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Abstract. Second-order finite automata, introduced recently by An-
drade de Melo and de Oliveira Oliveira, represent classes of languages.
Since their semantics is defined by a synchronized rational relation, they
can be studied using the theory of automatic structures. We exploit this
connection to uniformly reprove and strengthen known and new results
regarding closure and decidability properties concerning these automata.
We then proceed to characterize their expressive power in terms of au-
tomatic classes of languages studied by Jain, Luo, and Stephan.
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1 Introduction

Andrade de Melo and de Oliveira Oliveira [1] propose a mechanism to represent
possibly infinite classes of regular languages by a single finite automaton A.
The idea is to start with an alphabet of simple automata that can make only
one step. A word W over this alphabet is understood as a concatenation of such
small automata, and therefore as an automaton AW . Consequently, the “second-
order finite automaton” A describes a class of languages: the class of languages
accepted by these finite automata AW for W accepted by A. We call such a
class “full-length regular”. The central result in [1] is an effective canonisation
procedure for second-order finite automata. Then, the authors derive effective
closure and decidability results for the collection of all full-length regular classes.

Recall that at the basis of the definition of second-order finite automata
and their language class lies the interpretation of a word W from L(A) as an
automaton AW . We consider the natural binary relation of all pairs (W,w) where
the NFA AW accepts the word w. Since this relation is synchronized rational (a
basic observation not made explicte in [1]), we can use automatic structures [7,
9, 4] as a tool to reason about second-order finite automata – and this is the core
of the current paper’s first part. This approach gives a uniform and simple way

– to build several normalized second-order finite automata (e.g., saturated),
– to uniformly prove closure properties (e.g., intersection and difference) shown

in [1] and to improve them partly, and
– to prove decidability of inclusion, equality, and disjointness uniformly (the

results are known from [1]).
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We demonstrate that it also allows to prove new closure properties (e.g., the class
of differences of languages from two classes) and new decidabilities (e.g., whether
the intervals of languages in a full-length regular class, ordered by inclusion, are
of bounded size). In a nutshell, all these results hold since they amount to the
evaluation of some formula (from an appropriate and proper extension of first-
order logic) in some automatic structure.

The second part of this paper is devoted to the expressiveness of second-order
finite automata. The definition of full-length regular classes of languages via a
rational relation is very similar to that of automatic classes of languages from [8]
(that studies the learnability of such classes). Fernau (discussion at “Computer
Science in Russia 2020”) conjectured the two concepts to be closely related;
this paper’s second part details and confirms his conjecture. At this point, it
is only important that an automatic class is given by a regular language and a
synchronized rational relation. We show that a class of languages is full-length
regular iff it is automatic with a length-preserving synchronized rational relation.

This characterization allows us to reduce the isomorphism problem for au-
tomatic equivalence structures to that of full-length regular classes ordered by
inclusion. As a consequence, this latter problem is undecidable.

A limitation of full-length regular classes is that all languages in such a
class are sets of words of equal length. In this paper, we extend the definition
from [1] to regular and to ω-regular classes (that can contain arbitrary finite
and regular languages, resp.). We actually prove the above mentioned closure
and decidability results for regular classes, but the proofs can be transfered to
full-length regular and partly to ω-regular classes of languages. We also present
characterisations of these classes in terms of automatic classes.

In summary, we investigate classes of languages presented by finite automata
and we demonstrate that the established theory of automatic structures can be
useful in this study.

2 Second-order finite automata and regular classes of
languages

For an alphabet Σ, let Σ∗, Σ+, and Σω denote the set of finite, finite nonempty,
and ω-words, resp. A language L ⊆ Σ∗ is single-length if all its words have
the same length. A relation R ⊆ Γ ∗ × Σ∗ is length-reducing (length-increasing,
length-preserving, resp.) if (u, v) ∈ R implies |u| ≥ |v| (|u| ≤ |v|, |u| = |v|, resp.).

Definition. Let A and B be sets, W ∈ A, L ⊆ A, and R ⊆ A × B a relation.
Then we set WR =

{
w ∈ B | (W,w) ∈ R

}
and LR =

{
WR |W ∈ L

}
.

Intuitively, we consider the relation R as a function R : A→ P(B). Then WR

is the image of W under this mapping and LR is the class of images of elements
of the set L. We apply these constructions mainly for A = Γ+ and B = Σ+.

Definition. Let Σ be some alphabet and S be some finite set. A (Σ,S)-block
is a tuple B = (I, T, F ) where I, F ⊆ S and T ⊆ S × Σ × S; B(Σ,S) denotes
the set of all (Σ,S)-blocks.
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A block is an NFA over the alphabet Σ with set of states S. We will consider
sequences of such blocks as a single NFA and run a word by chosing a transition
from the ith block for its ith letter. We found it convenient to think of a block as
consisting of two copies of the set of locations S where the transition (s1, a, s2) ∈
T connects the location s1 from the first copy to the location s2 from the second
copy. The initial locations ι ∈ I are considered as elements of the first copy, the
final locations f ∈ F as belonging to the second copy.

Definition. An NFA over B(Σ,S) is called second-order or SO automaton over
Σ and S.

For an NFA M = (Q,Γ, I,∆, F ) (with sets of initial states I, of transitions
∆ ⊆ Q × Γ × Q, and of final states F ) over Γ , we write L+(M) ⊆ Γ+ for the
set of nonempty words accepted by M .

We will define the second-order language of the SO automaton A which will
be a class of languages over Σ. To this aim, we need the following relation.

Definition. The relation AccΣ,S consists of all pairs (B1B2 · · ·Bm, c1 c2 · · · cn)
with m ≥ n ≥ 1, Bi = (Ii, Ti, Fi) ∈ B(Σ,S) for all i ∈ [m], and ci ∈ Σ for all
i ∈ [n] such that there exist locations s1, s2, . . . , sn+1 ∈ S with

(1) s1 ∈ I1, (2) (si, ci, si+1) ∈ Ti for all i ∈ [n], and (3) sn+1 ∈ Fn.

Intuitively, we understand the word W as an NFA over Σ. Its state space
consists of m+1 layers of the set of locations S. The transitions from Bi connect
the locations from layer i to those of layer i + 1. The initial states of the NFA
are the initial states of B1 in the first layer, the final states are those of Bi in
layer i + 1 (for any i ∈ [m]). Then (W,w) ∈ AccΣ,S iff the word w ∈ Σ+ is
accepted by the NFA described by the word W ∈ B(Σ,S)+.

Definition. Let A be an SO automaton over Σ and S. Then the second-order
language of A is the class L2(A) = L+(A)AccΣ,S =

{
WAccΣ,S

∣∣W ∈ L+(A)
}

.

By the definition, L+(A) is a language over B(Σ,S), but L2(A) is a class of
ε-free languages over Σ, i.e., a subset of P(Σ+).

Definition. A class of languages C ⊆ P(Σ+) is regular if there exists an SO
automaton A over Σ and some finite set of locations S such that C = L2(A).

Since AccΣ,S is length-reducing, the class L2(A) consists of finite languages,
only. Hence regular classes of languages are classes of finite languages.

In [1], the authors consider words W only where all words in WAccΣ,S are of
length |W |. We capture this by the following concept.

Definition. A word over B(Σ,S) is full-length if at most its last block has a
non-empty set of accepting states. An SO automaton A is full-length iff all words
from L+(A) are full-length. A class C of languages is full-length regular if there
exists a full-length SO automaton A with C = L2(A).
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To overcome the limitation to classes of finite languages, we will now consider
infinite words α ∈ B(Σ,S)ω and understand them as “infinite NFAs” M over Σ
that can accept some infinite language (of finite words).

Definition. The binary relation AccωΣ,S consists of all pairs (B1B2 · · · , w) with
Bi ∈ B(Σ,S) for all i ≥ 1 and w ∈ Σ+ such that (B1B2 · · ·B|w|, w) ∈ AccΣ,S .

Example 2.1. Let M = (S,Σ, I,∆, F ) be some NFA over Σ. We consider it as
block B = (I,∆, F ) ∈ B(Σ,S) and set α = Bω. Then αAccωΣ,S = L+(M). Hence,
all regular languages K ⊆ Σ+ are of the form αAccωΣ,S for some ω-word α.

Definition. A Büchi-automaton over B(Σ,S) is called an SO Büchi-automaton
over Σ and S. Let A be an SO Büchi-automaton over Σ and S. Then the second-
order language of A is the class Lω2 (A) =

{
αAccωΣ,S | α ∈ Lω(A)

}
⊆ P(Σ+). A

class C ⊆ P(Σ+) of languages is ω-regular if there exists an SO Büchi-automaton
A over Σ and some finite set of locations S such that C = Lω2 (A).

Note that, for any block B ∈ B(Σ,S), the ω-language {Bω} is ω-regular.
Hence, in view of Example 2.1, any class {K} with K ⊆ Σ+ regular is ω-regular.

Example 2.2. For c ∈ Σ, consider the block Bc =
(
{s}, {(s, c, s)}, {s}

)
and let

L = {Bc | c ∈ Σ}ω. For any α ∈ Σω, the ω-regular class LAccωΣ,S contains
the language of all prefixes of α, i.e., is uncountable and contains non-regular
languages.

3 Closure properties and special representations of
regular classes of languages

From the canonisation result in [1], the authors infer closure properties of the
collection of all full-length regular classes of languages. This section is devoted
to alternative proofs and strengthenings (e.g., by providing much smaller au-
tomata) of these results. For notational simplicity, we only give our proofs for
the collection of all regular classes, the results as well as the proofs all carry over
to full-length regular classes and to ω-regular classes (if not stated otherwise).
Since the main tool in our proofs are automatic structures, we first sketch their
definition and their relation to SO automata.

3.1 Automatic structures

Basically, automatic structures are relational structures whose universe and re-
lations can be accepted by finite automata. This is rather straightforward for
the universe and unary relations: they have to form regular languages. Relations
of larger arity are required to be synchronized rational [6], i.e., accepted by a
synchronous multi-head automaton.

Definition ([7, 9]). A relational structure S =
(
U, (Ri)i∈[k]

)
with Ri ⊆ Uni for

i ∈ [k] is automatic if there is an alphabet Σ such that U ⊆ Σ∗ is regular and
Ri is synchronized rational for all i ∈ [k].
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For the current paper, the following is the most interesting example.

Theorem 3.1. The relation AccΣ,S is effectively synchronized rational.
Consequently, given SO automata Ai over Σi and Si (for i ∈ [n]), the fol-

lowing structure S
(
(Ai)i∈[n]

)
is effectively automatic:

– Its universe is
⋃
i∈[n]

(
B(Σi, Si)

+ ∪Σ+
i

)
.

– Its relations are B(Σi, Si)
+, Σ+

i , L+(Ai), and AccΣi,Si for i ∈ [n].

The proofs in this section are all based on relations in this structure that are
defined by logical formulas. As an example, consider the formula

∀w :
(

(W1, w) ∈ AccΣ,S1 ↔
(
(W2, w) ∈ AccΣ,S2 ∧ (W3, w) /∈ AccΣ,S3

))
with three free variables W1, W2, and W3. In S(A1,A2,A3), it expresses that

W
AccΣ,S1
1 = W

AccΣ,S2
2 \WAccΣ,S3

3

holds. We will therefore allow to write such Boolean combinations in formulas.
Furthermore, our formulas allow not only the classical first-order quantifiers ∃

and ∀, but also the following:

– infinity quantifier ∃∞ [3]: For instance, ∀x¬∃∞y : E(x, y) holds in a directed
graph iff the graph has finite out-degree.

– boundedness quantifer

B

[11]: For instance, the number of paths of length
two between any two nodes of a possibly infinite directed graph is uniformly
bounded iff the directed graph satisfies

B

(x1, x2; y) :
(
E(x1, y) ∧ E(y, x2)

)
.

– Ramsey quantifier

R

[14]: Let k ∈ N and let xi be mutually disjoint k-
tuples of variables (for 1 ≤ i ≤ n). The formula

R

(x1, . . . , xn) : ϕ(x1, . . . , xn)
holds in a structure S if there exists an infinite k-ary relation R such that
any n tuples from R satisfy ϕ. For instance, with k = 2, the formula

R(
x1, x2

)
: E(x1) ∧ E(x2) ∧

(
x1 = x2 ∨ {x1,1, x1,2} ∩ {x2,1, x2,2} = ∅

)
ex-

presses of a graph that it contains infinitely many mutually disjoint edges.

We denote the extension of first-order logic by these quantifiers by FO+.

Theorem 3.2 ([9, 3, 11, 14]). Let S =
(
U, (Ri)i∈[n]

)
be an automatic structure

and ϕ(x1, . . . , xn) a formula from FO+. Then the relation ϕS =
{
u ∈ Un

∣∣ S |=
ϕ(u)

}
of all witnesses for ϕ in S is effectively synchronized rational (uniformly

in the automatic structure S given by a tuple of finite automata).

The proof of this theorem proceeds by induction on the construction of the
formula ϕ. Standard constructions on NFAs allow to handle Boolean operations
and classical quantification. The infinity quantifier can be reduced to existential
quantification (using the synchronized rational relation |u| ≤ |v|) [3]. For the
boundedness quantifier, one resorts to [15]; the Ramsey quantifier requires new
automata constructions [14].
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Blumensath and Grädel [3, 4] introduced the more general notion of an ω-
automatic structure that is based on Büchi-automata instead of NFAs. The
relation AccωΣ,S is synchronized ω-rational such that Theorem 3.1 also holds: for
SO Büchi-automata Ai, the analogous structure is ω-automatic.

Theorem 3.2 holds for ω-automatic structures and for the extension of first-
order logic with the quantifiers ∃ℵ0 and ∃>ℵ0 [4, 13], but not for the quanti-
fier

R

[10]; the status of the quantifier

B

is not known. Consequently, whenever
the following proofs use at most the existential and the cardinality quantifiers,
they carry over to the case of ω-regular classes of languages.

3.2 Special representations of regular classes

Let A be some SO automaton and let, intuitively, N denote the class of NFAs
represented by words W ∈ L+(A). We show that every regular class C of lan-
guages can be represented by some SO automaton such that N is a class of
deterministic finite automata. Alternatively, we can require N to consist of all
NFAs that accept some language from C and can be represented by some word
over B(Σ,S). In the other extreme, we can require that every language from C
is accepted by only one NFA from N .

A block B = (I, T, F ) ∈ B(Σ,S) is deterministic, i.e., belongs to detB(Σ,S),
if |I| = 1 and, for every s ∈ S and a ∈ Σ, there is precisely one location s′ ∈ S
with (s, a, s′) ∈ T . Then any word from detB(Σ,S)+ describes a DFA.

Theorem 3.3 (cf. [1, Theorem 4(4)]). From an SO automaton A over Σ
and S, one can construct an SO automaton A′ over Σ and P(S) such that

L2(A) = L2(A′) and L+(A′) ⊆ detB
(
Σ,P(S)

)+
.

Proof. We extend the universe of the automatic structure S(A) by the set

detB
(
Σ,P(S)

)+
and consider this set as an additional unary relation.

Now consider the following formula ϕ(W ′) with free variable W ′:

W ′ ∈ detB
(
Σ,P(S)

)+ ∧ ∃W ∈ L+(A) : WAccΣ,S = W ′AccΣ,P(S)

It expresses that W ′ describes a DFA that accepts some language from L2(A).
Since the structure S is effectively automatic, the set Lϕ of words W ′ satis-

fying this formula is effectively regular, i.e., we can construct an NFA A′ over

detB
(
Σ,P(S)

)
with L+(A′) = Lϕ. Then L

AccΣ,P(S)
ϕ ⊆ L2(A) by the construc-

tion of the language Lϕ. For the converse inclusion, one shows that any word W

over B(Σ,S) has a word W ′ ∈ detB
(
Σ,P(S)

)+
with WAccΣ,S = W ′AccΣ,P(S) .

The idea is to first apply the powerset construction to all blocks from W and
then concatenate the resulting deterministic blocks to obtain W ′.

Any word W ∈ B(Σ,S)+ (considered as NFA) has infinitely many equivalent
words over B(Σ,S), e.g., all those from W (S, T, ∅)∗ (where T is an arbitrary set
of transitions). Consequently, any language in the regular class of languages
L2(A) can have more than one representing word in L+(A). But this number of
representing words can be controlled:
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Theorem 3.4. From an SO automaton A over Σ and S, one can construct SO
automata Amin and Amax over Σ and S with L2(A) = L2(Amin) = L2(Amax)
such that the following hold:

(1) Any word W ∈ B(Σ,S)+ with WAccΣ,S ∈ L2(A) belongs to L+(Amax).
(2) For any language K ∈ L2(A), there exists a unique word W ∈ L+(Amin)

with K = WAccΣ,S .

Proof. Let v be a length-lexicographic order on the set B(Σ,S)+. The extension
of the structure S(A) from Theorem 3.1 with v is automatic. The following
formula ϕmax(W ) with free variable W expresses WAccΣ,S ∈ L2(A):

W ∈ B(Σ,S)+ ∧ ∃W ′ ∈ L+(A) : WAccΣ,S = W ′AccΣ,S

Similarly, the formula ϕmin(W )

ϕmax(W ) ∧ ∀W ′ ∈ B(Σ,S)+ :
(
WAccΣ,S = W ′AccΣ,S →W vW ′

)
expresses WAccΣ,S ∈ L2(A) and that it is the length-lexicographically minimal
representative of this language. In both cases, we can continue as in the proof of
Theorem 3.3.

Remark. Since no synchronized rational well-order exists on the set B(Σ,S)ω

[5], the above construction of Amin does not transfer to SO Büchi-automata.

3.3 Decidable properties of regular classes

Since emptiness of regular languages is decidable, it follows from Theorem 3.2
that the FO+-theory of every automatic structure is decidable (even if the auto-
matic structure is part of the input). This classical result immediately gives the
following from [1].

Theorem 3.5 ([1, Theorem 4(6,7)]). For SO automata A1 and A2, inclusion
and disjointness of L2(A1) and L2(A2) are decidable.

Let A be an SO automaton. Then, by Theorem 3.4, we can construct an
“unambiguous” SO automaton Amin with L2(A) = L2(Amin). Consequently, the
class L2(A) is finite iff Amin accepts a finite language. Since this is decidable,
we obtain that finiteness of L2(A) is decidable for any SO automaton A.

Apart from this, we can also decide further properties of the class L2(A):

Theorem 3.6. The following problems are decidable:
input: an SO automaton A over Σ and S
question 1: Do all words over Σ belong to some language from L2(A)?
question 2: Do all w ∈ Σ+ belong to only finitely many languages from L2(A)?
question 3: Do all w ∈ Σ+ belong to a bounded number of languages from L2(A)?
question 4: Are the languages from L2(A) of bounded size?

Proof. By Theorem 3.4, we can assume A to be “unambiguous”. The formulas
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1. ∀w ∈ Σ+ ∃W ∈ L+(A) : (W,w) ∈ AccΣ,S
2. ¬∃w ∈ Σ+ ∃∞W ∈ L+(A) : (W,w) ∈ AccΣ,S
3.

B

(w,W ) : (W,w) ∈ AccΣ,S ∧W ∈ L+(A)
4.

B

(W,w) : (W,w) ∈ AccΣ,S ∧W ∈ L+(A)

express the four properties such that the claims follow from Theorem 3.2.

3.4 Closure properties of the collection of regular classes

We now strengthen some results from [1] that concern Boolean combinations
of regular classes of languages. The corresponding constructions in [1] increase
the number of locations exponentially. Our proofs are analogous to the proof of
Theorem 3.3.

Theorem 3.7 (cf. [1, Theorem 4(1-3)]). From SO automata Ai over Σi
and Si (for i ∈ {1, 2}), one can construct SO automata A′1 over Σ1 ∪ Σ2 and
S1 ∪ S2 and A′2, A′3 over Σ1 and S1 such that L2(A′1) = L2(A1) ∪ L2(A2),
L2(A′2) = L2(A1) ∩ L2(A2), and L2(A′3) = L2(A1) \ L2(A2).

So far, we considered, e.g., the intersection of two regular classes C1 and C2 of
languages. Now, we will, e.g., consider the class of all intersections of languages
in C1 and C2.

Theorem 3.8. From SO automata Ai over Σi and Si (for i ∈ [2]), one can
construct SO automata A′i such that

1. L2(A′1) =
{
K1 ∪K2

∣∣ Ki ∈ L2(Ai)
}

and A′1 is over Σ1 ∪Σ2 and S1 ] S2,

2. L2(A′2) =
{
K1 ∩K2

∣∣ Ki ∈ L2(Ai)
}

and A′2 is over Σ1 ∪Σ2 and S1 × S2,

3. L2(A′3) =
{
K1 \K2

∣∣ Ki ∈ L2(Ai)
}

and A′3 is over Σ1 and S1 × P(S2).

Proof. One first proceeds analogously to the proof of Theorem 3.3. In the final
step, one adapts the corresponding constructions for union, intersection, and
difference of NFAs to blocks.

Note that, for any regular class of languages L2(A), the union
⋃
L∈L2(A) L is

regular since it is the image of the regular language L+(A) under the rational
relation AccΣ,S . Using automatic structures, we can show that also the limit
inferior and the limit superior is effectively regular since both these languages
can be defined (using the quantifier ∃∞) in the automatic structure S(Amin) from
Theorem 3.1 (where Amin is the “unambiguous” automaton from Theorem 3.4).

Theorem 3.9. From an SO automaton A over Σ and S, one can construct
NFAs accepting the languages

lim inf L2(A) =
⋃

C⊆L2(A)
finite

⋂
K∈L2(A)\C

K and lim supL2(A) =
⋂

C⊆L2(A)
finite

⋃
K∈L2(A)\C

K .
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4 Expressiveness of second-order finite automata

In this section, we determine what classes of languages can be described by SO
automata, i.e., are regular. We obtain a close relation to so-called automatic
classes of languages as defined by Jain et al. in [8].

Definition. A class of languages C ⊆ P(Σ+) is automatic if there are a regular
language L ⊆ Γ+ over some alphabet Γ and a synchronized rational relation
R ⊆ Γ+ ×Σ+ with C = LR.

Example (from [8]). For any alphabet Σ, the following classes C ⊆ P(Σ+) are
automatic:

– The class of finite languages with at most k elements (for any k ∈ N).
– The class of all finite and cofinite subsets of {a}+.
– The class of all intervals of (Σ+,≤) where ≤ is the lexicographic order.
– Let U be the universe of any automatic structure S and let ϕ(x, y) be any

formula from FO+. For w ∈ U , Sϕ(x,w) ⊆ U is a language. The class of all
these languages Sϕ(x,w) with w ∈ U is automatic.

4.1 Regular and automatic classes of languages

From the very definition, we obtain that every regular class C of languages is
effectively automatic and contains only finite languages.

For the converse implication, one first shows that automatic classes of finite
languages can be represented by length-reducing rational relations:

Lemma 4.1. Let L ⊆ Γ+ be regular and R ⊆ Γ+×Σ+ be a synchronized ratio-
nal relation with WR finite for all W ∈ L. There effectively exist an alphabet Γ ′,
a regular language L′ ⊆ Γ ′+, and a synchronized rational and length-reducing
relation R′ ⊆ Γ ′+ ×Σ+ such that L′R

′
= C \ {∅}.

If R is length-increasing and all languages in LR are single-length, then R′

can be chosen length-preserving.

Proof. The relation R′ consists of all pairs (W $n, w) with (W,w) ∈ R such that
|W |+ n is the maximal length of words from WR ∪ {W}.

Then one proves that, indeed, any length-reducing synchronized rational re-
lation R gives rise to a regular class of languages:

Proposition 4.2. Let L ⊆ Γ+ be regular and R ⊆ Γ+ ×Σ+ be length-reducing
and synchronized rational. Then LR is, effectively, a regular class of languages.

Proof. One starts with a synchronous 2-head automaton M accepting R. For
any input letter A ∈ Γ , one restricts the behavior of M to its output behavior
when A is input. In addition, depending on the remaining input word V , one
defines a state to be accepting if, from that state, M can read V with empty
output. This defines a block BA,V ∈ B(Σ,S) as well as a sequence of blocks for
every input word W ). One then obtains an automaton A that accepts the set of
block sequences for all valid input words. Then LR = L2(A).
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The following theorem summarises the work reported in this section.

Theorem 4.3. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is a regular class of languages.
(b) C is an automatic class of finite languages.
(c) C = LR for some regular language L and some length-reducing synchronized

rational relation R.

4.2 Regular and automatic classes of single-length languages

In this section, we want to characterise, similarly to Theorem 4.3, the full-length
regular classes of languages, i.e., the language classes considered in [1].

Theorem 4.4. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is a full-length regular class of languages.
(b) C is a regular class of single-length languages.
(c) C is an automatic class of single-length languages.
(d) C = LR for some regular language L and some length-preserving synchro-

nized rational relation R.

The implication (a)⇒(b) is clear by the definition of full-length words, the
implication (b)⇒(c) is an immediate consequence of Theorem 4.3. The impli-
cation (d)⇒(a) can be shown as Proposition 4.2. For the remaining implication
(c) ⇒ (d), one first splits R into its length-increasing and its length-reducing
parts R≤ and R≥. Since LR is a class of single-length languages, it equals
LR≤ ∪LR≥ . The final claim of Lemma 4.1 allows to replace R≤ by some length-
preserving relation. For the length-reducing part R≥, one then proves a slightly
weaker fact:

Lemma 4.5. Let L ⊆ Γ+ be regular and R ⊆ Γ+×Σ+ be synchronized rational
and length-reducing such that LR is a class of single-length languages. Then there
exist, effectively, k ∈ N, regular languages L1, . . . , Lk ⊆ Γ+, and synchronized
rational length-preserving relations R1, . . . , Rk ⊆ Γ+ ×Σ+ with

⋃
1≤i≤k Li

Ri =

LR \ {∅}.

Proof. Since L is regular, we can assume R ⊆ L × Σ+. Let M be some syn-
chronous 2-head automaton accepting R. For a set X of states, we define rela-
tions RX , SX ⊆ Γ ∗×Σ∗ as follows: RX is the set of pairs (W1, w1) of nonempty
words of equal length such that (W1, w1) allows to reach (from some initial state)
some state in X. Further, SX is the set of pairs (W2, w2) such that X equals the
set of states that allow to reach some accepting state via (W2, w2).

The crucial point is that for (W1, w) ∈ RX and (W2, ε) ∈ SX , one has
∅ 6= WRX

1 = (W1W2)R and W1W2 ∈ L. It can be infered that LR \ {∅} is the
union of the classes proj1(RX)RX for X such that SX ∩

(
Γ ∗ × {ε}

)
6= ∅.
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It follows that any automatic class of single-length languages is the union of
finitely many classes LR with L regular and R length-preserving. Considering
copies of the languages L over mutually disjoint alphabets allows to infer the
missing implication (c) ⇒ (d) in Theorem 4.4

4.3 ω-regular and automatic classes of languages

An automatic class of languages is always countable and consists of regular lan-
guages, only. By Example 2.2, both these properties may fail for ω-regular classes.
The main result of this section states that these are the two only (and equivalent)
reasons for an ω-regular class not to be automatic.

Theorem 4.6. The following are effectively equivalent for any class C of ε-free
languages:

(a) C is an ω-regular class of regular languages.
(b) C is a countable ω-regular class of languages.
(c) C is an automatic class of languages.

The implication (a)⇒(b) is trivial since there are only countably many reg-
ular languages. The proof of the implication (c)⇒(a) is based on the idea of
Example 2.1. For the implication (b)⇒(c), one considers the ω-automatic struc-
ture

(
B(Σ,S)ω ∪ Σ+, Lω(A),B(Σ,S)ω,AccωΣ,S

)
. Identifying pairs of ω-words

over B(Σ,S) that represent the same language over Σ gives rise to a countable
quotient that is ω-automatic [2] and therefore automatically representable [3].
This automatic structure then allows to prove that the class is automatic.

5 Regular classes of languages, ordered by inclusion

In this final section, we consider regular classes L2(A) of languages under in-
clusion, i.e., the structure

(
L2(A),⊆

)
. Note that the universe of

(
L2(A),⊆

)
is

not a language, but a class of languages. Hence this structure cannot be auto-
matic. The first result shows that

(
L2(A),⊆

)
is effectively isomorphic to some

automatic structure, i.e., is automatically representable.

Lemma 5.1. Let A be some SO automaton over Σ and S. Then
(
L2(A),⊆

)
is

effectively automatically representable.

Now we have, again, the theory of automatic structures at our disposal. In
particular, Theorem 3.2 allows to infer the following decidabilities.

Theorem 5.2. The following problems are decidable:
input: an SO automaton A
question 1: Is

(
L2(A),⊆

)
a lattice?

question 2: Does
(
L2(A),⊆

)
contain some infinite antichain or some infinite

chain, resp.?
question 3: Are intervals in

(
L2(A),⊆

)
of bounded finite size?
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By Lemma 5.1, regular classes of languages (ordered by inclusion) can be
understood as automatic partial order. By the theorems from Section 4, one can
conversely understand automatic partial orders as regular classes of languages.
This allows to infer results concerning the isomorphism problem from [12].

Theorem 5.3. There exist partial orders P1 and P2 such that the set of

1. SO automata A with P1
∼=
(
L2(A),⊆

)
is Σ1

1 -hard and
2. full-length SO automata A with P2

∼=
(
L2(A),⊆

)
is Π0

1 -hard.

In particular, the isomorphism problem for structures
(
L2(A),⊆

)
is (highly)

undecidable.
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2. Bárány, V., Kaiser,  L., Rubin, S.: Cardinality and counting quantifiers on omega-
automatic structures. In: STACS’08. pp. 385–396. IFIB Schloss Dagstuhl (2008)

3. Blumensath, A.: Automatic structures (1999), Diplomarbeit, RWTH Aachen
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