Input-Driven Queue Automata:
Finite Turns, Decidability,
and Closure Properties

Martin Kutrib! Andreas Malcher! Carlo Mereghetti?
Beatrice Palano? Matthias Wendlandt!

Institut fiir Informatik, Universitat Giessen,
Arndtstr. 2, 35392 Giessen, Germany
email: {kutrib,malcher,matthias.wendlandt}@informatik.uni—giessen.de

Dipartimento di Informatica, Universita degli Studi di Milano
via Comelico 39, 20135 Milano, ltaly
email:{mereghetti,palano}@di.unimi.it

Input-driven automata

- The input alphabet is divided into several classes.

Input-driven automata

- The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Input-driven automata

= The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

X=X UX,UX;

Input-driven automata

- The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

X=X UX,UX;

2 g € ¥.: a symbol is pushed onto the pushdown store

Input-driven automata

- The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

X=X UX,UX;

2 g € ¥.: a symbol is pushed onto the pushdown store

< a € X,: a symbol is popped from the pushdown store

Input-driven automata

- The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

X=X UX,UX;

2 g € ¥.: a symbol is pushed onto the pushdown store
< a € X,: a symbol is popped from the pushdown store

< a € ¥;: internal change of states, no action on the pushdown
store

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)

Input-driven pushdown automata
= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)
= Visibly pushdown automata (Alur, Madhusudan 2004)

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)

= Visibly pushdown automata (Alur, Madhusudan 2004)

» nested word automata

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)

= Visibly pushdown automata (Alur, Madhusudan 2004)

» nested word automata
2 .. .
» 29"°) bounds for determinization

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)
= Visibly pushdown automata (Alur, Madhusudan 2004)

» nested word automata
2 .. .
» 29"°) bounds for determinization
» closure properties, decidability questions

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

= Input-driven languages are in NC'. (Dymond 1988)
= Visibly pushdown automata (Alur, Madhusudan 2004)

» nested word automata
2 .. .
» 29"°) bounds for determinization
» closure properties, decidability questions

= Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Input-driven pushdown automata

->

Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)

Input-driven languages are in NC'. (Dymond 1988)
Visibly pushdown automata (Alur, Madhusudan 2004)

» nested word automata

» 29("*) bounds for determinization

» closure properties, decidability questions
Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)
= Input-driven languages are in NC'. (Dymond 1988)
= Visibly pushdown automata (Alur, Madhusudan 2004)
» nested word automata
» 22("*) bounds for determinization
» closure properties, decidability questions
= Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

- Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

= Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, ...

Queue automata

= Introduced by Vollmar in 1970.

Queue automata

= Introduced by Vollmar in 1970.

- General model is equivalent to Turing machines

Queue automata

- Introduced by Vollmar in 1970.
- General model is equivalent to Turing machines

- Restricted real-time, quasi real-time, and linear-time variants.

Queue automata

Introduced by Vollmar in 1970.
General model is equivalent to Turing machines
Restricted real-time, quasi real-time, and linear-time variants.

Deterministic (DQA) and nondeterministic variants.

Queue automata

Introduced by Vollmar in 1970.
General model is equivalent to Turing machines
Restricted real-time, quasi real-time, and linear-time variants.

Deterministic (DQA) and nondeterministic variants.

LR R R R

Extended variants with several queues.

Queue automata

LR TR R R R

Introduced by Vollmar in 1970.

General model is equivalent to Turing machines

Restricted real-time, quasi real-time, and linear-time variants.
Deterministic (DQA) and nondeterministic variants.
Extended variants with several queues.

Undecidability of emptiness for deterministic queue automata
working in real time.

Input-driven queue automata (DVQA)
M = <Q7E7F7q07F7J—76675T75i>1

X=X UX UX;

Input-driven queue automata (DVQA)
M = <Q7 27 Fa q0, F7 J—7 667 57“7 6’L>v
Y= U% U

2 q € X.: a symbol is stored in the queue

Input-driven queue automata (DVQA)
M = <Q7 27 Fa q0, F7 J—7 667 57“7 6’L>v
Y= U% U

2 q € X.: a symbol is stored in the queue

< a € X,: a symbol is removed from the queue

Input-driven queue automata (DVQA)
M = <Q7 27 Fa q0, F7 J—a 667 57“7 6’L>v
Y= U% U

2 q € X.: a symbol is stored in the queue
< a € X,: a symbol is removed from the queue

< @ € ¥;: internal change of states, no action on the queue

Input-driven queue automata (DVQA)
M = <Q7 27 Fa q0, F7 J—a 667 57“7 6’L>v
Y= U% U

2 q € X.: a symbol is stored in the queue
< a € X,: a symbol is removed from the queue

< @ € ¥;: internal change of states, no action on the queue

By definition, DVQA work in real time.

Example: The language
{ $0$1abb$2$1 abbabbo1 (abb) $s . .. $1(abb) >)8y | n >0}

is accepted by the following DVQA.

Example: The language
{ $0$1abb$2$1abbabba1 (abb) 8 . .. $1(abb)®)$y [n >0}

is accepted by the following DVQA.

Yi={}

E = {$2,(I}

Ye ={$0,$1,b}
— —
front tail

queue

Example: The language
{ $0$1abb$2$1 abbabba1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

Ye = {$0,%1, 0}
— a
front

queue

- $1(abb)®

tail

$2]n>0}

Example: The language
{ $0$1abb$2$1 abbabbs1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

Ye = {$0,%1, 0}
— 4|
front

queue

- $1(abb)®

tail

$2]n>0}

Example: The language
{ $0$1abb$2$1 abbabbs1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

Ye = {80, 81,0}
— Jaa
front

queue

- $1(abb)®

tail

$2]n>0}

Example: The language
{ $0$1abb$2$1 abbabba1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

e = {$0, $1,b}
— aa
front

queue

- $1(abb)®

tail

$2]n>0}

Example: The language
{ $0$1abb$2$1 abbabbs1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

e = {$0, $1,b}
— alaa
front

queue

- $1(abb)®

tail

$2]n>0}

Example: The language
{ $0$1abb$2$1 abbabba1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

Ye = {80, 81,0}
— |aaaa
front

queue

- $1(abb)®

tail

$2]n>0}

Turn-bounded queue automata

Turn-bounded queue automata

- For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

Turn-bounded queue automata

- For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

= For any given k > 0, a k-turn computation is any
computation containing exactly k turns.

Turn-bounded queue automata

- For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

= For any given k > 0, a k-turn computation is any
computation containing exactly k turns.

- We restrict deterministic queue automata, to make at most &
turns in the queue (DQA, and DVQA,).

Flip-pushdown automata

Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.

Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.

- Moreover it has the possibility to flip the pushdown store.

Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.
- Moreover it has the possibility to flip the pushdown store.

= Informally a flip means that the pushdown store is reversed.

¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

||—@m~.»

¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

{

d

¢

¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

olindli

||—®m~.»
F—ooe
200

Simulation of turns by flips

Lemma

Let £ > 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DEFPDA can effectively be constructed.

Simulation of turns by flips

Lemma

Let £ > 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DEFPDA can effectively be constructed.

=» The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

Simulation of turns by flips

Lemma

Let £ > 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DEFPDA can effectively be constructed.

=» The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

< Whenever the queue automaton performs a turn, that is,
changes from increasing to decreasing or decreasing to
increasing mode, the flip-pushdown automaton flips the front
end of the pushdown store to the top.

Flip-pushdown automata

Flip-pushdown automata

= |t is shown in [Holzer, Kutrib 2003] that for every DFPDA;,
M a context-free language L' that is letter equivalent to
L(M) can be constructed.

Flip-pushdown automata

= |t is shown in [Holzer, Kutrib 2003] that for every DFPDA;,
M a context-free language L' that is letter equivalent to
L(M) can be constructed.

- So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Flip-pushdown automata

= |t is shown in [Holzer, Kutrib 2003] that for every DFPDA;,
M a context-free language L' that is letter equivalent to
L(M) can be constructed.

- So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let & > 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.

Turn hierarchy

Example: Let h, : {a,b}* — {a/,0'}* be the homomorphism
hy(a) = a', hy(b) =b'. For all 5 > 0, we define the sets

O = {#wihy(w) | w € {a,b}* }V - #

and, for all k > 0 the language L; = U?:o Cj.

Turn hierarchy

Example: Let h, : {a,b}* — {a/,0'}* be the homomorphism
hy(a) = a', hy(b) =b'. For all 5 > 0, we define the sets

O = { #wihy(w) | w € {a,b}* } - #
and, for all k > 0 the language L; = U?:o Cj.

Theorem

Let £ > 1. Then language Ly is accepted by some DVQA,, but
not accepted by any DQA;_;.

Closure properties

DVQA, | DVQA
~ no yes
Uec yes yes
MNe yes yes

NREG yes yes
: no no

* no no
hx no no
h~ ! no no
U no no

N no no

Two signatures
Y =3 UX, U
and
are compatible if
Uje{e,r,i}(zj \ E;) N =0
and

Uje{e,r,i}(zg‘ \Z)NE=0.

Decidability problems

DVQA, | DVQA

emptiness
finiteness
universality
inclusion
inclusion,.
equivalence
equivalence,
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness +
finiteness +

universality
inclusion
inclusion,.

equivalence

equivalence,
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness +
finiteness +
universality +
inclusion
inclusion,.
equivalence
equivalence,
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness +
finiteness +
universality +
inclusion
inclusion,. +
equivalence
equivalence, +
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

Lemma

Let M be an LBA. Then a DVQA accepting VALC(M) can effec-
tively be constructed.

Decidability problems

DVQA, | DVQA
emptiness + -
finiteness + —

universality + —
inclusion —
inclusion,. + —

equivalence —

equivalence, + —
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness + -
finiteness + —

universality + —
inclusion — —
inclusion,. + —

equivalence —

equivalence, + -
finite turn

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness + -
finiteness + —

universality + —
inclusion — —
inclusion,. + —
equivalence —
equivalence, + -
finite turn trivial —

- + means decidable

- — means not semidecidable

Decidability problems

DVQA, | DVQA
emptiness + -
finiteness + —

universality + —
inclusion — —
inclusion,. + —
equivalence ? —
equivalence, + -
finite turn trivial —

- + means decidable

- — means not semidecidable

