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- The input alphabet is divided into several classes.

- Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

X=X UX,UX;

2 g € ¥.: a symbol is pushed onto the pushdown store
< a € X,: a symbol is popped from the pushdown store

< a € ¥;: internal change of states, no action on the pushdown
store
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Input-driven pushdown automata

= Input-driven PDA accept context-free languages in O(logn)
space. (Mehlhorn 1980, von Braunmiihl, Verbeek 1983)

- Nondeterministic and deterministic versions are equivalent.
(von Braunmiihl, Verbeek 1983)
= Input-driven languages are in NC'. (Dymond 1988)
= Visibly pushdown automata (Alur, Madhusudan 2004)
» nested word automata
» 22("*) bounds for determinization
» closure properties, decidability questions
= Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

- Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

= Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, ...
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Introduced by Vollmar in 1970.

General model is equivalent to Turing machines

Restricted real-time, quasi real-time, and linear-time variants.
Deterministic (DQA) and nondeterministic variants.
Extended variants with several queues.

Undecidability of emptiness for deterministic queue automata
working in real time.
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Input-driven queue automata (DVQA)
M = <Q7 27 Fa q0, F7 J—a 667 57“7 6’L>v
Y= U% U

2 q € X.: a symbol is stored in the queue
< a € X,: a symbol is removed from the queue

< @ € ¥;: internal change of states, no action on the queue

By definition, DVQA work in real time.
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Example: The language
{ $0$1abb$2$1 abbabb$a$1 (abb)?$, . .

is accepted by the following DVQA.

Yi={}

2 = {$2,a}

Ye = {80, 81,0}
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queue

- $1(abb)®

tail
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Turn-bounded queue automata

- For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

= For any given k > 0, a k-turn computation is any
computation containing exactly k turns.

- We restrict deterministic queue automata, to make at most &
turns in the queue (DQA, and DVQA,).



Flip-pushdown automata



Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.



Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.



Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.

- Moreover it has the possibility to flip the pushdown store.



Flip-pushdown automata

- The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

= |t has a pushdown store, where letters can be pushed and
popped.
- Moreover it has the possibility to flip the pushdown store.

= Informally a flip means that the pushdown store is reversed.



¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.



¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

||—@m~.»



¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.

{



d

¢

¢

Flip-pushdown automata

The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

It has a pushdown store, where letters can be pushed and
popped.

Moreover it has the possibility to flip the pushdown store.
Informally a flip means that the pushdown store is reversed.

In a flip only the pushdown symbol stays on the bottom.
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Simulation of turns by flips

Lemma

Let £ > 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DEFPDA can effectively be constructed.

=» The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

< Whenever the queue automaton performs a turn, that is,
changes from increasing to decreasing or decreasing to
increasing mode, the flip-pushdown automaton flips the front
end of the pushdown store to the top.
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Flip-pushdown automata

= |t is shown in [Holzer, Kutrib 2003] that for every DFPDA;,
M a context-free language L' that is letter equivalent to
L(M) can be constructed.

- So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let & > 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.
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Turn hierarchy

Example: Let h, : {a,b}* — {a/,0'}* be the homomorphism
hy(a) = a', hy(b) =b'. For all 5 > 0, we define the sets

O = { #wihy(w) | w € {a,b}* } - #
and, for all k > 0 the language L; = U?:o Cj.

Theorem

Let £ > 1. Then language Ly is accepted by some DVQA,, but
not accepted by any DQA;_;.



Closure properties

DVQA, | DVQA
~ no yes
Uec yes yes
MNe yes yes

NREG yes yes
: no no

* no no
hx no no
h~ ! no no
U no no

N no no

Two signatures
Y =3 UX, U
and
are compatible if
Uje{e,r,i}(zj \ E;) N =0
and

Uje{e,r,i}(zg‘ \Z)NE=0.
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