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Abstract. We propose a novel construction to lift an n-gram model to
trees. The resulting weighted tree automaton is bottom-up deterministic in
contrast to the weighted tree automaton constructed using the Bar-Hillel,
Perles, Shamir algorithm.

1 Introduction

Recent approaches to machine translation are mostly statistical [4]. Researchers
define a class of translation functions, and they use training algorithms to select
a function that fits a given set of existing translations. Translation functions
that are considered in research are often syntax-directed, i.e., the grammatical
structure of a sentence, represented by a tree, is of special interest.
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Fig. 1. Translation function with translation and language model.

A typical translation function is shown in Fig. 1. The translation model
consumes the input sentence f and emits a weighted tree language (WTL) τ1
over (R≥0,+, ·, 0, 1), in which each translation of f is assigned a real number (as
weight). The language model provides a weight for every sentence of the target
language by means of a WTL τ2. Both WTLs are then combined into one WTL τ .
Best followed by yield outputs the string e of the best tree ξ in τ .

Extended top-down tree transducers [3], synchronous tree-adjoining gram-
mars [6], and synchronous context-free grammars [2] are some of the most
prominent examples of translation models. Examples of language models are
n-gram models, hidden Markov models, weighted string automata (WSA), and
probabilistic context-free grammars.

All language models mentioned above generate weighted string languages
(WSL). But in order to make the combination of τ1 and τ2 possible, τ2 must be
lifted to a WTL. In this paper we show a construction that lifts the n-gram model
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to a WTL by constructing a weighted tree automaton (WTA), called n-gram
WTA.

The classical approach to construct the n-gram WTA is the following: for
the n-gram model N , we can construct a WSA A that recognizes N . Then we
construct the product of A and the WTA that recognizes every tree with weight 1.
For this, we employ the extension [5, Section 4] of the Bar-Hillel, Perles, Shamir
algorithm [1, Lemma 4.1]. The constructed product is the n-gram WTA.

We propose a direct construction for the n-gram WTA. We show that the
resulting WTA is bottom-up deterministic, which is in contrast to the n-gram
WTA produced by the classical approach. Our construction is inspired by [2]
where it appears interleaved with the other steps shown in Fig. 1.

An efficient implementation of the translation function in Fig. 1 computes
the two functions best and combine interleaved, where best is usually computed
via dynamic programming, i.e., bottom-up. Thus such an algorithm can profit
when τ2 is specified in a bottom-up deterministic manner.

2 Preliminaries

We let Γ ∗ denote the set of all words over an alphabet Γ . For w ∈ Γ ∗ and k ∈ N,
fstk(w) and lstk(w) denote the sequences of the first and the last k symbols of
w, respectively. A ranked alphabet is a tuple (Σ, rk) where Σ is an alphabet and
rk : Σ → N is a rank mapping. In the following, we assume that Γ is an alphabet
and (Σ, rk), or just Σ, is a ranked alphabet with Γ ⊆ rk−1(0).

Let Q be an alphabet, the set of unranked trees over Q is denoted by UQ.
The set of positions of ξ is denoted by pos(ξ). For p ∈ pos(ξ), the symbol of ξ
at p is denoted by ξ(p). The set of (ranked) trees over Σ is denoted by TΣ . The
Γ -yield of ξ is the mapping yieldΓ : TΣ → Γ ∗ where yieldΓ (ξ) is the sequence of
all symbols σ in ξ with σ ∈ Γ read from left to right.

A weighted tree automaton (WTA) is a tuple A = (Q,Σ, δ, ν) where Q is an al-
phabet, δ is a Σ-family of functions δσ : Qrk(σ)×Q→ R≥0, and ν : Q→ R≥0. The
set of all runs of A on ξ is the set RA(ξ) = {κ ∈ UQ | pos(κ) = pos(ξ)}. For κ ∈
RA(ξ), the weight of κ is wt(κ) =

∏
p∈pos(ξ) δξ(p)(κ(p1), . . . , κ(p rk(ξ(p))), κ(p)).

The semantics of A is the mapping [[A]] : TΣ → R≥0 where for every ξ =
σ(ξ1, . . . , ξrk(σ)) ∈ TΣ we define [[A]](ξ) =

∑
κ∈RA(ξ) wt(κ) · ν(κ(ε)). We call A

bottom-up deterministic if for every σ ∈ Σ and q1, . . . , qrk(σ) ∈ Q there exists at
most one q ∈ Q such that δσ(q1, . . . , qrk(σ), q) > 0.

In the following we assume that n ≥ 1. An n-gram model over Γ is a tuple
N = (Γ, µ) where µ : Γn → R≥0 is a mapping (n-gram weights). The semantics
of an n-gram model N is the mapping [[N ]] : Γ ∗ → R≥0 where for every l ≥ 0 and
w1, . . . , wl ∈ Γ we define [[N ]](w1 · · ·wl) =

∏l−n
i=0 µ(wi+1 · · ·wi+n) if l ≥ n, and

[[N ]](w1 · · ·wl) = 0 otherwise. In the following, N denotes an n-gram model.

Proposition 1. Let u, v ∈ Γ ∗, |u| ≥ n, and |v| ≥ n. We have

[[N ]](uv) = [[N ]](u) · [[N ]](lstn−1(u) fstn−1(v)) · [[N ]](v) .
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3 Direct Construction
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Fig. 2. Tree over Σ = {σ(2), β(0)} ∪ Γ and
Γ = {α(0), γ(0)}, with a run (states appear in
boxes) and transition weights due to a 2-gram
model N over Γ .

In order to define a WTA AN,Σ
with [[AN,Σ ]] = [[N ]]◦yieldΓ we have
to compute [[N ]] ◦ yieldΓ (ξ) while
traversing a given tree ξ bottom-
up. At each node in ξ, we only see
the current symbol and the states of
the computations in the subtrees. A
closer look at Proposition 1 suggests
to (1) compute the semantics of the
currently visible substrings under N
and (2) propagate the left and right
n−1 symbols of the substring in the
state. In the following construction,
parts (1) and (2) are handled by the
functions g and f , respectively.

Let ? be a new symbol, i.e., ? /∈ Σ. We define f : (Γ ∪{?})∗ → (Γ ∪{?})∗ and
g : (Γ ∪ {?})∗ → R≥0 as follows. Let w ∈ (Γ ∪ {?})∗. Then f(w) = fstn−1(w) ?
lstn−1(w) if |w| ≥ n, and f(w) = w otherwise. Note that there are u0, . . . , uk ∈ Γ ∗
such that w = u0 ? u1 · · · ? uk. We define g(w) =

∏k
i=0N

′(ui) where N ′(ui) =
[[N ]](ui) if |ui| ≥ n, and N ′(ui) = 1 otherwise.

The n-gram WTA over Σ is the WTA AN,Σ = (Q,Σ, δ, ν) where Q = Q1∪Q2

with Q1 =
⋃n−1
i=0 Γ

i and Q2 = Γn−1 × {?} × Γn−1, ν(q) = 1 if q ∈ Q2, otherwise
ν(q) = 0, and for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q (cf. Fig. 2 for an
example):

δσ(q1, . . . , qk, q) =


g(q) if k = 0 and q = yieldΓ (σ)

g(q1 · · · qk) if k ≥ 1 and q = f(q1 · · · qk)
0 otherwise.

Theorem 2. Let N be an n-gram model over Γ and Σ be a ranked alphabet.
Then [[AN,Σ ]] = [[N ]] ◦ yieldΓ and the WTA AN,Σ is bottom-up deterministic.
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