
Communicating automata

Dietrich Kuske1 and Anca Muscholl2

1TU Ilmenau, Institut für Theoretische Informatik
2 LaBRI, Université Bordeaux and CNRS

2010 Mathematics Subject Classification: Primary: 68Q68 Secondary: 68Q45, 68Q60

Key words: communicating automata, fifo channels, model checking, realizability

1 Introduction

Communicating automata are a key computational model for concurrent systems. In this
simple model, a finite number of processes cooperate via asynchronous message passing
using unbounded channels. Such automata are very popular for modeling and reasoning
about communication protocols: they are used to define the semantics of standardized pro-
tocol specification languages such as the ITU specification and description language SDL
(Specification and Description Language). Automatic verification of properties of com-
municating automata is yet challenging, since these machines are Turing powerful [18],
in particular they subsume Post tag systems [65]. As a consequence, every non-trivial
property, including state reachability, is undecidable. As a consequence, approximated
or semi-algorithmic verification techniques are essential. The aim of this survey is to
describe automated approaches developed for verifying properties of communicating au-
tomata.

The reachability problem is the simplest instance of the more general model-checking

problem, that consists in verifying that all behaviors of an automaton satisfy a given prop-
erty, usually described in some logical formalism such as e.g. temporal logics [54]. A
more ambitious goal is synthesis: the aim here is to compute a correct automaton from
the beginning. Given a specification, the synthesis problem asks for an automaton with
the same set of behaviors as the specification.

In this survey we report on two analysis problems for communicating automata: the
model-checking problem and a simpler variant of synthesis, called the realizability prob-
lem. For realizability, the automaton that is to be computed does not interact with the
environment. This makes realizability easier than synthesis, where one also assumes an
unpredictable environment. It is worth to note that realizability is already a challenging
problem for communicating automata, since it amounts to compute the distribution of the
specification on a given process architecture, that limits the way information is conveyed.



1030 D. Kuske, A. Muscholl

The synthesis problem is even more challenging, since it requires to solve some kind of
distributed game.

Semi-algorithmic verification falls mostly into two categories, under- and over-appro-

ximating methods. Under-approximating methods restrict the behavior of a system, whereas
over-approximating ones consider some relaxation thereof. For instance, ignoring the or-
der of messages in the channels is an over-approximation that turns communicating au-
tomata into Petri nets. Bounding the capacity of channels is an under-approximation that
turns communicating automata into finite automata. Acceleration methods using some
finitary representation of possibly infinite sets of configurations (called symbolic repre-
sentations), are another example of under-approximating methods. In the case of com-
municating automata, such symbolic representations are based on finite automata or some
tractable, extended automata models [10, 11, 16].

An interesting instance of over-approximation is the setting where communication
channels can loose messages. Lossy channel systems are a particular instance of well-
structured transition systems [1, 32], and this implies that their reachability problem is
decidable [2], albeit of non-primitive recursive complexity [66]. On the other hand, more
general properties like liveness for lossy channel systems, are undecidable [1].

The above mentioned approaches to the reachability problem emphasize the languages
of messages and present them symbolically. Alternatively, the partial-order approach em-
phasizes the executions of communicating automata. The partial-order approach is event-
based and captures naturally the concurrent aspect of process communication. Its main
advantage is that the realizability problem can be stated very easily, since the specifica-
tions and the behaviors of communicating automata are both captured by the same kind
of objects, namely message sequence charts.

The partial-order approach offers solutions for the model-checking and the realiz-
ability problem, assuming some universal or existential bounds on channels [43, 41, 38].
Whereas communicating automata with universal channel bounds are finite-state systems,
the existentially bounded version belongs to the class of infinite-state systems. An exis-
tential channel bound means that the events of any execution of the automaton can be
scheduled in such a way that they can be executed with bounded channels. A simple ex-
ample illustrating this idea is a pair of processes, a producer and a consumer, where the
producer keeps sending messages to the consumer. Since there is no control on the relative
speed of the two processes, there is no bound on the number of transiting messages. But
for verifying many properties, like e.g. control-state reachability, it suffices to consider
only schedules where the messages are consumed without delay, thus corresponding to a
channel of size one. For communicating automata with universal and existential channel
bounds the realizability problem has a solution, and this can be stated as a Kleene-Büchi
theorem for languages of messages sequence charts.

Overview. Section 2 introduces the automaton model and the questions we consider
in this survey. In Part I we focus on the reachability problem and summarize results on
symbolic representations (Section 3) and lossy channel systems (Section 4). In Part II
we introduce various specification frameworks, ranging between logics and message se-
quence charts. Then we discuss solutions for the model-checking problem. In Part III
we present solutions for the realizability problem w.r.t. the specifications introduced in
Part II.



Communicating automata 1031

Several recent research directions are not included in this chapter. One particular
question concerns the analysis of extensions of communicating automata by additional
storage capabilities, including pushdown storage [8, 49, 44, 25, 26, 23, 24].

2 Communicating Automata and Verification

Communicating automata follow the simple paradigm of a network of automata cooper-
ating asynchronously over point-to-point, fifo communication channels. They arise nat-
urally as models for peer-to-peer interaction, as occurring e.g. in distributed protocols
using asynchronous message passing.

We consider systems described by means of a fixed communication network, con-
sisting of a finite set of concurrent processes P , together with a set of channels Ch ⊆
{(p, q) ∈ P2 | p ̸= q}, that stand for point-to-point links [18]. Following the classical
definitions, we exclude multiple channels between a pair of processes, as well as self-
linking channels. However, this restriction has no big impact on the kind of results we
will present. In our model, processes act either by point-to-point communication or by
local actions. Possible actions come from a (finite) communication alphabet Σ, that is
parametrized by the network (P,Ch), a set Msg of message contents, and a set Act of
local actions (for convenience we omit P,Ch,Msg,Act from the notation Σ). A send
action denoted as p!q(m) means that process p sends a message with content m ∈ Msg

to process q on channel (p, q) ∈ Ch. A receive action denoted as p?q(m) means that
p receives from q a message with content m ∈ Msg on channel (q, p) ∈ Ch. A local
action denoted as cp means that process p performs the action c ∈ Act . The set of p-
actions (equivalently, the p-local alphabet) equals Σp = {p!q(m), p?r(m), cp | (p, q) ∈
Ch, (r, p) ∈ Ch,m ∈ Msg, c ∈ Act}, and we let Σ =

⋃

p∈P Σp denote the set of all
actions. As usual, Σ∗ and Σω denote the set of finite and infinite sequences over Σ, resp.,
and Σ∞ = Σ∗ ∪ Σω .

Definition 2.1. A communicating automaton (CA for short) is a tuple A = ⟨(Ap)p∈P ,Σ, F ⟩
where

• each Ap = (Sp,→p, s0p) is a labeled transition system with state space Sp, transi-
tion relation →p⊆ Sp × Σp × Sp, and initial state s0p ∈ Sp;

• F ⊆
∏

p∈P Sp is a set of global final states.

We denote the product S :=
∏

p∈P Sp as set of global states.
The size of a CA A = ⟨(Ap)p∈P ,Σ, F ⟩ with message contents Msg is defined as

∑

p∈P |Sp|+ |Msg|+ |Act |.

The behavior of a CA is defined as the behavior of an infinite labeled transition system,
by considering the possible (local) transitions on the set of configurations of the CA. A
configuration of the CA A consists of a global state, together with a word from Msg∗ for
each channel (p, q) ∈ Ch. We write C = ⟨s, w⟩ for a configuration with global state
s ∈ S and channel contents w ∈ (Msg∗)Ch, and denote by sp and wp,q , the p-component
of s and the (p, q)-component of w, respectively. The set of all configurations of A is
denoted CA (or simply C when there is no risk of confusion). The initial configuration of



1032 D. Kuske, A. Muscholl

A is C0 = ⟨s0, ε⃗⟩ with ε⃗p,q = ε (the empty word) for all (p, q) ∈ Ch. A configuration
C = ⟨s, w⟩ is final if s ∈ F is a final state of A (note that the channels need not be empty
in a final configuration).

For two configurations C = ⟨s, w⟩, C ′ = ⟨s′, w′⟩ and an action a ∈ Σp, we write

C
a

−→ C ′ if the following hold:

• sp
a

−→p s′p is a transition of Ap (i.e., (sp, a, s′p) ∈ →p), and s′q = sq for all q ̸= p,
• if a = p!q(m) is a send action, then w′

p,q = wp,qm (message m is inserted into the
channel from p to q) and w′

r,s = wr,s for all (r, s) ̸= (p, q) (all other channels are
unchanged).

• if a = p?q(m) is a receive action, then wq,p = mw′
q,p (message m is deleted from

the channel from q to p) and w′
r,s = wr,s for all (r, s) ̸= (q, p) (all other channels

are unchanged).
• if a = cp is a local action, then w = w′.

We say that C ′ is a successor of C (and write C −→ C ′) if there exists some a ∈ Σ
with C

a
−→ C ′. As usual, we write

∗
−→ for the reflexive-transitive closure of −→. For a

set X ⊆ C of configurations, we write post(X) for the set of successors of configurations
from X and post∗(X) for the set of all reachable configurations from X:

post(X) := {C ′ ∈ C | ∃C ∈ X : C −→ C ′} ,

post∗(X) := {C ′ ∈ C | ∃C ∈ X : C
∗

−→ C ′} .

The reachability set of a CA A, denoted Reach(A), is the set

Reach(A) = post∗({C0})

(recall that C0 is the initial configuration of A).
A CA is deadlock-free, if from every reachable configuration it can reach a final con-

figuration.

Example 2.1. The CA in the figure below describes the communication between two
(finite-state) processes C and S, connected through one channel in each direction (process
C on the left, and S on the right). The set of message contents is Msg = {0, 1, $}. From
the initial configuration ⟨(c0, s0), (ε, ε)⟩ (say, (C,S) is the first channel) the configura-
tions ⟨(c1, s0), (010, ε)⟩ and ⟨(c0, s0), (101, $)⟩ are reachable, but not ⟨(c0, s0), (0101, $)⟩.

For instance, ⟨(c0, s0), (ε, ε)⟩
C!S(0)
−→ ⟨(c1, s0), (0, ε)⟩

C!S(1)
−→ ⟨(c0, s0), (01, ε)⟩.

c0

c1

C!S(0)

C!S(1),C?S($)

s0

s1

S?C(0)

S?C(1),S!C($)

A CA A is called deterministic, if for every local state s ∈ Sp the following holds:



Communicating automata 1033

• s
a

−→p s1 and s
a

−→p s2 implies s1 = s2, for every a ∈ Σp,

• s
p!q(m1)
−→ p s1 and s

p!q(m2)
−→ p s2 (for some s1, s2) implies m1 = m2.

The notion of determinism used above originates from [43]. The second condition in
this definition is motivated by viewing message contents as control information, that has
to be chosen deterministically by the sending process.

Definition 2.2. A run of a CA A is a (finite or infinite) sequence of transitions: ρ =
C1

a1−→ C2
a2−→ C3 · · · , with Ci ∈ CA configurations and ai ∈ Σ actions. The labeling

of the run ρ, denoted ℓ(ρ), is the sequence of actions a1a2 · · · ∈ Σ∞.

A finite run ρ = C1
a1−→ C2

a2−→ · · ·
an−1

−→ Cn is accepting if C1 = ⟨s0, ε⃗⟩ is the initial
configuration and Cn ∈ F × (Msg∗)Ch is a final configuration.

The language of a CA A, denoted L(A) ⊆ Σ∗, is the set

L(A) = {w ∈ Σ∗ | w = ℓ(ρ) for some accepting run ρ} .

Example 2.2. An abstract view of the transition system associated to the CA A from
Example 2.1 is given in Figure 1. There, we grouped certain configurations and connected
them by action-labeled edges such that the initial configuration belongs to the group at the
top-left corner and any a-successor of any configuration of some group belongs to the a-
successors of that group. One can easily verify that the groups of configurations form the
least solution to this constraint system. Hence the reachability set Reach(A) is the union
of all the configurations mentioned in that figure.

Assuming that all states of A are final, the language L(A) of A consists of words
over {C!S(0),S?C(0),C!S(1),S?C(1)S!C($),C?S($)} of the following form: the pro-
jection on ΣC belongs to the prefix closure of

(

(C!S(0)C!S(1))∗ C!S(0)C?S($)
)∗

, the

projection on ΣS belongs to the prefix closure of
(

(S?C(0)S?C(1))∗ S?C(0)S!C($)
)∗

,
and the words are well-formed w.r.t. the send/receives (cf. definition of “valid word” in
Section 5). In particular, the process S sends at most one more message than process C

receives.

Notice that we did not impose in the definition of a CA A = ⟨(Ap)p∈P ,Σ, F ⟩ any
restriction on the local automaton Ap. In general, we might be interested in various kinds
of (possibly infinite-state) automata, such as pushdown automata [49, 44]. However, a
basic kind of CA is obtained by requiring that every Ap is a finite-state automaton, and
then we denote A as communicating finite-state machine (CFM for short). Most of the
research done in the past decades on CAs focused on CFMs, and we will concentrate on
them in the next sections.

Basic verification questions

The simplest property considered in automated verification is safety, which amounts to
ask a reachability question. The reachability problem for CFMs in its most general form
consists in computing the set post∗(Init) for some set of configurations Init. A more
specific reachability question consists in asking for two configurations C1, C2 ∈ C of



1034 D. Kuske, A. Muscholl

⟨(c0, s0), ((10)∗(01)∗, ε)⟩

⟨(c0, s1), (1(01)∗, ε)⟩

⟨(c0, s0), (1(01)∗, $)⟩

S?C(0)S?C(1)

S!C($)

⟨(c1, s0), ((10)∗(01)∗0, ε)⟩

⟨(c1, s1), ((10)∗, ε)⟩

⟨(c1, s0), ((10)∗, $)⟩

S?C(0)S?C(1)

S!C($)

C!S(0)

C!S(1)

C!S(0)

C!S(1)

C!S(0)

C!S(1)

C?S($)

Figure 1. An abstract view of the transition system.

some CFM A, whether C1
∗

−→ C2. A further instantiation of the reachability problem is
control-state reachability:

Control-state reachability problem: Given a CFM A, a configuration C and
a global state s ∈ S, is some configuration with global state s reachable
from C?

All reachability problems above are undecidable for CFMs [18], and in Part I and
Section 7.1 of this survey we present three methods to tackle this problem.

Obviously, there are many more verification questions that one can ask about a given
CFM, some of them being specific to the model. We give some examples below:

• Termination: Given a CFM A and a configuration C, are all runs of A from C
finite?

• Structural termination: Given a CFM A, are all runs of A from any configuration
finite?

• Absence of deadlocks: Given a CFM, is it deadlock-free?
• Boundedness: Given a CFM A and a configuration C, are only finitely many con-

figurations reachable from C?
• Repeated reachability (Büchi acceptance): Given a CFM A, a configuration C and

a global state s, is there some run from C that meets s infinitely often?
• Model-checking: Given a CFM A and a property P , do all words from L(A) sat-

isfy P ?

The last of these questions is very general, as the term “property P ” can be instantiated
in very different ways. Here, we will concentrate on the case where P is given by some
formula (see Part II for details). This survey does not discuss the branching-time model-
checking problem – that talks about properties of the collection of all runs – but only



1035

the linear-time case, see also Chapter 38 for a detailed discussion about linear- versus
branching-time specifications.

Part I

Reachability

This part presents two methods to tackle the undecidability of the reachability problem for
CFM: Symbolic representations of the reachability set help to accelerate the naive enu-
meration of all reachable configurations, and the lossy channel method allows to compute
an over-approximation of the reachability set. A third approach based on channel bounds

will be used to compute under-approximations of the reachability set in Section 7.1.

3 Symbolic Representations

The set of all reachable configurations of some CFM can be easily enumerated by a
breadth-first search which requires to handle finite sets of configurations. Eventually,
every reachable configuration is computed. In this section, we discuss a technique that
speeds up this process. There are two main ideas involved:

(1) Consider possibly infinite sets of configurations, that are given symbolically through
a finite description (see also Chapter 32 for more details related to symbolic repre-
sentations of sets of numbers).

(2) Compute the effect of “meta-transitions”, that correspond to sequences of actions
of the CFM.

In the following, let A = ⟨(Ap)p∈P ,Σ, F ⟩ be some CFM with global state space S.
Let us enumerate the channels in some fixed way, say as ch1 to chk, such that a configura-
tion ⟨s, w⟩ with w = (wchi

)ki=1 can be identified with the word swch1
#wch2

# · · ·wchk
#

(assuming that # /∈ Msg ∪ S).
One of the first attempts to use finite automata for symbolic representations can be

found in [63]. There, the CFM A is said to have recognizable channels if the set {sw ∈
S(Msg∗#)k | ⟨s, w⟩ ∈ Reach(A)} is a regular language. For CFMs with recognizable
channels, reachability is decidable [63]. One can check this by using two semi-algorithms:
one is the plain enumeration of all reachable configurations, and the other one enumerates
all regular languages L ⊆ S(Msg∗#)k, looking for one that contains the initial configu-
ration C0 (i.e., with s0#k ∈ L), excludes the target configuration, and is closed under the
one-step transition relation. Notice however that recognizable channels are very restric-
tive: a CFM containing one process that sends the same (arbitrary) sequence of messages
to two other processes, does not have recognizable channels.

Queue-content Decision Diagrams [10] (QDD for short) describe (possibly infinite)
sets of configurations of a CFM by finite automata. The main idea here is to accelerate
the computation of the reachability set – which however might be non-representable by
a QDD. To this aim, one analyzes the effect of iterating a loop in the transition system



1036

associated with the CFM.
More precisely, a QDD is a finite automaton accepting words from (Msg∗#)k. A set

of configurations X is QDD-representable, if all configurations from X have the same
global state s ∈ S and there is a QDD accepting the set {w ∈ (Msg∗#)k | ⟨s, w⟩ ∈
X} (i.e., if this set is regular). Now let σ ∈ Σ∗, s ∈ S a global state, X a set of
configurations with global state s. Then post∗σ(X) is the set of channel contents w′ such
that the configuration ⟨s, w′⟩ is reachable from some configuration ⟨s, w⟩ ∈ X by a path
whose label belongs to σ∗.

A word σ is (effectively) QDD-preserving, if post∗σ(X) is (effectively) QDD-repre-
sentable whenever X is a QDD-representable set of configurations. It is non-counting

w.r.t. the channel (p, q) if one of the following conditions holds:

• σ contains no letter p!q,
• the message alphabet of channel (p, q) is unary and σ contains the same number of

occurrences of p!q as of occurrences of q?p.

Theorem 3.1 ([11]). The following assertions are equivalent for any word σ ∈ Σ∗:

(1) σ is QDD-preserving,

(2) σ is effectively QDD-preserving,

(3) σ is non-counting w.r.t. all but at most one channel.

Example 3.1. We consider again the CFM from Example 2.1 (page 1032). The word
σ = C!S(0)C!S(1) is non-counting w.r.t. channel (S,C) (but not w.r.t. the channel
(C,S)), so the theorem above can be applied with X = {C0}, yielding post∗σ(X) =
{((01)n, ε) | n ! 0}. The sequence σ′ = C!S(0)S?C(0)S!C($)C?S($) C!S(0)C!S(1)
is non-counting w.r.t. (S,C) and post∗σ′(X) = {(01, ε), (1001, ε)}.

A semi-algorithm for model-checking LTL properties (with atomic propositions refer-
ring to global states), based on the QDD-representation, was proposed in [11].

Symbolic representations going beyond regular ones were introduced in [16]: Con-

strained Queue-content Decision Diagrams (CQDD for short). A CQDD consists of a
restricted finite automaton B, together with a Presburger constraint π. An accepting run
in a CQDD is an accepting run of the automaton B whose Parikh image satisfies π. A
word σ ∈ Σ∗ is (effectively) CQDD-preserving, if post∗σ(X) is (effectively) CQDD-
representable whenever X is a CQDD-representable set of configurations. It should be
noted that CQDDs and QDDs are incomparable: CQDDs add power via the Presburger
constraints, but lose on the level of the regular set since only a restricted form of automata
is allowed. The following theorem shows that CQDDs can be used for a semi-algorithm
computing the reachability set from any given initial configuration (since any finite set is
CQDD-representable).

Theorem 3.2 ([16]). Every word σ ∈ Σ∗ is effectively CQDD-preserving.

As mentioned before, the above results allow to speed up the enumeration of all reach-
able configurations of a CFM. Suppose that we want to know whether some configura-
tion with global state s is reachable from the initial configuration C0. The trivial semi-
algorithm mentioned at the beginning of this section performs a breath-first search in



1037

the transition system, thereby enumerating all sequences of actions that can be performed
from the initial configuration. The improved semi-algorithm handles at once all sequences
of the form ρ1 σ∗ ρ2 with ρ1,σ, ρ2 ∈ Σ∗ and computes the set postρ2

(post∗σ(postρ1
(C0))).

4 Faulty Channel Systems

In this section, we show a technique that allows to compute a superset of the reachability
set of a CFM. The idea is to add transitions to the labeled transition system derived from
the CFM. This can be done in many more or less natural ways. The first possibility is
to ignore the order of messages in the channels. The CFM becomes thus a Petri net,
whose reachability problem is decidable [55, 45, 50] (albeit of high complexity, since
no primitive recursive algorithm is known so far). However, the main problem with this
approximation technique is that it is too coarse for a realistic modeling.

The additional transitions considered here can either lose messages from or introduce
messages into channels. Such a model is interesting in its own right since it allows us to
model imperfect channels. Lossy machines are CFMs where channels can lose an arbitrary
number of messages, at any time. For CFMs with insertion errors, new messages can be
inserted in channels, at any time. Although these two models have different flavor, the
techniques used to manipulate them are quite similar. However, we will see a minor
qualitative difference between the results obtained for these two models (cf. Remark 4.6
below).

Lossy CFMs (or lossy channel systems) represent a special instance of a more gen-
eral class of infinite-state systems, namely well-structured transition systems (WSTS for
short). WSTS were considered independently by Finkel and Schnoebelen [31, 32], and
by Abdulla and Jonsson [1, 2]. The basic idea behind a WSTS ⟨S,→⟩ is to endow the set
of configurations S with a well quasi-order (wqo for short) in order to manipulate certain
infinite subsets of S symbolically. A wqo ≼ on S is a quasi-order without infinite anti-
chains and without infinite decreasing chains. A transition system ⟨S,→,≼⟩ is a WSTS
if it satisfies the following monotonicity property: for every s → s′ and every s1 ∈ S with
s ≼ s1, it is required that some s′1 ∈ S exists with s1 → s′1 and s′ ≼ s′1. Monotonicity
appears with different flavors in [32]. One variant consists in requiring s1 →+ s′1 in the
definition above. This is then denoted as transitive monotonicity.

Two properties are crucial for WSTS. The first one is that every subset X ⊆ S has a
finite set of minimal elements, denoted min(X). The second property is that the prede-
cessor relation preserves upward-closed1 sets, i.e., pre(X) := {s | s → s′ for some s′ ∈
X} is upward-closed whenever X is upward-closed. As a consequence, reachability of
upward-closed sets X of states can be decided by a backward algorithm, that computes
the set pre∗(X) =

⋃

n!0 pren(X) as least fixpoint of the operation Y ,→ pre(Y ) ∪ X .
Intersecting the result with the set of initial configurations solves the reachability problem
for WSTS.

Theorem 4.1 ([2]). Let ⟨S,→,≼⟩ be a WSTS such that ≺ is decidable and min(pre(X))

1X is upward-closed if X = {s′ | s ≼ s′ for some s ∈ X}.



1038

is computable from min(X) for every upward-closed set X ⊆ S . Then, for s, s′ ∈ S , it

is decidable whether there exists s′′ ∈ S with s →∗ s′′ and s′ ≼ s′′.

Termination for WSTS can be decided by a forward algorithm, computing the finite

reachability tree FRT (s) from a state s ∈ S: this is the prefix of the reachability tree
built from state s, obtained by defining a node t′ as leaf if there is some node t ≼ t′ on
the path from s to t′. Note that the tree FRT (s) is finite if ⟨S,→⟩ has finite branching.

Theorem 4.2 ([32]). Termination is decidable for finitely branching WSTS ⟨S,→,≼⟩
with transitive monotonicity such that ≺ is decidable and {s′ ∈ S | s → s′} is com-

putable from s ∈ S .

For lossy CFMs, the choice of a wqo is very natural. One starts with the subword
ordering: let x ≼ y if x = x1 · · ·xn and y = y0x1y1 · · · yn−1xnyn for some xi, yi ∈
Msg∗. This wqo extends to configurations of the CFM: for two configurations C = ⟨s, w⟩,
C ′ = ⟨s′, w′⟩, let C ≼ C ′ if s = s′ and wp,q ≼ w′

p,q for all channels (p, q). This proves
the following result:

Corollary 4.3. Control-state reachability and termination for lossy CFMs are decidable

problems.

However, the complexity of both problems is non-primitive recursive [66]. A precise
complexity characterization was obtained in [21] in terms of a hierarchy of recursive
functions.

On the negative side, more complex properties such as repeated reachability of a given
global state, are undecidable for lossy CFMs [2]. Extensions of this undecidability result
were obtained in [56], by considering lossy counter machines. These are usual counter
machines (with zero tests) where the counters can be decremented spontaneously. The
main result in the latter paper is that it is undecidable whether a lossy counter machine
has an infinite run from some initial configuration:

Theorem 4.4 ([56]). Structural termination and boundedness for lossy counter machines

are undecidable problems.

Through a simulation of lossy counter machines by lossy CFMs, the above result
extends to the latter model (and yields undecidability for two other problems):

Corollary 4.5 ([2, 56]). The following questions about lossy CFMs are undecidable:

structural termination, boundedness, and repeated reachability.

A different picture arises when the source of faults are insertion errors, as considered
e.g. in [19, 17]. As defined there, insertion CFMs (called insertion channel machines) are
CFMs where channels can acquire additional contents spontaneously. In addition, in [17],
such machines are endowed with tests for channel emptiness and for non-occurrence of a
given content.



1039

Remark 4.6. Notice that for an insertion CFM, its reachability set (defined as in [19]) is
recognizable, since it is upward-closed w.r.t. the wqo from the proof of Cor. 4.3. The same
holds for lossy CFMs, since the reachability set is here downward-closed and therefore
the complement of an upward-closed set. However, an essential difference is that a finite
automaton accepting the reachability set of an insertion CFM is effectively computable,
whereas this is not the case for lossy CFMs. For the first assertion one can use a similar
argument as in the fixpoint computation of the backward reachability algorithm men-
tioned above [19]. For lossy CFMs the reachability set cannot be effectively computable,
otherwise the boundedness problem for lossy CFMs would be decidable, contradicting
Theorem 4.4 (just compute a finite automaton for the reachability set and check it for
finiteness).

Together with the wqo from the proof of Cor. 4.3, insertion CFMs are WSTS. From
Thm. 4.1, it follows that their control-state reachability problem is decidable as well.
As for lossy CFMs, this problem is not primitive recursive. In contrast, insertion CFMs
behave better w.r.t. the termination problem:

Theorem 4.7 ([17]). The (structural) termination problem for insertion CFMs has non-

elementary, yet primitive recursive complexity.

Further reading. The paper [19] also considers channels with duplication errors. Sys-
tems mixing lossy channels and error-free ones are considered in [20], providing a (poly-
nomial) characterization of those architectures where reachability is decidable. Adding
probabilities to lossy CFMs has been considered in several papers. For instance, non-
deterministic CFMs with probabilistic lossiness were shown in [9] to have a decidable
reachability problem, and so do some instances of the repeated reachability problem
(e.g. the ”almost surely” instance). On the other hand, repeated reachability with pos-
itive probability remains undecidable, by a reduction from the boundedness problem for
lossy CFMs.

Part II

Specifications and Model-Checking

In this part, we first introduce formalisms to describe properties of runs of CFMs from
a language-theoretic viewpoint. We start with sequential specifications – and show that
model-checking CFMs against such specifications is undecidable. We then introduce mes-
sage sequence charts, a graphical way of presenting the causal dependencies in a run of
a CFM, and logics like monadic second order logic and propositional dynamic logic, that
express properties of message sequence charts, i.e., causal properties of runs. In Sec-
tion 7, we will investigate the model-checking problem for such logics. The results in this
part support the “rule of thumb” that the only way to avoid undecidability of the model-
checking problem is to use specifications that are compatible with the causal structure.



1040

5 Sequential Specifications

We start with some notation first. A word over the communication alphabet Σ is called
valid, if it can potentially be executed from some configuration with empty channels. To
make this notion strict, let π!

p,q,π
?
p,q : Σ∗ → Msg∗ be the homomorphisms defined by

π!
p,q(p!q(m)) = π?

p,q(q?p(m)) = m and π!
p,q(a) = π?

p,q(b) = ε for a not of type p!q and

b not of type q?p. Then a word u ∈ Σ∗ is valid if π?
p,q(v) is a prefix of π!

p,q(v) for any
prefix v of u and any channel (p, q) (i.e., the sequence of messages sent from p to q is
consistent with the sequence received, and a receive never precedes its matching send).

A simple formalism to describe a property of words over Σ are finite automata. An-
other one is linear time temporal logic LTL [54], that can refer to matching send and
receive events. The syntax of this extended LTL is:

ϕ ::= true | σ | Xϕ | Xmsgϕ | ϕUϕ | ϕ ∨ ϕ | ¬ϕ ,

where σ ∈ Σ.
Let u = a1a2 · · · an be a valid word with ai ∈ Σ and let 1 " i " n. Then the

satisfaction relation is defined inductively:

u, i |= σ ⇔ ai = σ

u, i |= Xϕ ⇔ u, i+ 1 |= ϕ and i < n

u, i |= Xmsgϕ ⇔ ai = p!q(m) and there exists i < j " n with

u, j |= ϕ, aj = q?p(m), and |π!
p,q(a1 · · · ai)| = |π?

p,q(a1 · · · aj)|

u, i |= ϕ1Uϕ2 ⇔ there exists i " k " n with u, k |= ϕ2

and u, j |= ϕ1 for all i " j < k

(u, i |= ϕ1 ∨ ϕ2 and u, i |= ¬ϕ are defined in the obvious way.) The modalities X (next)
and U (until) are standard, Xmsg refers to the matching receive of the current send event.
We write u |= ϕ for u, 1 |= ϕ.

Example 5.1. Unsurprisingly, the following example shows that the additional Xmsg op-
erator can express non-regular properties, even restricted to valid words over Σ. In order
to keep it simple, we assume that P = {p, q, r}, Ch = {(p, q), (p, r), (r, q)} and that Msg

is a singleton (therefore omitted).
Consider the LTL formula ϕ = trueU (X cp ∧ Xmsg X cq) expressing that there is a

matching pair of send and receive events on channel (p, q), that are immediately followed
by the local actions cp and cq , resp. Let L be a regular language that contains all valid
words satisfying ϕ. Notice that words of the form

u = (p!q)x1 cp (p!q)
x2 (p!r r?p r!q q?r) (q?p)y1 cq (q?p)

y2

with xi, yi ! 0, are valid if and only if x1 + x2 ! y1 + y2. A valid word u as above
belongs to L if and only if x1 = y1 > 0. Provided y1 is sufficiently large, a pumping
argument allows us to find z1 < y1 such that also

v = (p!q)x1 cp (p!q)
x2 (p!r r?p r!q q?r) (q?p)z1 cq (q?p)

y2

belongs to L. But the valid word v does not satisfy ϕ. Hence, any regular language that
contains all valid words satisfying ϕ also contains some valid word not satisfying ϕ.



1041

The most serious problem about sequential specifications is that the model-checking
problem for CFMs is undecidable.

Proposition 5.1. Model-checking CFMs against LTL properties is undecidable.

An obvious reduction from Post’s correspondence problem yields a fixed CFM with
an undecidable model-checking problem: Let P = {p, q, r, s}, Ch = {(p, q), (r, s)}, and
Msg = {a, b, 1, 2, 3, 4, 5, $}. The CFM A we want to model-check is the “universal”
CFM on this architecture, and its language is the set of all valid words. Now let I =
(ui, vi)1"i"5 be five pairs of words over the alphabet A = {a, b}, i.e., an instance of
Post’s correspondence problem. Then the language

[

⋃

1"i"5

p!q(i)r!s(ui)
]+

p!q($) r!s($)
[

⋃

1"i"5

q?p(i)s?r(vi)
]+

q?p($) s?r($)

can be expressed by an LTL formula ϕ (here, r!s(a1a2 · · · an) means the sequence of
sends r!s(a1) · · · r!s(an), and s?r(a1 · · · an) is to be understood similarly).

Suppose u belongs to the language of ϕ and is valid. Then π!
p,q(u) = π?

p,q(u) =
i1i2 · · · in$ implies that i1, . . . , in is a solution for I. Conversely, any solution to I gives
a valid word satisfying ϕ. Hence, all words from the language of A satisfy ¬ϕ if and only
if I has no solution – but this is undecidable [62].

6 Partial Order Specifications

A CFM is meant to model a network of independent processes. In particular, distinct
processes can act at the same time. For instance, the processes p and p′ can, at the very
same moment, send messages m and m′ to processes q and q′, resp.

Recall that from a CFM, we defined a labeled infinite transition system such that
executions of the CFM are considered as paths in this transition system. This forces us
to linearly order the two actions p!q(m) and p′!q′(m′) from above, giving rise to two
different paths in the transition system.

Although simple, the interleaving semantics is not satisfactory for at least two rea-
sons: one is the undecidability of the model-checking problem, the other is that causal
properties, e.g. races, are hard to formulate in the interleaving semantics. In this section,
we model computations of CFMs by particular partial orders, called message sequence
charts. We will propose two logical formalisms that can describe causal properties of
such objects.

6.1 Message sequence charts

Message sequence charts are Σ-labeled posets ⟨E,",λ⟩, with E a set of events, " a
partial order on E, and λ : E → Σ a labeling function. We write P (e) for the process on
which an event e is located. That is, we let P (e) = p if λ(e) ∈ Σp, call e a p-event, and
let Ep = P−1(p) be the set of all p-events. An event labeled by some p!q(m) (q?p(m),
resp.) is called an event of type p!q (q?p, resp.).



1042

We need to define two relations "P and <msg on events:

• e "P f if P (e) = P (f) and e " f .
• e <msg f if for some (p, q) ∈ Ch, the two following conditions hold:

(1) e is an event of type p!q and f of type q?p.
(2) The number of events e′ " e of type p!q equals the number of events f ′ " f

of type q?p.

The meaning of the two relations "P and <msg is as follows. The relation "P de-
scribes the order of the events executed by each process, whereas <msg describes matching
pairs of send and receive events (under the assumption that channels are FIFO). By !P

we denote the immediate process successor relation: e!P f if e <P f and e "P g <P f
implies e = g.

Definition 6.1. A message sequence chart (MSC for short) is a finite Σ-labeled poset
M = ⟨E,",λ⟩ – up to isomorphism – satisfying the conditions below:

• " = ("P ∪ <msg)∗.
• The set of p-events Ep ⊆ E is linearly ordered for any process p ∈ P .
• For any event f of type q?p, there exists an event e and a message content m ∈ Msg

such that e <msg f , λ(e) = p!q(m), and λ(f) = q?p(m).

The relation <msg matches sends and receives. By the last requirement, matching
send- and receive-events handle the same message content. It can be understood as say-
ing “any message received has been sent”. In the literature, one often finds in addition
the complementary requirement “any message sent will be received”, the above defined
concept is then known as prefix MSCs. We prefer to use this more general definition and
still speak of MSCs.

Example 6.1. An example MSC is shown in the left half of Figure 2; this MSC is an
execution of the CFM of Example 2.1, page 1032. All events of process C are drawn as
circles on the process line C (and similarly for S). For simplicity, not all event labels are
shown in the picture. Vertical edges denote the relation !P (oriented downwards) and
diagonal arrows denote the relation <msg; the label of such an arrow denotes the message
contents transmitted (hence, e.g., the action performed by the source event of the first
diagonal edge is C!S(0)). The partial order is therefore the reflexive and transitive closure
of all the arrows. The last two events of type C!S are unmatched since the messages sent
are not received.

A linearization of a Σ-labeled partial order ⟨E,",λ⟩ is the sequence of labels of a
linear extension of this order. Thus, a linearization is a word over the alphabet Σ and the
set Lin(M) of linearizations of an MSC M is a subset of Σ∗. For a set (or language) of
partial orders X , we write Lin(X) =

⋃

M∈X Lin(M).
For an MSC, the relation between the partial order and its linearizations is very tight:

Lemma 6.1. Any linearization of an MSC is a valid word and any valid word u is the

linearization of some unique MSC that we denote msc(u).



1043

C S

C!S(0)

C!S(1)

C!S(0)

S?C(0)

0

1

0

$

C S

C!S((10)+)

C!S((01)∗(0 + ε))

* *

(01)∗0

$

0

$

Figure 2. A message sequence chart (left) and a symbolic representation of the set
of executions of the CFM in Example 2.1 (right).

Let A = ⟨(Ap)p∈P ,Σ, F ⟩ be a CFM and let M(A) denote the set of MSCs that
admit at least one linearization in L(A), i.e., M(A) = {msc(u) | u ∈ L(A)}. Since a
CFM cannot distinguish between different linearizations of an MSC this set equals {M |
Lin(M) ⊆ L(A)}.

We next explain a more direct characterization of the set M(A) of MSCs accepted by
the CFM A = ⟨(Ap)p∈P ,Σ, F ⟩. Let M = ⟨E,",λ⟩ be an MSC. A run of A on M is a
mapping ρ : E →

⋃

p∈P Sp labeling events of M by local states, such that for any p ∈ P
and any e, f ∈ Ep we have

• if e!P f , then ρ(e)
λ(f)
−−−→p ρ(f) and

• if f = min(Ep,"P ), then s0p
λ(f)
−−−→p ρ(f).

For p ∈ P , let sp = ρ(max(Ep,"P )) if Ep ̸= ∅ and the initial state s0p otherwise. Then
the run ρ is accepting if the global state (sp)p∈P belongs to the set of accepting states F .
Now one can show that M ∈ M(A) if and only if A admits some accepting run ρ on M .

Example 6.2. The right part of Figure 2 is another abstract view of the executions of the
CFM in Example 2.1, this time in a more succinct way using MSCs. The message labeled
(01)∗0 stands for any sequence of message arrows from C to S with contents 0, 1, . . . , 0.
The event C!S((10)∗) stands for a sequence of sends C!S with contents 1, 0, . . . , 1, 0,
similarly for C!S((01)∗(0+ε)). The upper half of this picture can be iterated. Recall that
process C and S alternate between states c0, c1, and s0, s1 respectively. With this picture



1044

it is rather easy to check that the set of reachable configurations with state (c0, s0) has
channel contents in one of the following sets (cf. also Figure 1):

• ((01)∗, ε): C and S both in upper half, either S before sending $, or both at the end
of upper half,

• ((10)∗1, $): C and S both in lower half, after S sends $ (and before C receives it),
• ((10)+(01)∗, ε): C and S both in lower half, after C receives $.

In the following, it is more convenient to consider the set M(A) as the semantics of
the CFM A. Properties of the semantics of A can therefore be expressed as properties
of MSCs. The following two sections therefore introduce logical formalisms that can
describe properties of MSCs.

6.2 Monadic second order logic

We fix supplies Var of individual and VAR of set variables. We will use the convention
that lower case variables belong to Var and upper case variables to VAR. The set MSO of
monadic second order (or MSO) formulas is given by the following grammar:

ϕ ::= σ(x) | x!P y | x <msg y | x " y | x = y | x ∈ X |

∃xϕ | ∃Xϕ | ¬ϕ | ϕ ∨ ϕ ,

where σ ∈ Σ is an action, x, y are individual variables from Var, and X ∈ VAR is a
set variable. A formula is first order if it does not contain any subformula ∃X ψ for
X ∈ VAR, it is existential if it is of the form ∃X1∃X2 . . . ∃Xn ϕ where ϕ is first order.
We write FO and EMSO for the sets of first order and existential MSO-formulas.

Let M = ⟨E,",λ⟩ be an MSC, f : Var → E and g : VAR → 2E be interpretations
of variables, and ϕ a formula from MSO. We then define M,f, g |= ϕ (read “the MSC
M satisfies the formula ϕ under the interpretations of variables f and g”) by induction:

M,f, g |= σ(x) ⇔ λ(f(x)) = σ ,

M, f, g |= x!P y ⇔ f(x)!P f(y) ,

M, f, g |= x ∈ X ⇔ f(x) ∈ g(X) ,

M, f, g |= ∃xϕ⇔ there exists v ∈ E with M,f [x/v], g |= ϕ ,

and similarly for the formulas x <msg y, x " y, x = y, and ∃X ϕ. Here, f [x/v]
denotes the function Var → E that sends x to v and agrees with f for all other variables.
The semantics of ¬ϕ and ϕ1 ∨ ϕ2 are standard. For a subset R of {!P , <msg,"}, let
MSO(R) be the restriction of the set of MSO-formulas to those that mention at most the
binary relations from R.

As a first example, consider the following formula

Succ = x < y ∧
∨

p∈P

(

Σp(x) ∧ Σp(y) ∧ ∀z(Σp(z) → z " x ∨ y " z)
)

from MSO(") with two free individual variables x and y, where Σp(x) is an abbreviation
of

∨

σ∈Σp
σ(x). Then we have M,f, g |= Succ if and only if f(x) !P f(y). Hence

any formula from MSO({!P } ∪ R) can be translated into an equivalent formula from



1045

MSO({"} ∪ R), independently from what the set R is. Note that the same holds if
we only consider first order or existential formulas. But such an argument cannot work
for <msg, more precisely, there is a formula from MSO(!P , <msg) without equivalent
counterpart in MSO("). Such an example is the LTL formula from Example 5.1, that we
rephrase in MSO(!P , <msg) as

ϕ = ∃x, x′, y, y′ : x!P x′ ∧ y !P y′ ∧ x <msg y ∧ cp(x
′) ∧ cq(y

′) .

Suppose that ψ is an equivalent formula from MSO("), and let u be a valid word as in
Example 5.1. Then msc(u) is linearly ordered by ", so we can interpret ψ directly on the
word u. Let L be the regular set of all words over Σ that satisfy ψ. Then L contains in
particular all valid words u such that msc(u) is linearly ordered and satisfies ϕ. Arguments
as in Example 5.1 show that L also contains some valid word v with msc(v) linear and
msc(v) ̸|= ϕ. But v ∈ L and msc(v) linear imply msc(v) |= ψ, so ψ and ϕ cannot be
equivalent.

Next consider the following formula Leq(x, y) from MSO(!P , <msg):

∃X :
(

y ∈ X ∧ ∀z′(z′ ∈ X ↔ (z′ = x ∨ ∃z ∈ X : z <msg z′ ∨ z !P z′))
)

.

Then the formula starting with ∀z′ holds in M (with respect to f and g) if and only
if g(X) is the set of nodes e ∈ E where f(x) " e. Hence Leq(x, y) holds if and
only if f(x) " f(y). As a consequence, any formula ϕ from MSO can be translated
into an equivalent formula ϕ from MSO(!P , <msg). Since the above formula uses an
additional set variable, ϕ is in general not first order or existential, even if ϕ is first order
or existential, respectively.

6.3 Propositional dynamic logic

In this section, we introduce a temporal logic that can describe causal properties. This
logic is adapted from classical Propositional Dynamic Logic [33]. Like the logic TLC [7],
which is interpreted over Mazurkiewicz traces (cf. Section 9.1), our variant of PDL is
interpreted directly on MSCs, and extends the logic TLC− considered in [64].

The logic PDL has three types of formulas: local formulas express properties of sin-
gle events in an MSC, path expressions express properties of sequences of events, and
global formulas express properties of MSCs as a whole. As example, the local formula
p!q(m) is true if and only if the current event sends the message m from p to q. The
path expression (msg; proc)∗ holds true of a sequence of events e0, e1, e2, e3, . . . , e2n if
and only if e2i <msg e2i+1 !P e2i+2 for all 0 " i < n. That is, e0 < e2n via a path
that alternates between message arcs and process successor arcs. Then, the local formula
⟨(msg; proc)∗⟩ p!q(m) holds if, from the current event, there is a path as described, lead-
ing to an event that sends message content m from p to q. Finally, the global formula
E(q!p(n) ∧ ⟨(msg; proc)∗⟩ p!q(m)) holds if and only if the MSC contains some event
labeled q?p(n) where the previous formula holds.

Path expressions π and local formulas α are inductively (with σ ∈ Σ below):

π ::=proc | proc−1 | msg | msg−1 | {α} | π;π | π + π | π∗ ,

α ::=true | σ | α ∨ α | ¬α | ⟨π⟩α ,



1046

Local formulas express properties of single events in MSCs. To define the semantics
of local formulas, let M = ⟨E,",λ⟩ be an MSC and e ∈ E an event from M with
P (e) = p. Then M, e |= σ if and only if λ(e) = σ; M, e |= α1 ∨ α2 and M, e |= ¬α are
defined canonically.

The semantics of modalities ⟨π⟩α indexed by a path expression π is to reach via a
program (path) π an event where the local formula α is satisfied:

M, e |= ⟨proc⟩α⇔ there exists e′ ∈ E with e!P e′ and M, e′ |= α ,

M, e |=
〈

proc−1
〉

α⇔ there exists e′ ∈ E with e′ !P e and M, e′ |= α ,

M, e |= ⟨msg⟩α⇔ there exists e′ ∈ E with e <msg e′ and M, e′ |= α ,

M, e |=
〈

msg−1
〉

α⇔ there exists e′ ∈ E with e′ <msg e and M, e′ |= α ,

M, e |= ⟨{α}⟩β ⇔ M, e |= α and M, e |= β ,

M, e |= ⟨π1;π2⟩α⇔ M, e |= ⟨π1⟩ ⟨π2⟩α ,

M, e |= ⟨π1 + π2⟩α⇔ M, e |= ⟨π1⟩α ∨ ⟨π2⟩α ,

M, e |= ⟨π∗⟩α⇔ there exists n ! 0 with M, e |= (⟨π⟩)nα .

Global formulas are Boolean combinations of properties of the form “there exists an
event satisfying the local formula α”. Their syntax is given by:

ϕ ::= Eα | Aα | ϕ ∨ ϕ | ϕ ∧ ϕ ,

where α ranges over the set of local formulas. The semantics is defined by:

M |= Eα⇔ there exists an event e with M, e |= α ,

M |= Aα⇔ M, e |= α for all events e .

The definitions of M |= ϕ1 ∨ ϕ2 and M |= ϕ1 ∧ ϕ2 are obvious.
Semantically, a local formula of the form ⟨({α}; (proc+msg))∗⟩β corresponds to the

until construct αUβ in the temporal logic TLC− [64], i.e., TLC− is a semantic fragment
of PDL. In TLC−, however, one cannot express properties such as “there is an odd number
of messages from p to q”, which is expressible in PDL by the global formula below.

Example 6.3. We use the usual abbreviations for Boolean and rational expressions, as
well as p!q for

∨

m∈Msg p!q(m). The local formula p!q ∧ ¬
〈

(proc−1)+
〉

p!q is satisfied
by the first event on process p of type p!q. Paths on process p with an even number
of events of type p!q (ending with such an event, and not counting the first event) are
described by the path formula [((proc ; {¬p!q})∗; proc ; {p!q})2]∗. The global formula
A
(

(p!q ∧ ¬
〈

(proc−1)+
〉

p!q) →
〈

[((proc ; {¬p!q})∗; proc ; {p!q})2]∗
〉

¬ ⟨proc+⟩ p!q
)

says
that the number of messages from p to q is odd.

7 Model-Checking

Since even reachability is an undecidable problem for CFMs, model-checking properties
of such automata requires some restrictions. Given that one main reason for undecidabil-
ity are the channels, we focus in this section on two variants of channel bounds. Notice



1047

that channel bounds are well justified in practice, since any concrete implementation of
a communication protocol will have to use channels of some given size. The existen-
tial version of channel bounds is optimistic and considers only those executions that can
be rescheduled with bounded channels. The universal version is pessimistic and consid-
ers only those executions that, independently of the scheduling, use bounded channels.
Although these two variants of bounds look rather similar, it is important to stress that
certain communication networks (e.g., acyclic ones) have existentially, but no universally
bounded channels (cf. Example 7.3).

7.1 Channel bounds

Let B ∈ N be a fixed positive integer. A valid word u is B-bounded if, for every prefix v
of u the difference between the number of matched events of type p!q and those of type
q?p in v is bounded by B:

min{|π!
p,q(v)|, n}− |π?

p,q(v)| " B , where n = |π?
p,q(u)| .

We write Σ∗|B for the set of valid B-bounded words. It is not hard to see that this set is
regular.

We explain now what “rescheduling a run” means. Let ∼ be the least equivalence
relation on the set of valid words such that u ∼ v whenever u = xaby and v = xbay with
x, y ∈ Σ∗, a ∈ Σp and b ∈ Σq for two distinct processes p and q. We say that u can be
rescheduled into v if u ∼ v. For a valid word u, let [u]∼ denote its equivalence class with
respect to ∼, i.e., the set of valid words that can be rescheduled to u.

A valid word u is universally B-bounded if [u]∼ ⊆ Σ∗|B and it is existentially B-

bounded if [u]∼ ∩ Σ∗|B ̸= ∅.

Example 7.1. The word u = C!S(0)C!S(1)C!S(0)S?C(0)S?C(1)C!S(1) is valid and
2-bounded (note that |π?

C,S(u)| = 2), but not 1-bounded because of the prefix C!S(0)C!S(1)
that consists of (matched) sends, only. But we have

u ∼ C!S(0)C!S(1)S?C(0)C!S(0)S?C(1)C!S(1)

∼ C!S(0)S?C(0)C!S(1)C!S(0)S?C(1)C!S(1)

∼ C!S(0)S?C(0)C!S(1)S?C(1)C!S(0)C!S(1)

and the final word is 1-bounded. Consequently, u is existentially 1-bounded. Since u is
not 1-bounded, it cannot be universally 1-bounded, but the reader is invited to check that
u is universally 2-bounded.

7.2 Bounded CFMs

As a preparation for model-checking, we first consider the control-state reachability prob-
lem relative to channel bounds:

• Universally bounded control-state reachability problem: Given a CFM A, a bound
B ∈ N, and a global state s ∈ S, is there some universally B-bounded valid word
that leads from the initial configuration to some configuration with global state s?



1048

• The existentially bounded control-state reachability problem is similar, one requires
the valid word to be existentially B-bounded.

To solve the second of these problems, we modify the transition system associated
with the CFM A as follows: configurations consist of a global state, together with a word
from Msg"B or the special channel content ⊥ indicating that the channel is inactive, for
each channel (p, q) ∈ Ch. The definition of transitions labeled p!q(m) from page 1032 is
altered to

• if a = p!q(m) is a send action, then either w′
p,q = wp,qm (message m is inserted

into the channel from p to q) or w′
p,q = ⊥ (the channel from p to q is inactive). As

before, w′
r,s = wr,s for all (r, s) ̸= (p, q) (all other channels are unchanged).

In effect, send actions to channel (p, q) behave as before or, if the channel is inactive, are
ignored. On the other hand, no read actions can be executed on inactive channels. The
result is a finite automaton and in this automaton, some configuration with global state s
can be reached if and only if the existentially bounded control-state reachability problem
has an affirmative answer. Since the size of the finite automaton is exponential in B and
|P|, this is a PSPACE-algorithm (with B given in unary).

The universally bounded control-state reachability problem is slightly more involved.
Here, one first observes that the set of universally B-bounded valid words is regular.
Hence, it suffices to take the finite automaton from the previous paragraph, intersect its
language with the language of universally B-bounded valid words, and check this inter-
section for emptiness. Thus, we have:

Proposition 7.1. The universally and the existentially bounded control-state reachability

problem are PSPACE-complete (with B given in unary).

PSPACE-hardness is easily shown by reducing from the halting problem of linearly space
bounded Turing machines: to simulate such a machine, one associates a process with each
tape cell. At each instant, exactly one process is active, corresponding to the position of
the head. This process can take over activity to one of its neighbors, thereby simulating
the moves of the head. This CFM can be defined in such a way that its language consists
of universally 1-bounded words, only.

A CFM A is universally B-bounded if all words from its language L(A) are univer-
sally B-bounded: L(A) ⊆ Σ∗|B . Similarly, a CFM A is existentially B-bounded if all
words from its language L(A) are existentially B-bounded. We call A universally or
existentially bounded if it is universally or existentially B-bounded for some B ∈ N.

Example 7.2. The CFM in Example 2.1 (page 1032) is not universally bounded, however
existentially 1-bounded. For instance, the word (C!S(0)C!S(1))k(S?C(0)S?C(1))k

from its language is not 2k − 1-bounded (and hence not universally 2k − 1-bounded),
but can be rescheduled into the 1-bounded word (C!S(0)S?C(0)C!S(1)S?C(1))k.

Example 7.3. Assuming that the undirected graph underlying the communication net-
work (P,Ch) is a forest, every CFM over such a network is existentially 1-bounded [44],
but not universally bounded, in general. Actually, universal channel bounds can only
be guaranteed if the network has suitable cycles. This is related to the notion of loop-

connected MSC-graphs [61].



1049

Remark 7.2. The above definition of channel bounds for CFMs is based on accepting
runs. Alternatively, we can also define universal/existential bounds over all possible runs.
This makes only a difference at the level of deciding such bounds, but not in the expres-
sivity results presented later.

The next result shows that B-boundedness of CFMs is an undecidable problem, but
becomes decidable assuming deadlock-freeness.

Proposition 7.3 ([39]). (1) Given a positive integer B and a deadlock-free CFM A,

it is decidable whether A is universally (existentially, resp.) B-bounded. This

problem is PSPACE-complete if the bound B is given in unary.
(2) The following problems are undecidable:

• Is a deterministic CFM universally (existentially, resp.) B-bounded (for a

given bound B)?
• Is a deterministic and deadlock-free CFM universally (existentially, resp.)

bounded?

7.3 Model-checking with channel bounds

With universally bounded channels a decision procedure for the model-checking prob-
lem of CFMs w.r.t. e.g. regular specifications is straightforward, since such a machine is
equivalent to a (exponentially larger) finite automaton. We can make this statement more
precise, by observing that many natural decision problems about universally B-bounded
CFMs are PSPACE-complete. This observation could be declared as another “rule of
thumb”, that holds as well for models like 1-safe Petri nets [30]. As already mentioned,
PSPACE-hardness follows from the simulation of linearly bounded automata by a univer-
sally 1-bounded CFM. For the upper bound, let us consider model-checking a universally
B-bounded CFM A against an LTL property, see Section 5. The idea is to consider words
over the extended alphabet Σ× {0, . . . , B − 1, $} whose projection to Σ∗ belongs to the
language L(A) of A and whose second component indexes actions as follows for each
channel (p, q):

• the occurrences of actions of type q?p are numbered modulo B,
• the occurrences of matched actions of type p!q are numbered modulo B,
• the occurrences of unmatched actions of type p!q are indexed by $.

Then, in the LTL formula ϕ, replace every occurrence of a ∈ Σ by
∨

i∈{0,...,B−1,$}(a, i)
and of Xmsgψ by

∨

0"i<B
(p,q)∈Ch

(p!q, i) ∧ (¬(q?p, i))U((q?p, i) ∧ ψ) .

Then a B-bounded word satisfies ϕ if and only if its “indexed version” satisfies this new
formula. Hence we reduced model-checking of universally bounded CFMs against LTL-
formulas to classical model-checking of LTL (without the operator Xmsg).

Proposition 7.4. Model-checking universally B-bounded CFMs against LTL and CTL

properties is PSPACE-complete (with B in unary encoding).



1050

The upper bound for CTL is shown by simulating universally B-bounded CFMs by
1-safe Petri nets and applying [30]. The simulation uses a place for each local state of A,
plus |Ch| · |Msg| ·B places, one for each tuple from Ch×Msg× {0, . . . , B− 1}. The set
of transitions of the Petri net equals the set of local transitions of the CFM A, and each
transition of A is simulated as expected.

We turn now to the model-checking problem for existentially B-bounded CFMs. As
already shown in Section 5, model-checking CFMs against sequential specifications such
as LTL, is undecidable. From the proof of Proposition 5.1, we can see that undecidability
already applies to existentially 1-bounded CFMs. We can also observe that no regular set
of words describes the same set of MSCs as the LTL property from Proposition 5.1. This
is a key observation that will make model-checking existentially bounded CFMs possible
using representatives:

Definition 7.1. Let K ⊆ Σ∗. A language R ⊆ Σ∗|B is a set of B-representatives for K
if

{msc(w) | w ∈ K} = {msc(v) | v ∈ R} .

The next proposition describes a class of regular properties for which model-checking
existentially B-bounded CFMs is decidable:

Proposition 7.5. Given B,B′ ∈ N, an existentially B-bounded CFM A and a regular set

R of B′-representatives for a property K ⊆ Σ∗, it is decidable whether L(A) ∩K ̸= ∅.

The complexity is PSPACE if R is described by an automaton, and B,B′ are in unary

encoding.

For the proof of the proposition above we note first that an existentially B-bounded
CFM is also existentially B′-bounded for B′ ! B. So we can assume that B′ " B. Let B
be a finite automaton obtained from A and B′, such that L(B) = L(A) ∩ Σ∗|B′ . Notice
that for every u, v ∈ Σ∗|B′ with msc(u) = msc(v), we have u ∈ L(B) if and only if
v ∈ L(B). Therefore, L(A) ∩K ̸= ∅ is equivalent to L(B) ∩ R ̸= ∅. Since B’s size is
exponential in A and B′, the claim follows.

A prime example of properties satisfying the assumption of Proposition 7.5 are partial
order properties, as shown by the two results below:

Proposition 7.6 ([53]). Given B ∈ N and a sentence ϕ from MSO, the language

{w ∈ Σ∗|B | msc(w) # ϕ}

is (effectively) regular.

Model-checking a CFM A against a formula ϕ of some partial-order logics is the
question whether all M ∈ M(A) satisfy ϕ.

Corollary 7.7 ([38]). Let B ∈ N be given. Model-checking existentially B-bounded

CFMs against MSO is decidable.

The decidable problem above is known to be of non-elementary complexity. The
situation changes to the better if we consider the temporal logic PDL.



1051

Proposition 7.8 ([14, 58]). Given B ∈ N and a PDL sentence ϕ, one can construct a

finite automaton of size exponential in ϕ, B, and the number of channels, whose language

is a set of B-representatives of {u ∈ Σ∗ | msc(u) |= ϕ}.

The original proof from [14] (for a restricted version of the logic) goes via realizations,
see Section 8.3. An alternative proof [58] translates PDL-formulas into automata that
walk along paths in an MSC, using then a translation of such automata into alternating,
2-way automata on words (only this second step uses the bound B). Alternatively, Propo-
sition 7.8 can be shown by translating a PDL sentence ϕ over MSCs into an ETL sentence
ϕ̃ over Σ∗|B . The logic ETL is an extension of LTL by regular operators described by
finite automata [70]. Besides atomic statements a ∈ Σ ∪ {p!q, q?p | (p, q) ∈ Ch} and
the Boolean connectives, it uses operators of the kind B(ϕ1, . . . ,ϕn), where B is an au-
tomaton over the alphabet {a1, . . . , an} and ϕi are ETL formulas. Formulas of this logic
are evaluated over positions i in sequences w ∈ Σ∗. Then w, i |= B(ϕ1, . . . ,ϕn) if there
is a word ai1ai2 . . . aim ∈ L(B) such that w, i + j |= ϕij for all 1 " j " m. For the
simulation we also need the 2-way version of ETL from [47]. The latter paper shows how
to translate ETL formulas into Büchi automata with an exponential blow-up, even with
operators using 2-way, alternating Büchi automata.

We sketch the translation from PDL to ETL. Given a global PDL formula α, we define
α̃ in such a way that for every MSC M and every B-bounded linearization w of M , we
have M, e # α if and only if w, i # α̃, where i is the position of w corresponding to event
e in M . As already observed for LTL with Xmsg, one can express the msg relation by
usual LTL over B-bounded words with the modulo counters, i.e., over B-bounded words
on the alphabet Σ× {0, . . . , B − 1, $}. For instance, the PDL formula ⟨msg⟩α translates
to

∨

(p,q)∈Ch,0"i<B(p!q, i) ∧ ¬(q?p, i)U(q?p, i)α̃. It is easy to encode this LTL formula
into an ETL formula with a non-deterministic finite automaton of size linear in B, that
accepts at a position satisfying α̃. More generally, we can proceed as previously described
for every formula ⟨π⟩α, by using a non-deterministic automaton of polynomial size in π,
B and P , over local formulas α′ occurring as atoms in π. Global formulas can be handled
by the LTL operators F and G. Note that |α̃| ∈ O(B · |Ch| · |α|).

Corollary 7.9 ([14, 58]). For given B ∈ N, model-checking existentially B-bounded

CFMs against PDL is decidable in PSPACE.

Further reading. The paper [58] considers non-terminating CFMs and infinite MSCs.
It then makes sense to also consider formulas of the form ⟨πω⟩⊤ that hold at some event
if it is the starting point of some infinite path that can be split into infinitely many sub-
paths each conforming to the path expression π. A comprehensive study of complexity
of the model checking problem of CFMs against different temporal logics can be found
in [59], including MSO-definable temporal logics, PDL, and more concrete logics.

Timed CFMs were considered in [22, 46, 3]. Both [22, 46] study local timed automata
with communication channels, whereas [3] studies a timed extension of communicating
automata based on event clocks. The paper [22] defined the semantics of the automata
in terms of timed MSCs and proposed a solution to an MSC-matching problem using
the tool UPPAAL. In [3], a timed extension of Büchi’s equivalence between automata
and MSO was obtained, and it was shown that the logic is decidable over existentially



1052

bounded channels.
Systems of pushdown automata communicating via FIFO-channels have been consid-

ered in [49, 44]. In that setting, bounding the channels does not suffice to make control-
state reachability decidable. Instead, [49] shows decidability for acyclic networks and
[44] characterizes networks with a decidable existentially channel-bounded control-state
reachability problem. More recently, [25, 26, 23, 24] considers a more general model
than CFMs that includes communication and pushdown storage, and proposes the notion
of split-width, that guarantees the decidability of the model-checking problem.

Part III

Realizability

This part discusses the synthesis problem, that is, how to convert a specification into an
“equivalent” CFM. As already mentioned, we assume that our systems are closed (i.e.,
without environment), and the problem we look at is called realizability. We present two
solutions for realizability, one for unbounded channels (Section 8), and another one for
universally- and existentially-bounded channels (Section 9.3). Both solutions use addi-
tional message contents, and we will see in Section 8.1 that this is indeed required. We
formalize this variant of “equivalence” between specifications and realizations below.

Let Σ be some communication alphabet on the network (P,Ch) with message con-
tents from Msg. Furthermore, let Σ′ be the analogous communication alphabet with mes-
sage contents from Msg′ and let π : Msg′ → Msg be a function. This function is extended
naturally to a homomorphism Σ′∗ → Σ∗ by setting π(p!q(m′)) = p!q(π(m′)) and simi-
larly for receive actions.

Definition 7.2. A specification K ⊆ Σ∗ is realizable if there exists some CFM A with
communication alphabet Σ′ and a projection π from its message contents Msg′ to Msg,
such that π(L(A)) = K.

Realizability problem: Given a specification K ⊆ Σ∗, is K realizable? If so, produce a
CFM that realizes K.

A set of MSCs X is called realizable, if Lin(X) is so.

8 Realizability with Unrestricted Channels

8.1 Local acceptance and sequential specifications

Let Σ be some communication alphabet and K ⊆ Σ∗ a language (the specification). The
question in this section is whether K is the language of some CFM A. This is a more
restrictive question than the one in Definition 7.2, since the message alphabet is already
defined by the specification. However, we will see that this question is undecidable. The



1053

reason for undecidability is – once again – the incompatibility between the specification,
which is sequential-like, and the concurrent target realization.

A necessary condition for K ⊆ Σ∗ being the language of a CFM is that K must be
closed under rescheduling: K ⊆ Σ∗ is called closed, if for all valid words u ∼ v, we
have u ∈ K if and only if v ∈ K (see page 1047 for the definition of the rescheduling
relation ∼).

Note that the language of any CFM is the union of finitely many languages of CFMs
with only one global accepting state. A slightly more general class is that of CFMs with
local acceptance: A CFM A = ⟨(Ap)p∈P ,Σ, F ⟩ has local acceptance if there are sets
Fp ⊆ Sp for p ∈ P such that F =

∏

p∈P Fp.

Proposition 8.1. A regular specification K ⊆ Σ∗ is the language of some CFM with

local acceptance if and only if it satisfies the conditions below:

(1) K is closed,

(2) K consists of valid words, only, and

(3) every valid word v ∈ Σ∗ such that πp(v) ∈ πp(K), for every p ∈ P , belongs to K
where πp : Σ∗ → Σ∗

p is the natural projection homomorphism.

In the situation of condition (3), [5, 6] use the terminology “the valid word v is weakly
implied by K”. For the proof of Proposition 8.1, let us assume the existence of some
CFM A with local acceptance, such that L(A) = K. Even without local acceptance, we
immediately get (1) and (2). Now consider valid words v ∈ Σ∗ and vp ∈ K such that
πp(v) = πp(vp) for every process p ∈ P . It is not difficult to construct an accepting run
of A on v, from some accepting runs of A on the words vp: combining the p-projection
of a run on vp, over p ∈ P , to a run on v is possible since the communication alphabet is
the same, and acceptance is guaranteed by the local final states. Conversely, suppose K is
regular and satisfies the conditions above. Then we can construct a CFM whose process p
executes the words from πp(K) (for all p ∈ P). This CFM has local acceptance and
accepts K.

If A is a finite automaton over Σ, then for deciding whether its language consists of
valid words only, it suffices to check two conditions: the first requires that there is no uv ∈
L(A) with |u|p!q < |u|q?p. The second one says that there is no u p!q(m) v q?p(m′)w ∈
L(A) with m ̸= m′ and |u|p!q = |uv|q?p. Both conditions can be decided e.g. using a
1-counter automaton. If this test succeeds, we can decide easily whether the language of
A is closed. Hence, two of the three conditions from Proposition 8.1 are decidable, but
the last one is not:

Theorem 8.2 ([6]). It is undecidable whether a regular (even LTL) specification K ⊆ Σ∗

is the language of some CFM with local acceptance.

In [6], the theorem is only stated for regular specifications, but one can check that the
reduction also works for LTL specifications (where the additional modality Xmsg is not
used). The proof relies on condition (3) from Proposition 8.1 and therefore on the local
acceptance. It seems open whether the class of regular languages of CFMs is decidable.
We should also stress that an important argument in the undecidability proof above is that
the specification is complete, i.e., that we ask for a CFM with language K as opposed to



1054

the realizability problem where additional message contents are allowed. In Section 9.3
we will see that the realizability problem for regular languages is decidable.

8.2 MSO specifications

The theorem below is an extension of the well-known Büchi correspondence between
regular and EMSO-definable sets of words (or trees, Mazurkiewicz traces, etc), to MSCs
without any channel restriction. This characterization should be compared with those
provided in Section 9.3 for universally and existentially bounded CFMs. The main dif-
ference is that for automata with universal/existential channel bounds, one can use more
expressive logics.

Theorem 8.3 ([15]). For K ⊆ Σ∗, the following are equivalent:

(1) K is realizable.

(2) msc(K) is the language of some EMSO(!P , <msg) formula, K is closed and con-

sists of valid words, only.

The proof of the implication (1) → (2) is very similar to the “usual” proof, using the
partial order definition of CFM runs given at the end of Section 6.1. The existence of the
mapping ρ : E →

⋃

p∈P Sp is expressed by existential set quantifiers. Additional exis-
tential set quantifiers are used to express the message contents sent and received by the
CFM. The message predicate <msg is used for guaranteeing the consistency of these mes-
sage contents. The local consistency of ρ is expressed using the successor predicate !P .

The “usual” proof of the converse implication proceeds by induction on the structure
of the formula. This requires the class of realizable specifications to be closed under
complementation. But [15] shows that this is not the case! Therefore, the proof from [15]
proceeds very differently (it is inspired by W. Thomas’ graph acceptors [68]): first, it
uses Hanf’s theorem [42] from model theory to transform the first order kernel of the
given formula into a specific normal form. Intuitively, a formula in this normal form is
a positive Boolean combination of statements of the form “there are at most/at least k
nodes of the MSC whose neighborhood of radius r looks as follows ...”. Then it provides
an explicit CFM that computes, for every node of the MSC, its neighborhood of radius r.
This handles the first order kernel of the formula, the outermost existential quantification
is dealt with by a projection, as in Büchi’s proof.

The use of Hanf’s theorem also explains why this proof only works if we exclude the
binary relation " from formulas: with only <msg and !P , any node has at most three
neighbors and therefore the size of neighborhoods of radius r is at most 3r. Without such
a finite bound, Hanf’s theorem is not applicable.

The proof of the implication (2) → (1) is not only effective, but it even constructs
a CFM whose size is elementary (although multiply exponential) in that of the formula
[12, 13]. The reason is, again, the restriction of formulas to those mentioning only <msg

and !P , but not ".
It seems not to be known whether Theorem 8.3 also holds for EMSO, i.e., whether

we could allow the order relation " in formulas (this would necessarily result in a non-
elementary CFM [60]).



1055

8.3 PDL specifications

In general, the interest in temporal logics is their rather good complexity compared with
MSO. The next theorem complies with this observation, in that it provides an exponential-
time solution for the realizability problem for restricted PDL specifications.

In the following, we restrict PDL in such a way that no path expression contains
both, forward modalities proc or msg and backward modalities proc−1 or msg−1. More
formally forward and backward path expressions π+ and π− and local formulas α are
defined by simultaneous induction:

π+ ::=proc | msg | {α} | π+;π+ | π+ + π+ | π∗
+ ,

π− ::=proc−1 | msg−1 | {α} | π−;π− | π− + π− | π∗
− ,

α ::=true | σ | α ∨ α | ¬α | ⟨π+⟩α | ⟨π−⟩α ,

where σ ranges over the alphabet Σ. Global formulas of rPDL are then defined analo-
gously to those of PDL.

Theorem 8.4 ([14]). rPDL specifications are realizable in exponential time. More pre-

cisely, from a global rPDL formula ϕ, one can compute in exponential time a CFM A
realizing ϕ.

The proof follows the inductive approach from [34, 35]: Let αn+1 be a local for-
mula of PDL whose top-most local subformulas are α1, . . . ,αn. Then one builds a CFM
that accepts MSCs whose events carry n + 1 additional bits (one for each top-most sub-
formula and the last one for the formula αn+1). Let M = (E,",λ) be an MSC and,
for 1 " i " n + 1, let Xi ⊆ E be the set of events where bit i is set to 1. Let fur-
thermore α′

n+1 be obtained from αn+1 by replacing every top-most occurrence of αi

by the informal statement “bit i is set to 1” (for 1 " i " n). Then the CFM accepts
(M,X1, . . . , Xn, Xn+1) if and only if Xn+1 = {e ∈ E | M, e |= α′

n+1}. For example,
if α2 = ¬α1, then the CFM accepts MSCs M with two additional bits per node that have
to be distinct at every node. The crucial point is that this CFM does not depend on the
formulas α1, . . . ,αn, but only on the outermost operator of αn+1. The construction is
rather obvious for the operators of the form σ ∈ Σ (without subformulas), ∨ and ⟨{.}⟩ .
(with two subformulas), and ¬., ⟨proc⟩ . and the like (with one subformula). But also

the path formulas α2 = ⟨π+⟩α1 and ⟨π−⟩
−1 α1 cause no deep problem (we discuss the

forward-path formula, only). At each and every event, one starts a copy of a finite au-
tomaton accepting the word language that is described by π+. Depending on whether the
event was claimed to satisfy or not to satisfy α2, this automaton is simulated along one or
all outgoing edges and is required to accept or not to accept at an event satisfying α1.2

Combining Theorems 8.3 and 8.4, we infer that any rPDL formula can be translated
into an equivalent formula from EMSO(!P , <msg). We do not know whether this is also
possible for full PDL, where path expressions can mix forward and backward modali-
ties. The converse translation, from EMSO(!P , <msg) to rPDL, is not always possible:
Since the class of realizable MSC-languages is not closed under complementation [15],
Theorem 8.3 implies that EMSO(!P , <msg) is (semantically) not closed under comple-
mentation. But the set of PDL formulas is closed under negation (using the usual de

2The main complication in [14] stems from the more general setting of infinite runs considered there.



1056

Morgan rules). Hence, PDL is a proper fragment of EMSO(!P , <msg), but no non trivial
description of this fragment is known. We do not even know whether the set of formulas
from EMSO(!P ,msg) that can be translated into PDL is decidable.

9 Channel Bounds, Mazurkiewicz Traces and

Realizability

This section presents a detailed study of CFMs with universal and existential channel
bounds, extending the notions introduced in Section 7.1. The ultimate goal is to show a
Büchi-like equivalence between automata and MSO in the setting of CFMs with channel
bounds. In other words, one obtains a solution for the realizability problem for regular
specifications (universal bounds), but also some non-regular ones (existential bounds). We
start with a brief survey on the well-studied partial order model of Mazurkiewicz traces,
then present the link between traces and channel bounds, and finally conclude with the
realizability theorems.

9.1 Mazurkiewicz traces

Trace monoids [57], known for a long time in combinatorics as partially commutative
monoids, were introduced in computer science in the late seventies by A. Mazurkiewicz
for describing the behavior of Petri nets. Their essential feature is to express the semantics
of a concurrent system by a (static) relation of independence between actions. Formally, a
trace alphabet is a pair (A, I) consisting of an alphabet A and a symmetric and irreflexive
relation I ⊆ A2. The relation I will be referred to as the independence relation; its
complement D = A2 \ I is the dependence relation.

A Mazurkiewicz trace is a finite A-labeled partial order ⟨E,",λ⟩ – up to isomorphism
– with the labeling λ : E → A satisfying both conditions below, for any events e, f ∈ E:

• if e is an immediate predecessor of f (denoted as e! f ), then (λ(e),λ(f)) ∈ D,
• if e and f are incomparable, then (λ(e),λ(f)) ∈ I .

Automata and logics over Mazurkiewicz traces have yielded many nice results, gener-
alizing results for word languages. One prominent example is the Kleene-Büchi theorem
stating the equivalence between automata, monadic second order logic and regular ex-
pressions, which was generalized to languages of finite and infinite traces (see [28] for a
collection of surveys on trace theory). A second example is the equivalence between first
order logic and linear temporal logics over traces [67, 27]. However, the deepest result
of trace theory is undoubtedly the construction of deterministic Zielonka automata (also
known as asynchronous automata) from finite automata [71]. It is this particular result
which will be used for constructing CFMs with bounded channels in Section 9.3. For
sake of completeness we introduce these automata and Zielonka’s theorem in the rest of
this section.

A Zielonka automaton over a trace alphabet (A, I) is a product of local automata
synchronizing over common actions. The trace alphabet is described by a distribution



1057

of the actions on processes, given by a function dom : A → (2P \ {∅}) associating
each action a ∈ A with a (non-empty) set of processes dom(a). Moreover, (a, b) ∈ I if
and only if the respective domains are disjoint, i.e., dom(a) ∩ dom(b) = ∅. A Zielonka
automaton A = ⟨(Sp)p∈P , (δa)a∈A, s0, F ⟩ consists of a finite set of states Sp for each
process p, a transition relation δa ⊆ (

∏

p∈dom(a) Sp)2 for each letter, an initial state s0 ∈
∏

p∈P Sp and a set of final states F ⊆
∏

p∈P Sp. The language of such an automaton is
defined as the language of the finite automaton B with set of states S =

∏

p∈P Sp and
transition relation δ ⊆ S×A×S given by (s, a, s′) ∈ δ if ((sp)p∈dom(a), (s

′
p)p∈dom(a)) ∈

δa and s′q = sq for all q /∈ dom(a). The automaton is deterministic if δa is a function
from

∏

p∈dom(a) Sp to
∏

p∈dom(a) Sp, for each a. The language L = L(A) of such an

automaton is I-closed: uabv ∈ L implies ubav ∈ L, for every u, v ∈ A∗, (a, b) ∈ I .

Theorem 9.1 ([71]). A language L ⊆ A∗ is I-closed and regular if and only if it is

accepted by a deterministic Zielonka automaton.

In terms of complexity, the original construction of Zielonka has been improved step-
wise over the years: currently the best upper bound on the overall number of local states of

the Zielonka automaton is O(2|P|4 ·|A||P|2), with A the minimal deterministic automaton
of L [37]. Surprisingly, an exponential lower bound in the number of processes is known
only for a subclass of Zielonka automata [37]. When L is given by a non-deterministic
automaton A, then [40] gives an asymptotically optimal construction which is simply
exponential in both |A| and |P|.

9.2 Bounds and traces

Recall the definition of a B-bounded valid word from Section 7.1, as well as the fact
that linearizations of MSCs are necessarily valid. It makes therefore sense to say that
an MSC M is existentially (universally, resp.) B-bounded if and only if one (all, resp.)
linearizations of M are B-bounded.

This matches the definition of existentially or universally B-bounded valid words:
an MSC M is existentially or universally B-bounded if and only if Lin(M) consists of
existentially or universally B-bounded words, only. A set of MSCs is existentially or
universally B-bounded if and only each of its members is so.

We describe now encodings of universally (existentially, resp.) B-bounded MSCs
into traces, following [48] and [38]. The trace alphabet (A, I) is given by A = Σ ×
{0, . . . , B − 1, $} and the following dependence relation D ⊆ A × A: let (a, i)D(b, j)
if either a, b ∈ Σp for some p ∈ P , or i = j and {a, b} = {p!q(m), q?p(m)} for some
(p, q) ∈ Ch,m ∈ Msg. Clearly, I = A2 \D is symmetric and irreflexive, hence (A, I) is
a trace alphabet.

Since the universally bounded case is easier, we start with this case as a preparation.
The encoding tr(M) of a universally B-bounded MSC M = ⟨E,",λ⟩ is obtained simi-
larly to the indexing on page 1049: If e ∈ E, then λB(e) = (λ(e), n) such that

• e is of type q?p and n = |{e′ < e | e′ is of type q?p}| mod B,
• e is of type p!q, there is some f ∈ E with (e, f) ∈ msg, and n = |{e′ < e |

e′ is of type p!q}| mod B, or



1058

• e is of type p!q, there is no f ∈ E with (e, f) ∈ msg, and n = $.

This yields a trace: if e is an immediate predecessor of f , then they belong to the same
process or they are matching send and receive (in which case λB(e) = (p!q(m), n) and
λB(f) = (q?p(m), n) are dependent). If λB(e) and λB(f) are dependent, then they
belong to the same process or they equal (p!q(m), n) and (q?p(m), n) or vice versa. But
then, universal B-boundedness of M implies that e and f are comparable.

For an existentially B-bounded MSC M = ⟨E,",λ⟩ we need to introduce an addi-
tional binary relation revB on events: let (r, s′) ∈ revB if, for some (p, q) ∈ Ch: event
r has type q?p with matching receive s, event s′ > s has type p!q and |{s′′ | s < s′′ "
s′ and s′′ has type p!q}| = B. That is, the relation revB matches a receive event r with
the B-th send of the same type after the matching send of r. Let ≼B be the reflexive-
transitive closure of " ∪ revB and let tr(M) = ⟨E,≼B ,λB⟩, with λB as above. It is easy
to check that we have revB ⊆ " if and only if M is universally B-bounded, so the two
definitions of tr(M) coincide in this case. Figure 3 shows an example for a trace tr(M)
associated with an existentially 2-bounded MSC. The dashed edges are rev2-edges.

p q

p!q; 0

p!q; 1

p!q; 0

p!q; $

p?q; 1

p?q; 1

q!p; 0

q!p; 1

q?p; 0

q?p; 1

q?p; 0

Figure 3. Trace tr(M) associated with an existentially 2-bounded MSC. Diagonal
edges are messages, dashed edges are rev2-edges. On each vertical line, events are
ordered from top to bottom.

The relation ≼B is, in general, not a partial order since it could contain a cycle.

Lemma 9.2 ([52, 38]). Let M be an MSC.

• M is existentially B-bounded if and only if ≼B is acyclic, if and only if tr(M) is a

trace over the alphabet (A, I).
• If M is existentially B-bounded, then Lin(M)∩Σ∗|B = Lin(projΣ(tr(M))), where

projΣ is the projection of the labeling on the first component of A.

• If M is universally B-bounded, then M = projΣ(tr(M)).



1059

We summarize the connection between languages of CFMs with channel bounds and
trace languages in the proposition below. We say that K ⊆ Σ∗ is B-closed3, if for
every valid words u, v ∈ Σ∗|B with u ∼ v, it holds that u ∈ K if and only if v ∈
K. Closed regular languages of valid words are those of universally bounded CFMs
(cf. Theorem 9.5), whereas closures of B-closed regular languages of valid words are
those of existentially B-bounded CFMs (cf. Theorem 9.7).

It can be decided in polynomial space whether L is B-closed, for L given by an au-
tomaton and B in unary encoding.

Proposition 9.3 ([48, 38]). Let B ∈ N and let K ⊆ Σ∗|B be a regular language of valid

B-bounded words that is B-closed. Set L = Lin(tr(msc(K))) ⊆ A∗.

Then L is a regular and I-closed language over (A, I). Moreover, K = projΣ(L).

Remark 9.4. Let A be a universally B-bounded CFM. Then L(A) is a closed and regular
set of valid B-bounded words. Hence, by the proposition above, there exists a regular and
I-closed language L with L(A) = projΣ(L).

Next let A be an existentially B-bounded CFM. Then L(A) is a closed set of valid
words, but L(A) is in general neither regular nor a set of B-bounded words. But the set
L(A) ∩ Σ∗|B of B-bounded words from L(A) is B-closed and regular. Hence, by the
proposition above, there is a regular I-closed language L with K = projΣ(L). Since
M(A) is existentially B-bounded, we get M(A) = msc(K) = msc(projΣ(L)).

To see that L(A) = projΣ(L) cannot be achieved for A existentially 2-bounded,
consider a CFM A with two processes, p, q. Each of these processes has a unique state,
and p (q, resp.) loops on its state by sending the message m to q (receiving from p, resp.).
Then L(A) ∩ (p!q(m)∗ q?p(m)∗) = {p!q(m)k q?p(m)ℓ | k " ℓ}, hence L(A) is not
regular, consequently, it cannot be the projection of any regular language L.

9.3 Realizability with bounded channels

As already mentioned, universal or existential channel bounds give a robust framework
for MSC languages, in which we can state the Büchi-like equivalence between automata
and monadic second order logic, cf. Theorems 9.5 and 9.7. In particular, the results show
that realizability for specifications based on regular sets or on full monadic second order
logic (with any of the relations ", !P , <msg) is decidable. For regular specifications,
realizability can be solved rather efficiently in exponential time, see Corollary 9.6 and 9.8.

A word w ∈ Σ∗ is complete if |w|p!q(m) = |w|q?p(m) for all channels (p, q) and
all message contents m. A language K ⊆ Σ∗ is message deterministic if, whenever
u p!q(m) and u p!q(n) are prefixes of some elements of K, then m = n. Note that
the language of every deterministic CFM is message deterministic. If follows that only
message deterministic languages can be realized by deterministic CFMs. A language is
deterministically realizable, if it can be realized by a deterministic CFM.

Theorem 9.5 ([43]). Let B ∈ N and let K ⊆ Σ∗|B be closed. Then the following

assertions are equivalent:

3The reader may compare this notion of B-closed with the definition of closed languages (see page 1053).



1060

(1) K is regular.

(2) msc(K) is the language of some formula of the logic MSO(!P , <msg) (or, equiva-

lently, of MSO(", <msg), or of MSO(")).
(3) msc(K) is the language of some formula of the logic EMSO(!P , <msg) (or, equiv-

alently, of EMSO(", <msg), or of EMSO(")).
(4) K is realizable.

Now suppose, in addition, that all words from K are complete. Then the following are

equivalent:

(1’) K is regular and message deterministic.

(5) K is deterministically realizable.

Note that the realizing CFMs in (4) and (5) are necessarily universally B-bounded
since any word from K is universally B-bounded. Note also that the implication (4) →
(3) for EMSO(!P , <msg) is a special instance of Theorem 8.3, which also implies (3)
for EMSO(", <msg). For the logic EMSO("), the implication (4) → (3) was shown
in [48] using the fact that msc(K) consists of universally B-bounded MSCs, only. The
implication (2) → (1) follows by translating the formula that talks about MSCs to an MSO
formula talking about Mazurkiewicz traces, the equivalence between MSO and regular I-
closed languages [69, 29], and the closure of regular languages under projections.

The proofs of the implications (1) → (4) and (1’) → (5) uses the encoding described in
Section 9.2. It was first presented in [48], that extends the Büchi characterization above
from finite MSCs to infinite ones. The main idea is to use Proposition 9.3 in order to
obtain a regular and I-closed language L ⊆ A∗ with K = projΣ(L). Then, Theorem 9.1
gives a deterministic Zielonka automaton B for L, which can be simulated by some CFM.
Suppose K contains some incomplete word. Then the simulating CFM has to guess which
send events are matched and which are unmatched (since the former get as additional
index a number 0 " n < B and the latter the symbol $). It turns out that this is the only
source of non-determinism.

Corollary 9.6. Let B ∈ N be fixed. Then any closed, regular specification K ⊆ Σ∗|B
is realizable in exponential time. If K is given by a DFA B and contains only complete

words, then one can construct a deterministic, universally B-bounded CFM A realizing

K, of size polynomial in the size of B and exponential in |Ch| and B.

The complexity stated in the corollary uses the construction of Zielonka automata
given in [37], see also Section 9.1. Notice that we apply the construction to the “modulo
B relabeling” of K (i.e., the word language Lin(tr(msc(K)))), so we assume that we start
with a DFA of size polynomial in B and exponential in Ch. Then we obtain a deterministic
Zielonka automaton of size that is still polynomial in B, and (simply) exponential in Ch

and |P| = |Ch| · B, hence in both B and Ch. The resulting automaton includes the
time-stamping needed in the CFM simulation.

The generalization of Theorem 9.5 to the existentially bounded case is less obvious.
The reason is that although Proposition 9.3(2) offers a similar encoding by traces as in
the universally bounded case, a CFM cannot easily simulate the corresponding Zielonka
automaton. The reader might try to define a CFM that realizes the set of existentially
B-bounded MSCs (that is, the set msc(Σ∗|B)). Whereas this task is not very difficult



1061

to accomplish (even deterministically) in the universally bounded case, it becomes much
more involved in the existentially bounded case, see [38].

Theorem 9.7 ([38]). Let B ∈ N and let K ⊆ Σ∗|B be B-closed. Then the following

assertions are equivalent:

(1) K is regular.
(2) msc(K) is the language of some formula of one of the logics MSO(!P , <msg),

MSO(", <msg), or MSO("), respectively.
(3) msc(K) is the language of some formula of one of the logics EMSO(!P , <msg),

EMSO(", <msg), or EMSO("), respectively.
(4) msc(K) is realizable.

Note that the realizing CFM in (4) is necessarily existentially B-bounded since any
word from K is existentially B-bounded. The main difference between this and Theo-
rem 9.5 is that K is only B-closed (and not necessarily closed). Given this more general
language K, we cannot construct a deterministic CFM as in Theorem 9.5, as the following
example shows:

Example 9.1. Let P = {p, q, r} and consider the following existentially 1-bounded set
X of MSCs. Let M ∈ X if the following properties hold:

• Process p alternates between sends to q and to r (with fixed content m).
• Between every pair of consecutive receives from p, process q (r, respectively) exe-

cutes 0 or 1 local actions aq (ar, respectively).
• Let uq (ur, respectively) be the 0-1 sequence of local actions aq (ar, respectively)

executed by q (r, respectively) between two consecutive receives from p. Then
uq = ur.

It is fairly easy to see that X can be realized by a non-deterministic CFM where process p
chooses between sending (to both q and r) a bit b ∈ {0, 1}, that tells q and r to execute
b local actions before the next receive. But any deterministic CFM fails to realize X .
Suppose by way of contradiction that a deterministic CFM A realizes X . Notice first that
there is a unique infinite run ρ0 on the process p, such that every finite run ρ of A is a
prefix of ρ0 (when projected to process p). If ρ is large enough, then there exist two MSCs
M1,M2 ∈ X with the same projection on p, but different projections on q, that reach the
same global state in A (with empty channels). For these two MSCs, the runs on p are
identical and we can combine them to an accepting run on the MSC M that coincides
with p, q on M1 and with p, r on M2. This yields M ∈ X , a contradiction.

The proofs of Theorems 9.5 and 9.7 are very similar except for the implication (1) →
(4), i.e., the transformation of a regular language K into a CFM. It is shown again us-
ing a Zielonka automaton accepting the recognizable trace language corresponding to K.
However, one faces two additional problems here. First, recall that the conversion of an
existentially bounded MSC into a Mazurkiewicz trace requires revB-edges. Therefore,
the simulation of a Zielonka automaton by the CFM is non-deterministic, since the in-
formation conveyed by the revB-edges in the runs of the Zielonka automaton has to be
guessed in the CFM (recall that these edges are “virtual” in the MSC). Second, one needs
to construct a CFM accepting the set of all existentially B-bounded MSCs. The test that



1062

the relation " ∪ revB is acyclic is the most intricate part of the proof, and makes use of
non-determinism, too. The main idea is to look for particular cycles of bounded length,
and to check the non-existence of such cycles by guessing a suitable labeling of events
and counting particular events. The details can be found in [38].

A further difference between the proofs of Theorems 9.5 and 9.7 concerns the trans-
lation of a formula from EMSO(", <msg) into an equivalent one from EMSO("). The
problem occurs since one needs to express the set of existentially B-bounded MSCs by
an EMSO(")-formula. For this, one can use the CFM realizing precisely msc(Σ∗|B),
see [38].

Although the constructions in [38] are quite involved, the asymptotic complexity is
the same as in the universally bounded case:

Corollary 9.8. Let B ∈ N be fixed. Then for any B-closed, regular specification K ⊆
Σ∗|B , the set msc(K) is realizable in exponential time. If K is given by a DFA B then one

can construct a non-deterministic, existentially B-bounded CFM A realizing msc(K) of

size polynomial in the size of B and exponential in |P| and B.

Further reading. The negative result of Theorem 8.2 is counterbalanced by the fol-
lowing positive result (see [4] and [51] for the matching lower bound): it is decidable in
exponential space whether a regular specification is the language of a deadlock-free CFM
with local acceptance.

Throughout this section we considered only CFMs with finite behavior. We briefly
mention some related results on CFMs with infinite behavior. Theorem 9.5 has been ex-
tended to universally bounded sets of infinite MSCs and CFMs with Büchi and Muller
acceptance in [48]. Subsequently, [12] has generalized the logical characterization of
arbitrary CFMs from [15] by showing that for infinite behaviors, Muller and Büchi ac-
ceptance are equivalent, and also equivalent to EMSO(!P , <msg) + ∃∞ that extends
EMSO(!P , <msg) by the quantifier ∃∞ expressing that there exist infinitely many nodes
with a given property. The question whether EMSO is strictly more expressive than arbi-
trary CFMs is open, both in the finitary and the infinitary case.

Theorems 9.5 and 9.7 state Büchi equivalences between automata and logics over uni-
versally and existentially bounded MSCs. We did not mention a third characterization,
in terms of CMSC-graphs, that corresponds roughly to regular expressions over MSCs.
In that setting one imposes restrictions on loops of such graphs (known as local synchro-
nization and global cooperation, resp.) to capture universally and existentially bounded
“regular” sets of MSCs, resp., see [61, 43, 38].

A different notion of realizability was considered in [36], where the specification talks
only about local actions, so that a CFM realization amounts to synthesize the necessary
communication over a fixed architecture. Several decidable notions of deadlock-free re-
alizability are proposed in the latter paper.



1063

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite state systems. In LICS’96, pages 313–323. IEEE Computer Society, 1996. 1030, 1037

[2] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Inform. and

Comput., 127(2):91–101, 1996. 1030, 1037, 1038

[3] S. Akshay, B. Bollig, and P. Gastin. Automata and logics for timed message sequence charts.
In FSTTCS’07, number 4855 in LNCS, pages 290–302. Springer, 2007. 1051

[4] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. In
ICALP’01, number 2076 in LNCS, pages 797–808. Springer, 2001. 1062

[5] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. IEEE Trans.

Software Eng., 29(7):623–633, 2003. 1053

[6] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.
Theor. Comp. Science, 331(1):97–114, 2005. 1053

[7] R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In LICS’95, pages
90–100. IEEE Computer Society Press, 1995. 1045

[8] M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks of
pushdown systems. In CONCUR’08, number 5201 in LNCS, pages 356–371. Springer, 2008.
1031

[9] C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeterministic probabilistic channel
systems against omega-regular linear-time properties. ACM Transactions on Computational

Logic, 9(1), 2007. 1039

[10] B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infinite
state spaces using QDDs. In CAV’96, number 1102 in LNCS, pages 1–12. Springer, 1996.
1030, 1035

[11] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In SAS’97,
number 1302 in LNCS. Springer, 1997. 1030, 1036

[12] B. Bollig and D. Kuske. Muller message-passing automata and logics. Inform. and Comput.,
206:1084–1094, 2008. 1054, 1062

[13] B. Bollig and D. Kuske. An optimal construction of Hanf sentences. Journal of Applied Logic,
10:179–186, 2012. 1054

[14] B. Bollig, D. Kuske, and I. Meinecke. Propositional Dynamic Logic for message-passing
systems. Logical Methods in Computer Science, 6(3:16):1–31, 2010. 1051, 1055

[15] B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO
logic. Theor. Comp. Science, 358(2-3):150–172, 2006. 1054, 1055, 1062

[16] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems with
nonregular sets of configurations. Theor. Comp. Science, 221(1-2):211–250, 1999. 1030, 1036

[17] P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and J. Worrell. On termination for
faulty channel machines. In STACS’08, volume 1 of LIPIcs, pages 121–132. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2008. 1038, 1039

[18] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–342,
1983. 1029, 1031, 1034

[19] G. Cécé, A. Finkel, and S. Iyer. Unreliable channels are easier to verify than perfect channels.
Inform. and Comput., 124:20–31, 1996. 1038, 1039



1064

[20] P. Chambart and Ph. Schnoebelen. Mixing lossy and perfect Fifo channels. In CONCUR’08,
number 5201 in LNCS, pages 340–355. Springer, 2008. 1039

[21] P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems.
In LICS’08, pages 205–216. IEEE Computer Society Press, 2008. 1038

[22] P. Chandrasekaran and M. Mukund. Matching scenarios with timing constraints. In FOR-

MATS’06, number 4202 in LNCS, pages 98–112. Springer, 2006. 1051

[23] L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for communicating automata
with FIFO and bag channels. In CONCUR’14, number 8704 in LNCS, pages 281–296.
Springer, 2014. 1031, 1052

[24] A. Cyriac. Verification of Communicating Recursive Programs via Split-width. PhD thesis,
LSV, ENS Cachan, 2014. 1031, 1052

[25] A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems via
split-width. In CONCUR’12, number 7454 in LNCS, pages 547–561. Springer, 2012. 1031,
1052

[26] A. Cyriac, P. Gastin, and K. N. Kumar. Controllers for the verification of communicating
multi-pushdown systems. In CONCUR’14, number 8704 in LNCS, pages 297–311. Springer,
2014. 1031, 1052

[27] V. Diekert and P. Gastin. Pure future local temporal logics are expressively complete for
Mazurkiewicz traces. Inform. and Comput., 204:1597–1619, 2006. 1056

[28] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.
1056

[29] W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theor. Comp. Science,
154:67–84, 1996. 1060

[30] J. Esparza. Decidability and complexity of Petri net problems - an introduction. In W. Reisig
and G. Rozenberg, editors, Advanced Course on Petri Nets 1996, number 1491 in LNCS,
pages 374–428. Springer, 1998. 1049, 1050

[31] A. Finkel. A generalization of the procedure of Karp and Miller to well structured transition
systems. In ICALP’87, number 267 in LNCS, pages 499–508. Springer, 1987. 1037

[32] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor. Comp.

Science, 256(1-2):63–92, 2001. 1030, 1037, 1038

[33] M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. Journal of

Computer and System Sciences, 18:194–211, 1979. 1045

[34] P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable temporal logics
are in PSPACE. In CONCUR’03, number 2761 in LNCS, pages 222–236. Springer, 2003.
1055

[35] P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics over
Mazurkiewicz traces. Inform. and Comput., 208:797–816, 2010. 1055

[36] B. Genest. On implementation of global concurrent systems with local asynchronous con-
trollers. In CONCUR’05, number 3653 in LNCS, pages 443–457. Springer, 2005. 1062

[37] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Optimal Zielonka-type construction
of deterministic asynchronous automata. In ICALP’10, number 6199 in LNCS, pages 52–63.
Springer, 2010. 1057, 1060

[38] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms
for existentially bounded communicating automata. Inform. and Comput., 204(6):920–956,
2006. 1030, 1050, 1057, 1058, 1059, 1061, 1062



1065

[39] B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded channels.
Fundam. Inform., 80(1-3):147–167, 2007. 1049

[40] B. Genest and A. Muscholl. Constructing exponential-size deterministic Zielonka automata.
In ICALP’06, number 4052 in LNCS, pages 565–576, 2006. 1057

[41] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-
checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006. 1030

[42] W. Hanf. The theory of models. In J. W. Addison, L. Henkin, and A. Tarski, editors, Model-

Theoretic Methods in the Study of Elementary Model-Theoretic Methods in the Study of Ele-

mentary Model-Theoretic Methods in the Study of Elementary Logic. North-Holland, Amster-
dam, 1965. 1054

[43] J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. Thiagarajan. A theory of regular
MSC languages. Inform. and Comput., 202(1):1–38, 2005. 1030, 1033, 1059, 1062

[44] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating
pushdown systems. Logical Methods in Computer Science, 8(3), 2012. 1031, 1033, 1048,
1052

[45] S. Kosaraju. Decidability of reachability in vector addition systems. In STOC’82, pages
267–281. ACM, 1982. 1037

[46] P. Krcal and W. Yi. Communicating timed automata: The more synchronous, the more difficult
to verify. In CAV’06, number 4144 in LNCS, pages 249–262. Springer, 2006. 1051

[47] O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited. In CON-

CUR’01, number 2154 in LNCS, pages 519–535. Springer, 2001. 1051

[48] D. Kuske. Regular sets of infinite message sequence charts. Inform. and Comput., 187:80–
109, 2003. 1057, 1059, 1060, 1062

[49] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent queue
systems. In TACAS’08, number 4963 in LNCS, pages 299–314. Springer, 2008. 1031, 1033,
1052

[50] J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In LICS’15,
pages 56–67. IEEE Computer Society Press, 2015. 1037

[51] M. Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theor.

Comp. Science, 309(1-3):529–554, 2003. 1062

[52] M. Lohrey and A. Muscholl. Bounded MSC communication. Inf. and Comput., 189(2):160–
181, 2004. 1058

[53] P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In FSTTCS’01, number
2245 in LNCS, pages 256–267. Springer, 2001. 1050

[54] Z. Manna and A. Pnueli. Verification of the concurrent programs: the temporal framework. In
R. Boyer and J. Moore, editors, The Correctness Problem in Computer Scince, pages 215–273.
Academic Press, 1981. 1029, 1040

[55] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. of Comput.,
13:441–460, 1984. 1037

[56] R. Mayr. Undecidable problems in unreliable computations. Theor. Comp. Science, 297(1-
3):337–354, 2003. 1038

[57] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78,
Aarhus University, Aarhus, 1977. 1056



1066

[58] R. Mennicke. Propositional dynamic logic with converse and repeat for message-passing
systems. Logical Methods in Computer Science, 9(2:12):1–35, 2013. 1051

[59] R. Mennicke. Model Checking Concurrent Systems using Temporal Logics. PhD thesis, TU
Ilmenau, 2015. 1051

[60] A. R. Meyer. Weak monadic second order theory of one successor is not elementary recursive.
In Proc. of Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 132–154.
Springer, 1975. 1054

[61] A. Muscholl and D. Peled. Message sequence graphs and decision problems on Mazurkiewicz
traces. In MFCS’99, number 1672 in LNCS, pages 81–91. Springer, 1999. 1048, 1062

[62] T. Neary. Undecidability of binary tag systems and the Post correspondence problem for
five pairs of words. In STACS’15, volume 30 of LIPIcs, pages 649–661. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015. 1041

[63] J. K. Pachl. Reachability problems for communicating finite state machines. Research Report
CS-82-12, Dep. of Comp. Sci., Univ. of Waterloo, 1982. see also http://arxiv.org/
abs/cs/0306121. 1035

[64] D. Peled. Specification and verification of message sequence charts. In FORTE’00, number
183 in IFIP Conference Proceedings, pages 139–154. Kluwer, 2000. 1045, 1046

[65] E. Post. Formal reductions of the combinatorial decision problem. Amer. J. of Math.,
65(2):197–215, 1943. 1029

[66] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity.
Inform. Proc. Lett., 83(5):251–261, 2002. 1030, 1038

[67] P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic for
Mazurkiewicz traces. In LICS’97, pages 183–194. IEEE Computer Society Press, 1997. 1056

[68] W. Thomas. On logics, tilings, and automata. In ICALP’91, number 510 in LNCS, pages
441–454. Springer, 1991. 1054

[69] W. Thomas and W. Zielonka. Logical definability of trace languages. Unpublished manuscript,
1990. 1060

[70] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. and Comput.,
115(1):1–37, 1994. 1051

[71] W. Zielonka. Notes on finite asynchronous automata. RAIRO - Informatique Théorique et

Applications, 21:99–135, 1987. 1056, 1057


