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Biautomata were recently introduced in [4] as a generalization of ordinary
deterministic finite automata. A biautomaton consists of a deterministic finite
control, a read-only input tape, and two reading heads, one reading the input
from left to right, and the other head reading the input from right to left. An
input word is accepted by a biautomaton, if there is an accepting computa-
tion starting with the heads on the two ends of the word and meeting some-
where in an accepting state. Although the choice of reading a symbol by either
head is nondeterministic, the determinism of the biautomaton is enforced by
two properties, which will be described later. Descriptional complexity issues for
deterministic biautomata were addressed in [3]. We focus on the descriptional
complexity of nondeterministic biautomata, which are defined as follows: a non-
deterministic biautomaton is a sixtuple A = (Q,Σ, ·, ◦, I, F ), where Q is a finite
set of states, Σ is an alphabet, · : Q×Σ → 2Q is the forward transition function,
◦ : Q × Σ → 2Q is the backward transition function, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of final states. The transition functions · and ◦ are
extended to words in the following way, for every word v ∈ Σ∗ and letter a ∈ Σ:

q · λ = {q}, q · av =
⋃

p∈(q·a)

p · v, and q ◦ λ = {q}, q ◦ va =
⋃

p∈(q◦a)

p ◦ v,

and further, both · and ◦ can be extended to sets of states S ⊆ Q, and w ∈ Σ∗
by S ·w =

⋃
p∈S p ·w, and S ◦w =

⋃
p∈S p ◦w. The biautomaton A accepts the

word w ∈ Σ∗, if and only if w = u1u2 . . . ukvk . . . v2v1, for some words ui, vi ∈ Σ∗
with 1 ≤ i ≤ k, such that [((. . . ((((I · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk] ∩ F 6= ∅.
The language accepted by A is defined as L(A) = {w ∈ Σ∗ | A accepts w }.
Moreover, the biautomaton A is deterministic, if |I| = 1, and |q · a| = |q ◦ a| = 1
for all states q ∈ Q and letters a ∈ Σ. The automaton A has the �-property,
if (q · a) ◦ b = (q ◦ b) · a, for every state q ∈ Q and a, b ∈ Σ. Further, A
has the F -property, if q · a ∩ F 6= ∅ if and only if q ◦ a ∩ F 6= ∅, for every
state q ∈ Q and letter a ∈ Σ. A deterministic biautomaton as defined above
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that has both the �- and the F -property is exactly what is called a biautomaton
in [4]. Nondeterministic biautomata characterize the family of linear context-
free languages [5], while nondeterministic biautomata that have the �-property
accept only regular languages. In fact, we are able to prove the following result.

Theorem 1. The trade-off between deterministic or nondeterministic biautom-
ata with or without the F -property and deterministic or nondeterministic biau-
tomata that satisfy at least the �-property is non-recursive. ut

By a straight-forward power-set construction, one can convert any n-state
nondeterministic biautomaton into an equivalent deterministic biautomaton hav-
ing at most 2n states—this construction preserves both the �- and the F -
property. An exponential lower bound for the determinization of nondetermin-
istic biautomata with both properties is given in the following result.

Theorem 2. For all integers n ≥ 1 there is a binary regular language Ln ac-
cepted by a nondeterministic biautomaton with �-, and F -property that has 3n+2
states, and for which every equivalent deterministic biautomaton with �- and F -
property needs at least 22n + 1 states. ut

We also study the costs for the conversions from deterministic or nonde-
terministic finite automata (DFAs, NFAs), syntactic monoids, and regular ex-
pressions into nondeterministic biautomata that have the �- and F -property. To
prove lower bounds for such nondeterministic biautomata, the following gener-
alization of the fooling set technique [1] is useful.

Theorem 3. A set S = { (xi, yi, zi) | xi, yi, zi ∈ Σ∗, 1 ≤ i ≤ n } is a bi-fooling
set for a language L ⊆ Σ∗ if the following two properties hold:

1. for 1 ≤ i ≤ n it is xiyizi ∈ L, and
2. for 1 ≤ i, j ≤ n, with i 6= j, it is xiyjzi /∈ L or xjyizj /∈ L.

If S is a bi-fooling set for the language L, then any nondeterministic biautomaton
with both the �-property and the F -property that accepts the language L has at
least |S| states. ut

Table 1 summarizes our results on the costs of the above mentioned con-
versions. For comparison we also list the results from [3] for the conversions
from DFAs, NFAs, and syntactic monoids to deterministic biautomata with both
properties. Except for the conversion from regular expressions to nondetermin-
istic biautomata, the indicated bounds are tight bounds, i.e., matching lower
and upper bounds. We exemplarily present the results on the conversion from
regular expressions to biautomata. We measure the size of a regular expression r
by its alphabetic width, which is the number of occurrences of symbols from the
underlying alphabet in the expression. The following upper bound is obtained
by adapting the Glushkov construction [2] to biautomata.

Theorem 4. Let r be a regular expression of alphabetic width n. Then there is
a nondeterministic biautomaton A with L(A) = L(r) that has (n + 1)2 states.
Further, A has the �- and the F -property. ut
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Convert from . . .
. . . to Biautomaton

deterministic, �, F nondeterministic, �, F
DFA n · 2n − 2 · (n− 1) n2

NFA 22n − 2 · (2n − 1) n2

syntactic monoid n2 n
regular expression n2 ≤ · ≤ (n + 1)2

Table 1. Tight bounds for conversions from different models describing regular lan-
guages to deterministic or nondeterministic biautomata with the �-property and the
F -property. The results on deterministic biautomata are from [3]. For the conversions
starting from a DFA or NFA, the integer n is the number of states of the finite automa-
ton, when starting from a syntactic monoid, the number n is the size of the monoid,
and for regular expressions, the integer n is the alphabetic width of the expression.

The following result provides a lower bound for this conversion.

Theorem 5. For all integers n ≥ 1 there is a binary language Ln with alphabetic
width n, such that any nondeterministic biautomaton with the �- and the F -
property needs n2 states to accept the language Ln. ut

The results and constructions for nondeterministic biautomata with �- and
F -property are evidence that this automaton model is a reasonable nondetermin-
istic counterpart of the model of biautomata, as introduced in [4]. Concerning
the F -property, its influence on the size of the biautomata is yet to be studied.
By close inspection of the proof that biautomata with �-property accept regular
languages, one can deduce a quadratic upper bound for converting biautomata
with �-property into equivalent nondeterministic finite automata. With the con-
versions from finite automata to biautomata one can obtain upper bounds for
enforcing the F -property, while preserving the �-property—in case of nondeter-
ministic biautomata, the bound is polynomial, and for deterministic biautomata
it is exponential. The search for tight bounds for these conversions is left as an
open problem.
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