≤2

lex) on the set Γ∗ ⊗Γ∗

of convolutions of words by

u⊗ v ≤2
lex u′ ⊗ v′ :⇔ u <lex u′ or u = u′, v ≤lex v′ .

By ≤llex, we denote the length-lexicographic order defined by u ≤llex v if |u| < |v| or
|u| = |v| and u ≤lex v. We next extend this linear order ≤llex to trees. Let t be a tree.
Then t↾0∗ (more precisely, t↾(0∗∩dom(t))) is a word that can be understood as the “main
branch” of the tree t. For u ∈ {0, 1}∗, let t|u denote the subtree of t rooted at u (i.e.,
dom(t|u) = {v | uv ∈ dom(t)} and t|u(v) = t(uv) for u ∈ dom(t|u). In particular, t|u = ∅
for u /∈ dom(t)). Furthermore, τ(t) is the tuple of “side trees” of t, namely

τ(t) = (t|0i1)0i∈dom(t) .

We now define the extension ≤trees of ≤llex to trees setting s <trees t if and only if

• s↾0∗ <llex t↾0∗ or

• s↾0∗ = t↾0∗ and there exists i such that s|0j1 = t|0j1 for all 0 ≤ j < i and s|0i1 <trees

t|0i1.
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In other words, we first compare the main branches of the trees s and t length-lexico-
graphically and, if they are equal, compare the tuples τ(s) and τ(t) (length-)lexicographi-
cally (based on the extension ≤trees of the length-lexicographic order to trees). Since the
“side trees” t|0j1 of any tree t are properly smaller than the tree itself, the relation ≤trees

is well-defined. Note that all the order relations ≤pref , ≤lex, ≤
2
lex, ≤llex, and ≤trees are

automatic.

Let L = (D, ;≤) be a linear order. A nonempty set I ⊆ D is an interval if x, z ∈ I
and x < y < z imply y ∈ I for all x, y, z ∈ D. The linear order L is scattered if there
is no embedding of the rational line (Q;≤) into L. Examples of scattered linear orders
are the linear order of the non-negative integers ω, of the non-positive integers ω∗, of all
integers ζ, or the linear order of size n ∈ N that we denote n.1 If Γ is an alphabet with
at least 2 letters, then (Γ∗;≤llex) ∼= ω is scattered, too. On the other hand, if a, b ∈ Γ
are distinct letters, then ({aa, bb}∗ab;≤lex) ∼= (Q;≤). Hence (Γ∗;≤lex) is not scattered.
From [22, Prop. 4.10], we know that the set of word-automatic presentations of scattered
linear orders is decidable.

A linear order L = (L;≤) is rigid if it does not admit any non-trivial automorphism,
i.e., if the identity mapping f : L → L : x 7→ x is the only automorphism of L. The linear
orders ω, ω∗, and n for n ∈ N are all rigid. On the other hand, (Q;≤) as well as ζ are
not rigid.

Note that automorphisms of tree-automatic linear orders are binary relations on the
set of all trees. Hence it makes sense to speak of an automatic automorphism. A tree-
automatic structure is automatically rigid if it does not have any non-trivial automatic
automorphism.

Let I = (I;≤) be a linear order and, for i ∈ I, let Li = (Li;≤i) be a linear order.
Then the I-sum2 of these linear orders is defined by

∑

i∈(I;≤)

Li =









⊎

i∈I

Li;
⋃

i∈I

≤i ∪
⋃

i,j∈I
i<j

(Li × Lj)









.

For
∑

i∈2 Li, we simply write L1 + L2. If, for all i ∈ I, Li = L, then we write L · I for
∑

i∈(I;≤) Li. Note that L · I is obtained by replacing every element of I by a copy of L.
As an example, consider the linear order δ = ω · ω∗. This linear order will be used as
“delimiter” in our constructions. It is isomorphic to (N× N;≤δ) with

(i, j) ≤δ (k, ℓ) :⇔ j > ℓ or j = ℓ and i ≤ k .

Hence it forms a descending chain of ascending chains. Therefore, it has no minimal and
no maximal element, is rigid and scattered. Note that the mapping (i, j) 7→ 10j+11i+10
is an isomorphism from (N×N;≤δ) onto (10+1+0;≤lex) where we assume 0 < 1. Hence
δ ∼= (10+1+0;≤lex).

1In this paper, I prefer this non-standard notation over the standard notation n since it makes it
more convenient to denote the linear order of size f(n) where f : N → N is some function.

2Shuffle sums mentioned in the introduction are special cases of this construction where I = (Q;≤)
is the rational line and, for every q ∈ Q, the set {r ∈ Q | Lq

∼= Lr} is a dense subset of (Q,≤).
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t0,2

t1,2

Figure 1: The trees t0,4 (at the left) and t2,2 (at the right) from D

Also for later use, we next define a regular set D = {ti,j | i, j ≥ 0} of trees such that
δ ∼= (D;≤trees). The alphabet of these trees will be the singleton {$} so that a tree is
completely given by its domain. Then set inductively

dom(t0,j) = {ε, 0, 00} ∪ 1{0k | 0 ≤ k ≤ j} and

dom(ti+1,j) = {ε, 0, 00} ∪ 01 dom(ti,j)

The trees t0,4 and t2,2 are depicted in Figure 1 (left-arrows denote 0-sons, right-arrows
denote 1-sons), the trees t1,2 and t0,2 occur as subtrees of t2,2 according to the inductive
definition of t2,2. The tuple of “side trees” τ(ti,j) has the following form

τ(t0,j) = (tj , ∅, ∅) with dom(tj) = {0k | 0 ≤ k ≤ j} and τ(ti+1,j) = (∅, ti,j , ∅) .

Note that all trees ti,j coincide on their main branch, i.e., ti,j↾0∗ = tk,ℓ↾0∗ . Hence
ti,j ≤trees tk,ℓ if and only if τ(ti,j) is lexicographically smaller than τ(tk,ℓ). But this is
the case if and only if

• 0 = k < i or

• 0 = i = k and j ≤ ℓ or

• 0 < i, k and ti−1,j ≤trees tk−1,ℓ.

By induction, this is equivalent to i > k or i = k, j ≤ ℓ. Hence, indeed, (D;≤trees) ∼= δ.

3. Automorphisms of linear orders on words

In this section, we consider linear orders on sets of words. Namely, we consider regular
universes with the linear order ≤2

lex and contextfree universes ordered lexicographically.
In both cases, we prove that the existence of a nontrivial automorphism for scattered
linear orders of the respective form is Π0

1-hard.
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3.1. Regular universe and ≤2
lex

Let p, q ∈ N[x̄] be two polynomials with coefficients in N and variables among x̄ =
(x1, . . . , xk). In the following, we identify the polynomial p with its polynomial function
p : Nk → N. Then define the linear order

Lp,q =
∑

x̄∈(Nk;≤lex)

(

(p(x̄) + δ) · ω∗ + (q(x̄) + δ) · ω)
)

.

The linear order Lp,q is scattered since δ, ω, ω∗, and (Nk;≤lex) are all scattered.

Lemma 3.1. Let p, q ∈ N[x̄]. Then Lp,q is rigid if and only if p(x̄) 6= q(x̄) for all x̄ ∈ Nk.

Proof. Suppose there is x̄ ∈ Nk such that p(x̄) = q(x̄) = n. Then Lp,q contains an
interval of the form

(n+ δ) · ω∗ + (n+ δ) · ω = (n+ δ) · ζ .

Since ζ has a nontrivial automorphism, so does this interval and therefore Lp,q. This
proves the implication “⇒”.

Now suppose f is a nontrivial automorphism of Lp,q. Let L
′ denote the set of maximal

finite intervals of Lp,q with the order inherited from Lp,q. Since δ has no maximal finite
intervals, we get

L′ ∼=
∑

x̄∈(Nk;≤lex)

(ω∗ + ω) ∼= ζ · ω .

Then f induces an automorphism f ′ of L′. Recall that δ = ω · ω∗ is rigid. Since f is
nontrivial, we get that f ′ is nontrivial. Since ω∗ + ω = ζ has no endpoints and since ω
is rigid, f ′ has to map every copy of ζ in L′ onto itself. Since f ′ is nontrivial, there is
x̄ ∈ Nk such that f ′ acts nontrivially on the corresponding copy of ζ. Since f ′ is induced
by f , the automorphism f therefore acts nontrivially on

(p(x̄) + δ) · ω∗ + (q(x̄) + δ) · ω .

Since f maps maximal finite intervals onto maximal finite intervals, we get p(x̄) = q(x̄).
2

We now prove that Lp,q is word-automatic or, more specifically, we will construct a
regular set L ⊆ {0, 1}+ ⊗ {0, 1}+ such that Lp,q

∼= (L;≤2
lex) (see Lemma 3.3 below).

Let A = (Q, ι,∆, F ) be a word-automaton over the alphabet Γ and let w ∈ Γ+ be a
word. Then Run(A, w) is the set of all words over ∆ of the form

(q0, a1, q1, ι)(q1, a2, q2, ι) . . . (qk−1, ak, ι, ι)

with w = a1a2 . . . ak and q0 ∈ F . These words encode the accepting runs of the word-
automaton A (recall that word-automata are special bottom up tree-automata which
explains the unusual position of the initial and final states in the run). Furthermore, let
Run(A) =

⋃

w∈Γ+ Run(A, w).

Lemma 3.2. From polynomials p, q ∈ N[x1, . . . , xk], one can construct an ordered al-
phabet (Γ;≤) and a regular language K ⊆ Γ+ ⊗ Γ+ such that (K;≤2

lex)
∼= Lp,q.

If Lp,q has a non-trivial automorphism, (K;≤2
lex) has a non-trivial automatic auto-

morphism.
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Proof. Let p and q be polynomials from N[x1, . . . , xk]. For x̄ = (x1, . . . , xk) ∈ Nk, set

ax̄ = ax1¢ax2¢ · · · ¢axk¢ ∈ (a∗¢)k .

Then, as in [25, Lemma 7], one can construct word-automata Ap = (Qp, ιp,∆p, Fp) and
Aq = (Qq, ιq,∆q, Fq) with L(Ap), L(Aq) ⊆ (a∗¢)k, such that, for x̄ ∈ Nk, the word-
automaton Ap has precisely p(x̄) many accepting runs on the word ax̄. In other words,
|Run(Ap, a

x̄)| = p(x̄) and |Run(Aq, a
x̄)| = q(x̄). We will assume ∆p ∩∆q = ∅.

Define the language K by

K =
⋃

x̄∈Nk

ax̄0+1⊗ (Run(Ap, a
x̄) ∪ 32+3+2)

∪
⋃

x̄∈Nk

ax̄1+0⊗ (Run(Aq, a
x̄) ∪ 32+3+2) .

Hence any word from K is the convolution of two words over the alphabet

Γ = {a, ¢, 0, 1, 2, 3} ∪∆p ∪∆q .

We have to show that the language K is effectively regular. We have

K =
⋃

x̄∈Nk

(

ax̄0+1⊗ Run(Ap, a
x̄)
)

∪





⋃

x̄∈Nk

ax̄0+1



⊗ 32+3+2

∪
⋃

x̄∈Nk

(

ax̄1+0⊗ Run(Aq, a
x̄)
)

∪





⋃

x̄∈Nk

ax̄1+0



⊗ 23+2+3

Note that the convolution of the direct product L1×L2 of two regular languages is always
regular. Hence, the crucial point here is the regularity of the set

⋃

x̄∈Nk

ax̄0+1⊗ Run(Ap, a
x̄) .

Note that for any words w = ax̄ and W ∈ Run(Ap, w), we have |w| = |W |. Therefore,
the set in question equals





⋃

x̄∈Nk

ax̄ ⊗ Run(Ap, a
x̄)



 ·
(

0+1⊗ {ε}
)

.

But a word belongs to the language in square brackets if and only if it is the convolution
of a word w from the regular language (a∗¢)k and a run of the automaton Ap on this
word w, a property that a word-automaton can check easily.

On the alphabet Γ, we now fix a linear order ≤ such that

∆p ∪∆q < 0 < 1 < 2 < 3 < ¢ < a .

The associated order ≤2
lex on the language K can now be characterized as follows:

ax̄bm(1− b)⊗ r ≤2
lex aȳcn(1− c)⊗ s

(with b, c ∈ {0, 1}, x̄, ȳ ∈ Nk, and m,n > 0) if and only if
7



(i) b = 0, c = 1 and x̄ ≤lex ȳ, or

(ii) b = 1, c = 0 and x̄ <lex ȳ, or

(iii) b = c and

(iii.1) x̄ <lex ȳ, or

(iii.2) x̄ = ȳ, b = 0, and m > n, or

(iii.3) x̄ = ȳ, b = 1, and m < n, or

(iii.4) x̄ = ȳ, m = n, and

(iii.4.1) r ∈ Run(Ap) ∪ Run(Aq) and s ∈ 32+3+2, or

(iii.4.2) r, s ∈ Run(Ap) ∪ Run(Aq) and r ≤lex s, or

(iii.4.3) r, s ∈ 32+3+2 and r ≤lex s.

We show (K;≤2
lex)

∼= Lp,q. For x̄ ∈ Nk and m ≥ 1, let Ix̄,0m1 denote the restriction
of (K;≤2

lex) to the set ax̄0m1 ⊗ (Run(Ap, a
x̄) ∪ 32+3+2) ⊆ K. By (iii.4.1), Ix̄,0m1 is

isomorphic to the sum of the restrictions of (K;≤2
lex) to the sets ax̄0m1 ⊗ Run(Ap, a

x̄)
and ax̄0m1⊗ 32+3+2, respectively. By (iii.4.2) and the choice of the automaton Ap, the
first restriction is isomorphic to p(x̄). Recall that (32+3+2;≤lex) ∼= δ. Hence, the second
restriction is isomorphic to δ by (iii.4.3). In summary,

Ix̄,0m1
∼= p(x̄) + δ .

Next, for x̄ ∈ Nk, let Ix̄,0+1 denote the restriction of (K;≤2
lex) to the set ax̄0+1 ⊗

(Run(Ap, a
x̄) ∪ 32+3+2). Note that, by (iii.2), we have

Ix̄,0m+11 <2
lex Ix̄,0m1

for all m ≥ 1. Hence

Ix̄,0+1 =
∑

m≤−1

Ix̄,0−m1
∼= (p(x̄) + δ) · ω∗ .

With Ix̄,1+0 the restriction of (K;≤2
lex) to the set ax̄1+0⊗ (Run(Aq, a

x̄) ∪ 32+3+2),
we obtain similarly

Ix̄,1+0 =
∑

m≥1

Ix̄,1m0
∼= (q(x̄) + δ) · ω

(the reason for the factor ω instead of ω∗ above is the difference between (iii.2) and
(iii.3)).

Finally, for x̄ ∈ Nk, let Ix̄ denote the restriction of (K;≤2
lex) to the set

[

ax̄0+1⊗ (Run(Ap, a
x̄) ∪ 32+3+2)

]

∪

[

ax̄1+0⊗ (Run(Aq, a
x̄) ∪ 32+3+2)

]

.

Then (i) with x̄ = ȳ and the above imply

Ix̄ = Ix̄,0+1 + Ix̄,1+0
∼= (p(x̄) + δ) · ω∗ + (q(x̄) + δ) · ω .

8



Together with (i), (ii), and (iii.1), this ensures

(K;≤2
lex) =

∑

x̄∈(Nk;≤lex)

Ix̄ ∼= Lp,q .

This finishes the proof of the first claim.
Now suppose that Lp,q has a non-trivial automorphism. By Lemma 3.1, there is

ȳ ∈ Nk such that p(ȳ) = q(ȳ). From the construction of the automata Ap and Aq, we
infer |Run(Ap, a

ȳ)| = |Run(Aq, a
ȳ)|. Let

Run(Ap, a
ȳ) = {ρ1, . . . , ρn} and Run(Aq, a

ȳ) = {σ1, . . . , σn}

with
ρ1 <lex ρ2 <lex · · · <lex ρn and σ1 <lex σ2 <lex · · · <lex σn .

Now define a mapping f : K → K by

f(ax̄bm(1− b)⊗ r) =































ax̄bm(1− b)⊗ r if x̄ 6= ȳ

aȳbm−1(1− b)⊗ r if x̄ = ȳ, b = 0,m > 1

aȳ10⊗ r if x̄ = ȳ, b = 0,m = 1, r ∈ 32+3+2

aȳ10⊗ σi if x̄ = ȳ, b = 0,m = 1, r = ρi

aȳbm+1(1− b)⊗ r if x̄ = ȳ, b = 1

This mapping fixes all elements of K not belonging to Iȳ. On this linear order Iȳ, it acts
as an increasing automorphism. Hence f is a non-trivial automorphism of (K;≤2

llex). It
is not hard to verify that f⊗ is regular. 2

Lemma 3.3. From polynomials p, q ∈ N[x1, . . . , xk], one can construct a regular lan-
guage L ⊆ {0, 1}+ ⊗ {0, 1}+ such that (L;≤2

lex)
∼= Lp,q.

If Lp,q has a non-trivial automorphism, then it has a non-trivial automatic automor-
phism.

Proof. Let p, q ∈ N[x1, . . . , xk] be polynomials, let K and (Γ;≤) be the language and
the ordered alphabet from Lemma 3.2. Furthermore, let (Γ;≤) be the sequence

σ1 < σ2 < · · · < σℓ .

Let g denote the monoid homomorphism from Γ∗ to {0, 1}∗ defined by g(σi) = 1i0ℓ−i

for 1 ≤ i ≤ ℓ. Now set L = {g(u) ⊗ g(v) | u ⊗ v ∈ K}. Then g is an isomorphism from
(K;≤2

lex) onto (L;≤2
lex). Since all the words g(σi) have the same length, the language L

is also regular.
If Lp,q has a non-trivial automorphism, then, by Lemma 3.2, there is a non-trivial

automorphism f of (K;≤2
llex) such that f⊗ is regular. Hence g = h−1 ◦ f ◦ h is a non-

trivial automorphism of (L;≤2
llex). Note that h⊗ is regular. It follows that also g⊗ is

regular. 2

Theorem 3.4. (i) The set of regular languages L ⊆ {0, 1}+⊗{0, 1}+ such that (L;≤2
lex)

is rigid (is rigid and scattered, respectively), is Π0
1-hard.
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(ii) The set of regular languages L ⊆ {0, 1}+ ⊗ {0, 1}+ such that (L;≤2
lex) is automati-

cally rigid (automatically rigid and scattered, respectively) is Π0
1-hard.

Proof. (i) The set of pairs of polynomials p, q ∈ N[x̄] with p(ȳ) 6= q(ȳ) for all ȳ ∈ Nk

is Π0
1-complete [28]. We reduce this to the first set in question: Let p, q ∈ N[x̄] and

let L be the regular language from Lemma 3.3. Then (L;≤2
lex)

∼= Lp,q is rigid if
and only if p(ȳ) 6= q(ȳ) for all ȳ ∈ Nk by Lemma 3.1.

Note that this is even a reduction to the second set in question since the linear
order Lp,q is scattered.

(ii) By Lemma 3.3, Lp,q is rigid if and only if (L;≤2
llex) is automatically rigid. Hence

the above reduction also proves the two claims from (ii). 2

Corollary 3.5. (i) The set of word-automatic presentations of rigid (rigid and scat-
tered, respectively) linear orders is Π0

1-hard.

(ii) The set of word-automatic presentations of automatically rigid (automatically rigid
and scattered, respectively) linear orders is Π0

1-complete.

Proof. The two claims from (i) are obvious consequences of Theorem 3.4(i). Analo-
gously, the two hardness claims from (ii) follow immediately from Theorem 3.4(ii).

Now let (L;≤) be a word-automatic linear order given by a word-automatic presenta-
tion over the alphabet Γ. Let R ⊆ Γ+×Γ+. Then it can be expressed in first-order logic
that R is a non-trivial automorphism of (L;≤). Hence, given a word-automaton A for a
regular language R⊗ ⊆ Γ+⊗Γ+, one can decide whether R is a non-trivial automorphism
of (L;≤) [19]. Consequently, automatic rigidity of (L;≤) is a Π0

1-property.
2

3.2. Contextfree universe and ≤lex

Ésik initiated the investigation of linear orders of the form (L;≤lex) where L is con-
textfree. Density of such a linear order is undecidable [13], the isomorphism problem is
Σ1

1-complete [25], their rank is bounded by ωω [7], and there is a contextfree language L
such that the first-order theory of (L;≤lex) is undecidable [6]. Even more, there exist
one-counter languages L1 and L2 such that the Σ3-theory of (L1;≤lex) is undecidable
and the first-order theory of (L2;≤lex) is non-arithmetical [24].

We will show that rigidity of (L;≤lex) is undecidable for contextfree languages L. The
proof uses the linear order Lp,q and constructs a deterministic contextfree language L′

such that (L′;≤lex) ∼= Lp,q. This construction is a variant of the construction in the
proof of Lemma 3.2.

Lemma 3.6. From polynomials p, q ∈ N[x1, . . . , xk], one can construct a deterministic
contextfree language L′ ⊆ {0, 1}+ such that (L′;≤lex) ∼= Lp,q.

Proof. Let p, q ∈ N[x1, . . . , xk] be polynomials and let K and (Γ;≤) be the language
and the ordered alphabet from Lemma 3.2. Then set

K ′ = {u$vrev | u⊗ v ∈ K}

10



where vrev is the reversal of the word v. Then, from a deterministic finite automaton A
accepting Krev, one can construct a deterministic pushdown automaton accepting K ′

(reading u$v, it stores u in the stack and, after reading $, simulates A while emptying
the stack). Note that the alphabet of K ′ is

Γ′ = {$} ∪ Γ = {$, a, ¢, 0, 1, 2, 3} ∪∆p ∪∆q .

We order the alphabet Γ′ by ≤′ such that

∆p ∪∆q <′ 0 <′ 1 <′ 3 <′ 2 <′
¢ <′ a <′ $ .

Compared to the proof of Lemma 3.2, the order of 2 and 3 is inverted and $ is made the
new maximal element (we could have placed $ anywhere). With ≤ the order on Γ from
the proof of Lemma 3.2, one effect of this definition is

((32+3+2)rev;≤′
lex)

∼= (32+3+2;≤lex) ∼= δ

which will be used in the third item below.
To show (K ′;≤′

lex)
∼= Lp,q, is suffices to prove (K ′;≤′

lex)
∼= (K;≤2

lex). For this, recall
that (K;≤2

lex) is a sequence of the following blocks (for x̄ ∈ Nk and m ≥ 1):

• (ax̄0m1⊗ Run(Ap, a
x̄);≤2

lex): This linear order is finite of size |Run(Ap, a
x̄)|. The

same holds of the linear order

(ax̄0m1${rrev | r ∈ Run(Ap, a
x̄)};≤′

lex) .

• (ax̄1m0⊗ Run(Aq, a
x̄);≤2

lex): As above, this is isomorphic to

(ax̄1m0${rrev | r ∈ Run(Aq, a
x̄)};≤′

lex) .

• (ax̄bm(1− b)⊗32+3+2;≤2
lex) (for b ∈ {0, 1}) which is isomorphic to δ. But δ is also

isomorphic to
(ax̄bm(1− b)$23+2+3;≤′

lex) .

It therefore follows that (K;≤2
lex) and (K ′;≤′

lex) are isomorphic. The construction of
L′ ⊆ {0, 1}+ then follows the proof of Lemma 3.3. 2

Now we obtain, in the same way that we proved Theorem 3.4(i), the following result.

Theorem 3.7. The set of deterministic contextfree languages L ⊆ {0, 1}+ such that
(L;≤lex) is rigid (is rigid and scattered, respectively), is Π0

1-hard.

4. Isomorphisms and automorphisms of linear orders on trees

In this section, we will show that the isomorphism of scattered and tree-automatic
linear orders is undecidable. Furthermore, we will prove that the existence of a non-trivial
automorphism in this case is Σ0

2-hard. Both these results use (an improved version of) a
theorem by Krob [23] that we discuss first. Our discussion elaborates ideas from [1] where
Krob’s theorem is shown, but not our strengthenings Theorem 4.8 and Corollary 4.7.
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4.1. Weighted automata and two-counter machines

4.1.1. Definitions and examples

A weighted automaton is a tuple A = (Q,Γ, ι, µ, F ) where Q is the finite set of states,
Γ the alphabet, ι ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
µ : Q × Γ × Q → Z ∪ {−∞} is the weight function. If H ⊆ Z and the image of µ is
contained in H ∪ {−∞}, then we speak of an H-weighted automaton.

A run of A is a sequence ρ = (q0, a1, q1) . . . (qk−1, ak, qk) ∈ ∆+ with q0 = ι, qk ∈ F ,
and µ(qi−1, ai, qi) 6= −∞ for all 1 ≤ i ≤ k. Its label is the word a1 . . . ak ∈ Γ+. By
Run(A, w) we denote the set of runs labeled w and Run(A) denotes the set of all runs
of A. The weight wt(ρ) of the run ρ is the sum of the weights of the transitions, i.e.,

wt(ρ) =
∑

1≤i≤k

µ(qi−1, ai, qi) ∈ Z .

The behaviour ||A|| of A is the function from Γ+ to N∪ {−∞} that maps the word w to
the maximal weight of a run with label w and to −∞ if no such run exists.

Notation. In this section, we consider the following alphabets:

Γ0 = {+++1,+++2,−−−1,−−−2,01,02}

Γ1 = Γ0 ∪ {#}

Γ = Γ1 ∪ {2}

Furthermore, |u|a for u ∈ Γ∗ and a ∈ Γ denotes the number of occurrences of the letter a
in the word u.

Example 4.1. Consider the {−1, 0, 1}-weighted automaton A1 from Fig. 2.3 Let w ∈ Γ∗

be a word and consider any w-labeled run from the initial state ι to any of the final states ι
and f . Let u be the prefix of w that is read until the run leaves ι and let w = uv. Then
the weight of the run equals

|u|−−−1
− |u|+++1

.

Since the automaton can leave the state ι towards state f at any time, we get

||A1||(w) = max{|u|−−−1
− |u|+++1

| u ≤pref w} .

In the proof of Lemma 4.4, we will use that ||A1||(w) > 0 if and only if there exists a
prefix u of w with |u|−−−1

− |u|+++1
> 0, i.e., with |u|−−−1

> |u|+++1
.

Example 4.2. Let B1
1 be the first {−1, 0, 1}-weighted automaton of Fig. 3 and let B1

2 be
the second one. Note that B1

1 differs from A1 in two aspects, only: the initial state ι
is not final anymore and the label of the transition from ι to f changed from Γ1 to 01.
Then, similarly to the arguments in Example 4.1, we get

||B1
1||(w) = max{|u|−−−1

− |u|+++1
| u01 ≤pref w} .

3In this figure, the annotation a/1 at a transition denotes that it is labeled by the letter a and carries
weight 1, X/1 for X ⊆ Γ denotes that there are transitions for all the letters from X with weight 1.

12



ι

+++1/− 1

Γ1 \ {+++1,−−−1}/0

−−−1/1

f
Γ1/0

Γ1/0

Figure 2: The automaton A1 from Example 4.1

The difference between B1
1 and B1

2 is the weight of the loops labeled +++1 and −−−1 at the
state ι: these weights are exchanged. Hence we obtain

||B1
2||(w) = max{|u|+++1

− |u|−−−1
| u01 ≤pref w} .

Now let B1 be the disjoint union of B1
1 and B1

2, i.e., the whole of the automaton in
Fig. 3. Then, for w ∈ Γ∗

1, we have ||B1||(w) ≤ 0 if and only if

|u|−−−1
≤ |u|+++1

≤ |u|−−−1

and therefore
|u|+++1

= |u|−−−1

for any prefix u01 of w. In the proof of Lemma 4.4, we will use that ||B1||(w) > 0 if and
only if there exists a prefix u01 of w with |u|−−−1

6= |u|+++1
.

4.1.2. Two-counter machines

A two-counter machine is a tuple M = (I1, I2, . . . , Im) where every Ij is of one of the
following forms:

• halt

• z := z + 1; goto ℓ

• if z = 0 then goto k else z := z − 1; goto ℓ endif

where z ∈ {x1, x2} and 1 ≤ k, ℓ ≤ m. The instruction Ii is considered as the ith line of
the program M . These instructions use two counters x1 and x2.

A word w = a1a2 . . . an ∈ Γ∗ conforms to the control flow of M if there are “line
numbers” p0, p1, . . . , pn ∈ {1, 2, . . . ,m} with p0 = 1 such that, for all lines 1 ≤ k < n and
all counters c ∈ {1, 2}, the following hold:

• If ai = +++c, then Ipi−1
= (xc := xc + 1; goto pi).

• If ai = −−−c, then Ipi−1
is of the form if x = 0 then goto k else xc := xc−1; goto pi endif

for some 1 ≤ k ≤ m.

13



ι

+++1/− 1

Γ1 \ {+++1,−−−1}/0

−−−1/1

f
01/0

Γ1/0

ι′

+++1/1

Γ1 \ {+++1,−−−1}/0

−−−1/− 1

01/0

Γ1/0

Figure 3: The automaton B1 from Example 4.2

• If ai = 0c, then Ipi−1
is of the form if xc = 0 then goto pi else xc := xc −

1; goto k endif for some 1 ≤ k ≤ m.

• If ai ∈ {2,#}, then pi−1 = pi.

Furthermore, Ipn
= halt. Intuitively, the word w describes the sequence of atomic actions

performed by the program: +++c stands for “counter xc is incremented, −−−c for “counter xc

is decremented, 0c for “counter xc is empty”, and 2 and # for “noop” or “skip”.
For m ∈ N, the word w ∈ Γ∗ conforms to the counter conditions from m if

• |u|−−−1
≤ m+ |u|+++1

and |u|−−−2
≤ |u|+++2

for all prefixes u of w (i.e., the first counter is
initialized with m and none of the counters ever carries a negative value),

• |u|−−−1
= m + |u|+++1

for all prefixes u01 of w (i.e, the first counter is 0 whenever
w claims a successful test for its emptiness), and

• |u|−−−2
= |u|+++2

for all prefixes u02 of w.

Finally, the word w ∈ Γ∗ is a halting computation of M from m if it conforms to the
control flow of M and to the counter conditions from m. A number m ∈ N is accepted
by M or belongs to the halting set of M if there exists a halting computation ofM fromm.

The crucial property of two-counter machines was shown by Minsky: from a Turing
machine, one can construct a two-counter machine that halts on input 2n ·m ∈ N where
m is odd if and only if the Turing machine accepts n. Hence we get

Theorem 4.3 (Minsky [30]). (i) There exists a two-counter machine M whose halt-
ing set is Σ0

1-complete.
14



(ii) The set of two-counter machines M that halt on every input is Π0
2-complete.

4.1.3. From two-counter machines to weighted automata

Lemma 4.4. From a two-counter machine M , one can construct a {−1, 0, 1}-weighted
automaton CM over Γ1 such that the following holds for all w = +++1

m#u with m ∈ N and
u ∈ Γ∗

0:
||CM ||(w) > 0 ⇐⇒ u is no halting computation from m

Note that we do not care about the behavior of CM at words w not from +++1
∗#Γ∗

0.

Proof. Let M = (I1, I2, . . . , Im) be a two-counter machine.
Note that the set of words from Γ0 that conform to the control flow of M is a regular

language. Therefore, also the set L of words +++1
m#u with m ∈ N and u ∈ Γ∗

0 such that
u does not conform to the control flow of M is regular. Let A′ be some deterministic
finite automaton accepting this set. Then, weighting all transitions of A by 1, we obtain
a weighted automaton A such that (for all w ∈ Γ+

1 )

||A||(w) =

{

|w| if w ∈ L

−∞ otherwise

and therefore
||A||(w) > 0 ⇐⇒ w ∈ L .

Now let CM denote the disjoint union of the {−1, 0, 1}-weighted automata A, A1 from
Example 4.1, B1 from Example 4.2, as well as A2 and B2 that are similar to A1 and B1,
but replace +++1 by +++2, −−−1 by −−−2, and 01 by 02. Then, for any word w = +++1

m#u with
m ∈ N and u ∈ Γ∗

0, we have ||CM ||(w) > 0 if and only if

max(||A||(w), ||A1||(w), ||A2||(w), ||B1||(w), ||B2||(w)) > 0 .

But this is the case if and only if

(1) u does not conform to the control flow of M (iff ||A||(w) > 0), or

(2) w does not conform to the counter conditions from 0 (iff ||A1||(w) > 0, ||A2||(w) > 0,
||A2||(w) > 0, or ||A2||(w) > 0).

Note that item (2) is equivalent to saying that u does not conform to the counter con-
ditions from m. Consequently, (1) and (2), and therefore ||CM ||(w) > 0, is equivalent to
saying “u is not a halting computation from m”. 2

A new strengthening of Krob’s result is the following:

Theorem 4.5. There are {−1, 0, 1}-weighted automata C1 and C2 over Γ such that the
set of natural numbers m with

||C1||(+++1
m#u) = ||C2||(+++1

m#u) (1)

for all u ∈ Γ∗
0 is undecidable.
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Proof. By Theorem 4.3, there exists a two-counter machineM with undecidable halting
set. Let C1 = CM be the {−1, 0, 1}-weighted automaton from Lemma 4.4. Furthermore,
let C be a {−1, 0, 1}-weighted automaton that maps every nonempty word to 1 and ε to
−∞ (e.g., C has an initial state ι, a final state f , a 1-weighted transition for any letter
from ι to f , and a 0-weighted loop at f for every letter). Finally, let C2 be the disjoint
union of CM and C.

For u ∈ Γ∗
0, we have

||C2||(+++1
m#u) = max(||CM ||(+++1

m#u), ||C||(+++1
m#u))

= max(||CM ||(+++1
m#u), 1)

and therefore

||C1||(+++1
m#u) = ||C2||(+++1

m#u)

⇐⇒ ||CM ||(+++1
m#u) > 0

⇐⇒ u is no halting computation from m (by Lemma 4.4) .

Consequently, (1) holds for all u ∈ Γ∗
0 if and only if m is not in the halting set of M . 2

Since +++1
m#Γ∗

0 is regular, it is therefore undecidable whether ||C1|| and ||C2|| agree
on a given regular language. We next want to prove this statement for {0, 1}-weighted
automata. The core of the proof is the following lemma.

Lemma 4.6. From a {−1, 0, 1}-weighted automaton C over Γ1, one can construct a
{0, 1}-weighted automaton D over Γ = Γ1 ∪ {2} such that

||D||(w) =











||C||(a1 . . . ak) + k if w = a12 a22 . . . ak2 ∈ (Γ1 2)+

and ||C||(a1 . . . ak) > −∞

−∞ otherwise .

Proof. In a first step, add 1 to every transition – this results in a {0, 1, 2}-weighted
automaton that assigns ||C||(w) + |w| to every nonempty word. In a second step, split
every a-transition into an a-transition and a subsequent 2-transition such that the sum
of the weights of these two transitions equals the weight of the original transition. More
formally, suppose C = (Q,Γ1, ι, µ, F ). Then set Q′ = Q ∪ (Q × Γ1 × Q) and define (for
a ∈ Γ1 and p, q ∈ Q)

µ′(p, a, (p, a, q)) =











0 if µ(p, a, q) = −1

1 if µ(p, a, q) > −1

−∞ otherwise

µ′((p, a, q),2, q) =











0 if µ(p, a, q) < 1

1 if µ(p, a, q) = 1

−∞ otherwise

(all other transition weights are −∞). Then D = (Q′,Γ, ι, µ′, F ) has the desired proper-
ties. 2
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If L ⊆ Γ1 is regular, so is the set of all words a12 a22 . . . an2 with a1a2 . . . an ∈ L.
Hence, from Theorem 4.5 and Lemma 4.6, we get immediately the following result.

Corollary 4.7. There are {0, 1}-weighted automata D1 and D2 over Γ such that the set
of regular languages L ⊆ Γ∗ with ||D1||(w) = ||D2||(w) for all w ∈ L is undecidable.

Using standard and simple techniques for weighted automata, we can now prove the
strengthening of Krob’s theorem from [9] that we will use later for the isomorphism
problem.

Theorem 4.8. There is a {0, 1}-weighted automaton D such that the set of {0, 1}-
weighted automata E with ||D|| = ||E|| is Π0

1-complete.

Proof. Let D be the weighted automaton D1 from Corollary 4.7. Now let L ⊆ Γ∗ be
regular. We define a new function f : Γ∗ → N ∪ {−∞} by

f(w) =

{

||D||(w) if w /∈ L

||D2||(w) if w ∈ L .

From a deterministic finite automaton accepting L, one can construct a {0, 1}-weighted
automaton EL with ||EL|| = f (cf. [34, Theorem 4.13]). Then ||D|| = ||EL|| if and only if
||D|| and ||D2|| agree on L which is undecidable. 2

4.2. Isomorphism

For a {0, 1}-weighted automaton A over an ordered alphabet (Γ;≤), we define a linear
order LA setting

LA =
∑

w∈(Γ+;≤llex)

(ω||A||(w)+1 + δ)

(if ||A||(w) = −∞, then we define ω||A||(w)+1 as the empty set 0). Since (Γ+;≤llex) ∼= ω,
this linear order is an ω-sequence of ordinals ωn with n ≥ 1 and 0, separated by our
delimiter δ. Hence it is scattered. Furthermore, we obtain

Lemma 4.9. Let A and B be {0, 1}-weighted automata. Then LA
∼= LB if and only if

||A|| = ||B||.

Proof. The implication “⇐” is trivial by the very definition of LA. So let f be an
isomorphism from LA onto LB. Note that the intervals of type δ ∼= ω ·ω∗ in LA form an
ω-chain. Hence, the isomorphism f has to map the nth such interval in LA onto the nth

such interval in LB. Consequently, ω
||A||(w)+1 ∼= ω||B||(w)+1 implying ||A||(w) = ||B||(w)

for all w ∈ Γ+. 2

Lemma 4.10. From a {0, 1}-weighted automaton A, one can compute a regular tree-
language LA such that (LA;≤trees) ∼= LA.

Before we prove this lemma, we show how we can use it to prove that the isomorphism
problem of scattered tree-automatic linear orders is undecidable (the proof of Lemma 4.10
can be found following Corollary 4.13).
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Theorem 4.11. There is a scattered linear order L such that the set of regular tree-
languages L with (L;≤trees) ∼= L is Π0

1-hard.

Proof. Let C be the {0, 1}-weighted automaton from Theorem 4.8 and set L = LC .
Furthermore, let f denote the computable function that maps a {0, 1}-weighted automa-
ton E to the regular tree-language LE (cf. Lemma 4.10). Then, by Lemmas 4.9 and 4.10,
f is a reduction from the Π0

1-complete set of {0, 1}-weighted automata E with ||E|| = ||C||
to the set of regular tree-languages L with L ∼= (L;≤trees). 2

Since the linear order ≤trees is tree-automatic, we immediately obtain

Corollary 4.12. There is a scattered linear order L whose set of tree-automatic presen-
tations is Π0

1-hard.

From this, we can infer that the isomorphism problem for tree-automatic scattered
linear orders is Π0

1-hard. We do not know whether the set of tree-automatic presenta-
tions of scattered linear orders is decidable. Therefore, the formulation of the following
immediate consequence of Corollary 4.12 is a bit involved:

Corollary 4.13. Let X be a set of pairs of tree-automatic presentations such that, for all
tree-automatic presentations P1 and P2 of scattered linear orders L1 and L2, respectively,
one has

(P1, P2) ∈ X ⇐⇒ L1
∼= L2 .

Then X is Π0
1-hard.

The rest of this section is devoted to the proof of Lemma 4.10.

Proof of Lemma 4.10. Let A = (Q,Γ, ι, µ, F ) be a {0, 1}-weighted automaton. We
will construct a tree-automatic presentation of the linear order LA.

A run tree of A (cf. Fig. 4 for an example where we omitted the label $) is a tree t over
the alphabet Γ ⊎ {$} such that there exists a sequence of states ι = q0, q1, . . . , qk−1 ∈ Q
and qk ∈ F (with k = max{i | 0i+1 ∈ dom(t)}) with the following properties:

(T1) 11 ∈ dom(t) ⊆ 0∗ ∪ 0∗10∗ ∪ 110∗ and 100 /∈ dom(t)

(T2) t(0i) ∈ Γ and µ(qi−1, t(0
i), qi) 6= −∞ for all 1 ≤ i ≤ k

(T3) 0i1 ∈ dom(t) implies i = 0 or 1 ≤ i ≤ k and µ(qi−1, ai, qi) = 1

(T4) t−1($) = dom(t) \ {0i | 1 ≤ i ≤ k}

Note that every run tree t defines a word over Γ, namely

word(t) = t(0) t(00) . . . t(0k) .

Since 11 ∈ dom(t), also 1 and therefore 0 belong to dom(t) and therefore word(t) 6= ε
(the run tree t from Fig. 4 satisfies word(t) = abaab). The idea is that the “main
branch” {0, 00, . . . , 0k} carries a run ρ of the weighted automaton A. The number of
“side branches” starting in some node 0i1 with i > 0 is at most the weight wt(ρ) of the
encoded run. Since these side branches have arbitrary length, the whole run tree stands
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Figure 4: A run tree

for an element of ωwt(ρ). The “side branch” starting in 11 plays a special role, its length
|dom(t) ∩ 110+| is denoted n(t) (the run tree t in Fig. 4 satisfies n(t) = 2).

We next define, for two trees s and t, the tree s + t by adding a new $-labeled
root and considering s as left subtree of s + t and t as right subtree. More formally,
dom(s+ t) = {ε}∪0 dom(s)∪1 dom(t), (s+ t)(ε) = $, (s+ t)(0u) = s(u) for u ∈ dom(s),
and (s+ t)(1 v) = t(v) for v ∈ dom(t). Since we consider words as special trees, we will
meet trees of the form w+ t. These trees carry the sequences $w on dom(w+ t)∩ 0∗ and
satisfy (w + t)|1 ∼= t.

We now define the language LA by

LA = {t | t is a run tree} ∪ {w$ + t | w ∈ Γ+, t ∈ D}

where D is the set of trees from page 4 that satisfies (D;≤trees) ∼= δ. This language is
clearly regular.

Note that trees from LA use, besides letters from Γ, the letter $; we order Γ∪ {$} in
such a way that the order on Γ is preserved. We will now prove

(LA;≤trees) ∼= LA .

First let ρ = (q0, a1, q1)(q1, a2, q2) . . . (qk−1, ak, qk) ∈ Run(A, w) be a run of the
weighted automaton A on the word w = a1 . . . ak. For n ∈ N, let I0

ρ,n denote the restric-
tion of (LA;≤trees) to all run trees t with word(t) = w, n(t) = n, and such that (T2) and
(T3) hold with the sequence of states q0, q1, . . . , qk. For any tuple (m1, . . . ,mk) ∈ Nk

such that
mi > 0 =⇒ µ(qi−1, ai, qi) = 1 ,

there exists a unique run tree t ∈ I0
ρ,n satisfying |dom(t) ∩ 0i10∗| = mi for all 1 ≤ i ≤ k.

Conversely, by (T3), any run tree from I0
ρ,n arises this way. Hence we get

I0
ρ,n

∼= ωwt(ρ) .

Next let w ∈ Γ+ and n ∈ N. Then I1
w,n denotes the restriction of (LA;≤trees) to all

run trees t with
word(t) = w and n(t) = n . (2)
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In other words, I1
w,n is the union of the linear orders I0

ρ,n over all runs ρ on the word w
(note that this union is not necessarily disjoint). Let ρ be the run on w of maximal
weight. Then

ω||A||(w) = ωwt(ρ) ≤ I1
w,n .

Let H be the disjoint union of the sets I0
ρ,n, i.e., the set of pairs (t, ρ) where ρ is a

run of the weighted automaton A on w and t ∈ I0
ρ,n ⊆ I1

w,n. We order this set setting
(t1, ρ1) ≤ (t2, ρ2) if and only if

t1 <trees t2 or t1 = t2 and ρ1 ≤lex ρ2 .

Then we have

I1
w,n = (

⋃

ρ∈Run(A,w)

I0
ρ,n;≤trees)

≤ (H;≤)

≤
⊕

ρ∈Run(A,w)

(I0
ρ,n;≤trees)

=
⊕

ρ∈Run(A,w)

ωwt(ρ)

≤ ω||A||(w) · |Run(A, w)|

where ⊕ denotes the natural sum of ordinals.
In summary, we have

ω||A||(w)+1 ≤ I1
w,n · ω ≤

(

ω||A||(w) · |Run(A, w)|
)

· ω

= ω||A||(w)+1

and therefore
I1
w,n · ω = ω||A||(w)+1 .

Next consider the restriction I1
w of (LA;≤trees) to the set of run trees t with word(t) =

w. Then n(s) < n(t) implies s <trees t. Furthermore, the restriction of I1
w to the set of

run trees t with n(t) = n equals I1
w,n. Note also that I1

w,0
∼= I1

w,n for all n ≥ 0. Hence

I1
w =

∑

n∈(N;≤)

I1
w,n = I1

w,0 · ω = ω||A||(w)+1 .

Next consider the restriction I2
w of (LA;≤trees) to the set of trees w$ + D. Then

I2
w

∼= δ by what we saw on page 4. Let s be a run tree with word(s) = w and let
t ∈ w$ + D. Then s and t coincide on 0∗ (where they both carry the sequence $w$).
Consider s↾10∗ and t↾10∗ . Since s is a run tree, we have dom(s) ∩ 10∗ = {1, 10} while
t|1 ∈ D implies dom(t) ∩ 10∗ = {1, 10, 100}. Hence s|1 <trees t|1 and therefore s <trees t.
Hence, the restriction Iw of (LA;≤trees) to the set of run trees t with word(t) = w and
the set of trees w$ +D satisfies

Iw = I1
w + I2

w
∼= ω||A||(w)+1 + δ .
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+++1/0 +++1/0 #/1

Γ0/0

Figure 5: The automaton Cm from the proof of Lemma 4.14

Finally, let u, v ∈ Γ+, s ∈ Iu and t ∈ Iv. Then u <llex v if and only if s <trees t. This
implies

(LA;≤trees) =
∑

w∈(Γ+;≤llex)

Iw ∼=
∑

w∈(Γ+;≤llex)

ω||A||(w)+1 + δ = LA .

2

4.3. Automorphisms

From Theorem 3.4, we already know that the existence of a non-trivial automor-
phism of a word-automatic and scattered linear order is Σ0

1-hard. Here, we push this
lower bound one level higher for tree-automatic scattered linear orders. The order theo-
retic construction resembles that from Section 3.1, but also uses ideas from the previous
section.

The general strategy of proof is to construct, from a two-counter machine M , a tree-
automatic linear order LM such that LM is rigid if and only if the halting set of M
equals N. Since this problem is Π0

2-complete, we obtain that the existence of a nontrivial
automorphism is Σ0

2-hard.
But first, we need another lemma about weighted automata:

Lemma 4.14. From a two-counter machine M and m ∈ N, one can construct a {−1, 0, 1}-
weighted automaton CM,m over Γ such that the following are equivalent:

• m is not accepted by M

• ||CM,m|| = ||CM || where CM is the weighted automaton from Lemma 4.4.

Proof. Let m ∈ N and consider the {−1, 0, 1}-weighted automaton Cm in Fig. 5. Then

||Cm||(w) =

{

1 if w ∈ +++1
m#Γ∗

0

−∞ otherwise.

Note that the {−1, 0, 1}-weighted automaton Cm can be constructed from m.
Next let CM,m be the disjoint union of CM and Cm such that

||CM,m||(w) = max(||CM ||(w), ||Cm||(w)) .

Then we have ||CM,m||(w) = ||CM ||(w) if and only if ||Cm||(w) ≤ ||CM ||(w). This is the
case if and only if ||Cm||(w) = −∞ or ||CM ||(w) > 0. But this is equivalent to saying

if w = +++1
m#u with m ∈ N and u ∈ Γ∗

0,

then u is not a halting computation of M from m.

Hence ||CM,m|| = ||CM || if and only if there is no halting computation of M from m. 2
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So let M be a two-counter machine. Then, let CM be the {−1, 0, 1}-weighted automa-
ton from Lemma 4.4 and, for m ∈ N, let CM,m be the {−1, 0, 1}-weighted automaton
from Lemma 4.14. Furthermore, let DM and DM,m be the {0, 1}-weighted automata
constructed using Lemma 4.6 from CM and CM,m, respectively.

Then we define the linear order

LM =
∑

m∈(N;≤)

(

LDM
· ω∗ + LDM,m

· ω
)

.

Lemma 4.15. Let M be a two-counter machine. Then LM is rigid if and only if the
halting set of M equals N.

Proof. Let DM and DM,m be the {0, 1}-weighted automata from above.
First suppose there is some m ∈ N such that the two-counter machine M does not

accept m. Then ||CM,m|| = ||CM || by Lemma 4.14 and therefore ||DM,m|| = ||DM || by
Lemma 4.6. Hence LM contains an interval of the form

LDM,m
· ω∗ + LDM,m

· ω = LDM,m
· ζ .

Since ζ is not rigid, this interval and therefore LM has a nontrivial automorphism. This
proves the implication “⇒”.

For the other implication let f be a nontrivial automorphism of LM . Note that

LM =
∑

m∈(N;≤)





(

∑

w∈(Γ+,≤llex)
(ω||DM ||(w)+1 + ω∗ · ω)

)

· ω∗

+
(

∑

w∈(Γ+,≤llex)
(ω||DM,m||(w)+1 + ω∗ · ω)

)

· ω



 .

Let L′ be the set of intervals of type ω∗ · ω with the order inherited from LM . Then f
induces an automorphism f ′ of

L′ ∼=
∑

m∈(N;≤)

(ω · ω∗ + ω · ω) ∼=
∑

m∈(N;≤)

ω · ζ .

Note that every maximal interval of LM not intersecting any copy of ω∗ ·ω is an ordinal
and therefore rigid. Hence f ′ is nontrivial.

Next let ∼ be the equivalence relation on L′ with x ∼ y if there are only finitely many
elements in between x and y. Then every ∼-equivalence classes in L′ is isomorphic to ω
and

L′′ = L′/∼ ∼=
∑

m∈(N;≤)

ζ .

Furthermore, f ′ induces an automorphism f ′′ of L′′. Since all ∼-equivalence classes in L′

are rigid, the automorphism f ′′ is nontrivial. Note that f ′′ maps every interval of type ζ
onto itself. Hence there is m ∈ N such that f ′′ acts nontrivially on the mth copy of ζ.
Consequently, f ′ moves some interval of type ω in the mth copy of ω · ζ = ω ·ω∗+ω ·ω to
some other interval of type ω in this copy. We can assume that it maps the last interval
of type ω in ω ·ω∗ to some copy of ω in ω ·ω. Consequently f maps the last copy of LDM
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Figure 6: The automaton D from the proof of Lemma 4.16

to some copy of LDM,m
in

Lm =
(

∑

w∈(Γ+,≤llex)
(ω||DM ||(w)+1 + ω∗ · ω)

)

· ω∗

+
(

∑

w∈(Γ+,≤llex)
(ω||DM,m||(w)+1 + ω∗ · ω)

)

· ω

= LDM
· ω∗ + LDM,m

· ω .

This implies LDM
∼= LDM,m

. From Lemma 4.14, we obtain that m is not accepted by M .
Hence the halting set of M is not N. This finishes the proof of the implication “⇐”. 2

Lemma 4.16. From a two-counter machine M , one can construct a tree-automatic pre-
sentation of the linear order LM .

Proof. So letM be a two-counter machine. Let CM and CM,m be the {−1, 0, 1}-weighted
automata from Lemmas 4.4 and 4.14 and let DM and DM,m be the results of apply-
ing Lemma 4.6 to these weighted automata. We will also need the {−1, 0, 1}-weighted
automaton Cm from the proof of Lemma 4.14 and denote Dm the result of applying
Lemma 4.6 to this weighted automaton.

Next, we define the tree-language LM that will serve as universe of the tree-automatic
copy of LM :

LM = LDM
⊗ $∗ ⊗ e(+++12)∗

∪ LDM
⊗ $∗ ⊗ $(+++12)∗

∪ {t⊗ $k ⊗ $(+++12)m | k,m ≥ 0, t is a run tree of Dm}

Since the set LDM
is regular, so are the two first subsets of LM .

To prove the regularity of the third tree-language, we make use of the weighted
automaton D from Fig. 6. Let m ∈ N and let t be a tree. Then t is a run tree of Dm if
and only if t is a run tree of D with word(t) ∈ $(+++12)m#2(Γ02)∗. In other words, the
third tree-language equals the set of trees t ⊗ $k ⊗ $(+++12)m with k,m ≥ 0 such that t
is a run tree of D with word(t) ∈ $(+++12)m#2(Γ02)∗. Since the set of run trees of D is
regular and since a tree automaton running on the convolution of a tree and two words
can compare the main branch of the tree and the third word, also the third subset of LM

is regular. Hence, indeed, LM is even effectively regular.
Next we define a linear order � on LM . We set (s⊗$k⊗c(+++12)m) � (t⊗$ℓ⊗d(+++12)n)

(with k, ℓ,m, n ∈ N and c, d ∈ {e, $}) if and only if we have

(O1) m < n, or

(O2) m = n, c = e, and d = $, or
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(O3) m = n, c = d = e, and k > ℓ, or

(O4) m = n, c = d = e, k = ℓ, and s ≤trees t, or

(O5) m = n, c = d = $, and k < ℓ, or

(O6) m = n, c = d = $, k = ℓ, and s ≤trees t.

It is clear that this relation is automatic and it remains to be shown that (LM ;�) ∼= LM .
For k,m ≥ 0 let I1

k,m denote the restriction of (LM ;�) to the set LDM
⊗$k⊗e(a2)m.

By (O4) and Lemma 4.10, we get

I1
k,m

∼= LDM
. (3)

Next let I1
m denote the restriction of (LM ;�) to the set LDM

⊗ $∗ ⊗ e(a2)m. Then,
(O3) and (3) imply

I1
m

∼= LDM
· ω∗ . (4)

On the other hand, for k,m ≥ 0, let I2
k,m denote the restricion of (LM ;�) to the set

LDM
⊗ $k ⊗ $(+++12)m ∪ {t⊗ $k ⊗ $(+++12)m | t is a run tree of Dm} .

By the definition of LDM
, this set equals

{(w$ + t)⊗ $k ⊗ $(+++12)m | w ∈ Γ+ and t ∈ D}

∪{t⊗ $k ⊗ $(+++12)m | t is a run tree of Dm or DM} .

Recall from the proof of Lemma 4.14 that CM,m is the disjoint union of the {−1, 0, 1}-
weighted automata Cm and CM . Consequently, DM,m is the disjoint union of the {0, 1}-
weighted automata Dm and DM . Hence the above set equals LDM,m

. Now, from (O6)
and Lemma 4.14, we obtain

I2
k,m

∼= LDM,m
. (5)

Next let I2
m denote the restriction of (LM ;�) to the set

LDM
⊗ $∗ ⊗ $(+++12)m ∪ {t⊗ $k ⊗ $(+++12)m | k ≥ 0, t is a run tree of Dm} .

Then, (O5) and (5) imply
I1
m

∼= LDM
· ω . (6)

Now, from (O2), (4) and (6), we obtain that the restriction of (LM ;�) to the set of
trees that define I1

m and I2
m is isomorphic to

LDM
· ω∗ + LDM,m

· ω .

Finally, (O1) implies

(LM ;�) ∼=
∑

m∈(N;≤)

LDM
· ω∗ + LDM,m

· ω

= LM .

2
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Theorem 4.17. (i) The set of tree-automatic presentations of rigid (rigid and scat-
tered, resp.) linear orders is Π0

2-hard.

(ii) The set of tree-automatic presentations of automatically rigid linear orders is Π0
1-

complete.

Proof. (i) Let F be the set of two-counter machines whose halting set is N. Then,
by Theorem 4.3, F is Π0

2-complete. Lemmas 4.15 and 4.16 reduce F to the set of
rigid (and scattered) tree-automatic linear orders.

(ii) Hardness follows from Corollary 3.5(ii), containment in Π0
1 can be shown as in the

proof of Corollary 3.5(ii). 2

It follows in particular that there exists a tree-automatic scattered linear order that
has non-trivial automorphisms, but no tree-automatic non-trivial automorphisms.

5. Open questions

The isomorphism and rigidity problems for word-automatic scattered linear orders
both belong to ∆0

ω (cf. [25]), our lower bound Π0
1 for the rigidity problem leaves quite some

room for improvements. Since the rank of a tree-automatic linear order is properly below
ωω [15], the proof of [25, Theorem 5.19] can be adapted to show that the isomorphism
and the rigidity problems for tree-automatic scattered linear orders both belong to ∆0

ωω .
But we only have the lower bounds Π0

1 and Π0
2, resp. Finally, the rigidity problem for

arbitrary word- or tree-automatic linear orders is in Π1
1, but also here, we only have the

arithmetic lower bound Π0
1 and Π0

2, resp.
But the most pressing open question is the isomorphism problem of scattered and

word-automatic linear orders.
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tures of bounded degree. In STACS’12, pages 242–253. Dagstuhl Publishing, 2012.

[11] C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Am. Math.

Soc., 98:21–51, 1961.

25



[12] D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word

Processing In Groups. Jones and Bartlett Publishers, Boston, 1992.
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[29] A. Miasnikov and Zoran Šunić. Cayley graph automatic groups are not necessarily Cayley graph

biautomatic. In LATA’12, Lecture Notes in Comp. Science vol. 7183, pages 401–407. Springer,
2012.

[30] M. Minsky. Recursive unsolvability of Post’s problem of ’tag’ and other topics in theory of Turing
machines. Annals of Mathematics, 74(3):437–455, 1961.

[31] A. Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305–339, 2007.
[32] S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.
[33] S. Rubin. Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic

Logic, 14:169–209, 2008.
[34] J. Sakarovitch. Rational and recognizable series. In M. Droste, W. Kuich, and H. Vogler, editors,

Handbook of Weighted Automata, pages 405–453. Springer, 2009.

26


