
Input-Driven Queue Automata:
Finite Turns, Decidability,

and Closure Properties

Martin Kutrib1 Andreas Malcher1 Carlo Mereghetti2

Beatrice Palano2 Matthias Wendlandt1

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

email: {kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Dipartimento di Informatica, Università degli Studi di Milano
via Comelico 39, 20135 Milano, Italy

email:{mereghetti,palano}@di.unimi.it



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven automata

Ü The input alphabet is divided into several classes.

Ü Each class induces a specific behavior of the automaton.

Example: Input-driven pushdown automata

Σ = Σc ∪ Σr ∪ Σi

Ü a ∈ Σc: a symbol is pushed onto the pushdown store

Ü a ∈ Σr: a symbol is popped from the pushdown store

Ü a ∈ Σi: internal change of states, no action on the pushdown
store



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)

I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)

I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)

I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)

I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata

I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata
I 2Ω(n2) bounds for determinization

I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Input-driven pushdown automata

Ü Input-driven PDA accept context-free languages in O(log n)
space. (Mehlhorn 1980, von Braunmühl, Verbeek 1983)

Ü Nondeterministic and deterministic versions are equivalent.
(von Braunmühl, Verbeek 1983)

Ü Input-driven languages are in NC1. (Dymond 1988)

Ü Visibly pushdown automata (Alur, Madhusudan 2004)
I nested word automata
I 2Ω(n2) bounds for determinization
I closure properties, decidability questions

Ü Pushdown forest automata (Neumann, Seidl 1998; Gauwin,
Niehren, Roos 2008)

Ü Descriptional complexity aspects (Han, Salomaa 2009, Piao,
Salomaa 2009, Okhotin, Salomaa 2011)

Ü Extensions/generalizations: multiple pushdowns, graph
automata, height-deterministic PDA, stacks, . . .



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Queue automata

Ü Introduced by Vollmar in 1970.

Ü General model is equivalent to Turing machines

Ü Restricted real-time, quasi real-time, and linear-time variants.

Ü Deterministic (DQA) and nondeterministic variants.

Ü Extended variants with several queues.

Ü Undecidability of emptiness for deterministic queue automata
working in real time.



Input-driven queue automata (DVQA)

M = 〈Q,Σ,Γ, q0, F,⊥, δe, δr, δi〉,

Σ = Σe ∪ Σr ∪ Σi

Ü a ∈ Σe: a symbol is stored in the queue

Ü a ∈ Σr: a symbol is removed from the queue

Ü a ∈ Σi: internal change of states, no action on the queue

By definition, DVQA work in real time.



Input-driven queue automata (DVQA)

M = 〈Q,Σ,Γ, q0, F,⊥, δe, δr, δi〉,

Σ = Σe ∪ Σr ∪ Σi

Ü a ∈ Σe: a symbol is stored in the queue

Ü a ∈ Σr: a symbol is removed from the queue

Ü a ∈ Σi: internal change of states, no action on the queue

By definition, DVQA work in real time.



Input-driven queue automata (DVQA)

M = 〈Q,Σ,Γ, q0, F,⊥, δe, δr, δi〉,

Σ = Σe ∪ Σr ∪ Σi

Ü a ∈ Σe: a symbol is stored in the queue

Ü a ∈ Σr: a symbol is removed from the queue

Ü a ∈ Σi: internal change of states, no action on the queue

By definition, DVQA work in real time.



Input-driven queue automata (DVQA)

M = 〈Q,Σ,Γ, q0, F,⊥, δe, δr, δi〉,

Σ = Σe ∪ Σr ∪ Σi

Ü a ∈ Σe: a symbol is stored in the queue

Ü a ∈ Σr: a symbol is removed from the queue

Ü a ∈ Σi: internal change of states, no action on the queue

By definition, DVQA work in real time.



Input-driven queue automata (DVQA)

M = 〈Q,Σ,Γ, q0, F,⊥, δe, δr, δi〉,

Σ = Σe ∪ Σr ∪ Σi

Ü a ∈ Σe: a symbol is stored in the queue

Ü a ∈ Σr: a symbol is removed from the queue

Ü a ∈ Σi: internal change of states, no action on the queue

By definition, DVQA work in real time.



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

a



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

a|



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

|aa



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

aa



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

a|aa



Example: The language

{ $0$1abb$2$1abbabb$2$1(abb)4$2 . . . $1(abb)(2
n)$2 | n ≥ 0 }

is accepted by the following DVQA.

Σi = {}
Σr = {$2, a}
Σe = {$0, $1, b}

queuefront tail

|aaaa



Turn-bounded queue automata

Ü For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

Ü For any given k ≥ 0, a k-turn computation is any
computation containing exactly k turns.

Ü We restrict deterministic queue automata, to make at most k
turns in the queue (DQAk and DVQAk).



Turn-bounded queue automata

Ü For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

Ü For any given k ≥ 0, a k-turn computation is any
computation containing exactly k turns.

Ü We restrict deterministic queue automata, to make at most k
turns in the queue (DQAk and DVQAk).



Turn-bounded queue automata

Ü For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

Ü For any given k ≥ 0, a k-turn computation is any
computation containing exactly k turns.

Ü We restrict deterministic queue automata, to make at most k
turns in the queue (DQAk and DVQAk).



Turn-bounded queue automata

Ü For a computation of a queue automaton, a turn is a phase in
which the length of the queue first increases and then
decreases.

Ü For any given k ≥ 0, a k-turn computation is any
computation containing exactly k turns.

Ü We restrict deterministic queue automata, to make at most k
turns in the queue (DQAk and DVQAk).



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.

⊥
a
c
c



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.

⊥
a
c
c

⊥
c
c
a



Flip-pushdown automata

Ü The functionality of a deterministic flip-pushdown automaton
(DFPDA) [Holzer, Kutrib 2003] is almost the same as of a
pushdown automaton.

Ü It has a pushdown store, where letters can be pushed and
popped.

Ü Moreover it has the possibility to flip the pushdown store.

Ü Informally a flip means that the pushdown store is reversed.

Ü In a flip only the pushdown symbol stays on the bottom.

⊥
a
c
c

⊥
c
c
a

⊥
a
c
c



Simulation of turns by flips

Lemma

Let k ≥ 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DFPDA can effectively be constructed.

Ü The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

Ü Whenever the queue automaton performs a turn, that is,
changes from increasing to decreasing or decreasing to
increasing mode, the flip-pushdown automaton flips the front
end of the pushdown store to the top.



Simulation of turns by flips

Lemma

Let k ≥ 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DFPDA can effectively be constructed.

Ü The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

Ü Whenever the queue automaton performs a turn, that is,
changes from increasing to decreasing or decreasing to
increasing mode, the flip-pushdown automaton flips the front
end of the pushdown store to the top.



Simulation of turns by flips

Lemma

Let k ≥ 1 be a constant and M be a k-turn DQA. Then an
equivalent 2k-flip DFPDA can effectively be constructed.

Ü The idea of the construction is to use one end of the
pushdown store as the front and the other end as the tail of
the queue.

Ü Whenever the queue automaton performs a turn, that is,
changes from increasing to decreasing or decreasing to
increasing mode, the flip-pushdown automaton flips the front
end of the pushdown store to the top.



Flip-pushdown automata

Ü It is shown in [Holzer, Kutrib 2003] that for every DFPDAk

M a context-free language L′ that is letter equivalent to
L(M) can be constructed.

Ü So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let k ≥ 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.



Flip-pushdown automata

Ü It is shown in [Holzer, Kutrib 2003] that for every DFPDAk

M a context-free language L′ that is letter equivalent to
L(M) can be constructed.

Ü So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let k ≥ 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.



Flip-pushdown automata

Ü It is shown in [Holzer, Kutrib 2003] that for every DFPDAk

M a context-free language L′ that is letter equivalent to
L(M) can be constructed.

Ü So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let k ≥ 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.



Flip-pushdown automata

Ü It is shown in [Holzer, Kutrib 2003] that for every DFPDAk

M a context-free language L′ that is letter equivalent to
L(M) can be constructed.

Ü So every language accepted by a queue automaton with a
constant number of turns obeys a semilinear Parikh mapping.

Theorem

Let k ≥ 0 be a constant and M be a k-turn DQA. Then L(M)
is semilinear, in particular, if L(M) is a unary language then it is
regular.



Turn hierarchy

Example: Let hp : {a, b}∗ → {a′, b′}∗ be the homomorphism
hp(a) = a′, hp(b) = b′. For all j ≥ 0, we define the sets

Cj = { #w#hp(w) | w ∈ {a, b}∗ }j · #

and, for all k ≥ 0 the language Lk =
⋃k
j=0Cj .

Theorem

Let k ≥ 1. Then language Lk is accepted by some DVQAk, but
not accepted by any DQAk−1.



Turn hierarchy

Example: Let hp : {a, b}∗ → {a′, b′}∗ be the homomorphism
hp(a) = a′, hp(b) = b′. For all j ≥ 0, we define the sets

Cj = { #w#hp(w) | w ∈ {a, b}∗ }j · #

and, for all k ≥ 0 the language Lk =
⋃k
j=0Cj .

Theorem

Let k ≥ 1. Then language Lk is accepted by some DVQAk, but
not accepted by any DQAk−1.



Closure properties

DVQAk DVQA
∼ no yes
∪c yes yes
∩c yes yes
∩REG yes yes
· no no
∗ no no
hλ no no
h−1 no no
∪ no no
∩ no no

Two signatures
Σ = Σe ∪ Σr ∪ Σi

and
Σ′ = Σ′e ∪ Σ′r ∪ Σ′i
are compatible if⋃

j∈{e,r,i}(Σj \ Σ′j) ∩ Σ′ = ∅
and⋃

j∈{e,r,i}(Σ
′
j \ Σj) ∩ Σ = ∅.



Decidability problems

DVQAk DVQA
emptiness
finiteness

universality
inclusion
inclusionc

equivalence
equivalencec

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness +
finiteness +

universality
inclusion
inclusionc

equivalence
equivalencec

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness +
finiteness +

universality +
inclusion
inclusionc

equivalence
equivalencec

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness +
finiteness +

universality +
inclusion
inclusionc +

equivalence
equivalencec +

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

Lemma

Let M be an LBA. Then a DVQA accepting VALC(M) can effec-
tively be constructed.



Decidability problems

DVQAk DVQA
emptiness + −
finiteness + −

universality + −
inclusion −
inclusionc + −

equivalence −
equivalencec + −

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness + −
finiteness + −

universality + −
inclusion − −
inclusionc + −

equivalence −
equivalencec + −

finite turn

Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness + −
finiteness + −

universality + −
inclusion − −
inclusionc + −

equivalence −
equivalencec + −

finite turn trivial −
Ü + means decidable

Ü − means not semidecidable



Decidability problems

DVQAk DVQA
emptiness + −
finiteness + −

universality + −
inclusion − −
inclusionc + −

equivalence ? −
equivalencec + −

finite turn trivial −
Ü + means decidable

Ü − means not semidecidable


