
Queue Automata of Constant Length

Sebastian Jakobi Katja Meckel
Carlo Mereghetti Beatrice Palano

Institut für Informatik, Universität Giessen, Germany

Dipartimento di Informatica, Università degli Studi di Milano
Milano, Italy

Theorietag 2013, Ilmenau



Finite State Automata with Memory

Starting from DFA and NFA we can define

1. Pushdown Automata (PDA) by adding a LIFO storage

2. Queue Automata (QA) by adding a FIFO storage

Note
These automata models are simply Turing machines with
restrictions of the access of the working tape.

Restricting the storage sizes to a constant h we get

1. constant height PDA (h-PDA)

2. constant length QA (h-QA)



Finite State Automata with Memory

Starting from DFA and NFA we can define

1. Pushdown Automata (PDA) by adding a LIFO storage

2. Queue Automata (QA) by adding a FIFO storage

Note
These automata models are simply Turing machines with
restrictions of the access of the working tape.

Restricting the storage sizes to a constant h we get

1. constant height PDA (h-PDA)

2. constant length QA (h-QA)



Measuring Constant Memory Automata

Measure for Constant Memory Automata

Our measure for constant memory automata is an ordered triple
consisting of

1. the number of states of the finite control,

2. the size of memory alphabet,

3. the memory limit.

This definition was already used for results on constant height
pushdown automata. [Geffert, CM, BP 2010]



Conversion h-PDA → FA

The following trade-offs were shown
[Bednárová, Geffert, CM, BP 2012]

Ü h-NPDA → NFA: exponential

Ü h-NPDA → DFA: double exponential

Ü h-DPDA → NFA: exponential

Ü h-DPDA → DFA: exponential

What are the trade-offs for the conversions between constant
length queue automata and finite automata?



Conversion h-PDA → FA

The following trade-offs were shown
[Bednárová, Geffert, CM, BP 2012]

Ü h-NPDA → NFA: exponential

Ü h-NPDA → DFA: double exponential

Ü h-DPDA → NFA: exponential

Ü h-DPDA → DFA: exponential

What are the trade-offs for the conversions between constant
length queue automata and finite automata?



Conversion h-PDA → FA

The following trade-offs were shown
[Bednárová, Geffert, CM, BP 2012]

Ü h-NPDA → NFA: exponential

Ü h-NPDA → DFA: double exponential

Ü h-DPDA → NFA: exponential

Ü h-DPDA → DFA: exponential

What are the trade-offs for the conversions between constant
length queue automata and finite automata?



Conversion h-QA → FA

NFA

h-NQA

DFA

h-DQA� -lin

6

?

lin

6

?

lin

@
@

@
@

@
@
@I

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?



Conversion h-NQA → NFA

NFA

h-NQA

DFA

h-DQA� -lin

6

≤ exp

?

lin

6

≤ exp

?

lin

@
@

@
@

@
@
@I

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?
≤ exp

Theorem

For each constant length NQA A = 〈Q,Σ,Γ, δ, q0,`, F, h〉,
there exists an equivalent NFA A′ = 〈Q′,Σ, δ′, q′0, F ′〉 with
|Q′| ≤ |Q| ·

∣∣Γ≤h∣∣. Moreover, if A is a DQA then A′ is a
DFA.



Conversion h-NQA → NFA

NFA

h-NQA

DFA

h-DQA� -lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?

exp

Optimality of the bound

The language
DΓ,h = {w#w : w ∈ Γ≤h}

is accepted by

Ü a constant length DQA with 3 states, queue alphabet
Γ ∪ {#,`}, and constant length h,

Ü an NFA with at least
∣∣Γ≤h∣∣ states (fooling set).



Conversion h-NQA → DFA

NFA

h-NQA

DFA

h-DQA� -lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

≤ double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?

exp

Theorem

Any constant length NQA with state set Q, queue alphabet
Γ, and queue length h can be converted into an equivalent

DFA with 2|Q|·|Γ≤h| states.



Conversion h-NQA → DFA

NFA

h-NQA

DFA

h-DQA� -lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?

exp

Optimality of the bound

The language

SΓ,h = {v1v2 . . . vr#w1w2 . . . wt | vi, wj ∈ Γh, ∃i, j : vi = wj}



Conversion h-NQA → DFA

NFA

h-NQA

DFA

h-DQA� -lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

�

� �
?

exp

Optimality of the bound

is accepted by

Ü a constant length NQA with O(h) states, queue alphabet
Γ ∪ {`}, and constant length h,

Ü a DFA with at least 2|Γh| states.



Conversion NFA → h-DQA

NFA

h-NQA

DFA

h-DQA� -lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

lin

�

� �
?

exp

Theorem

For each NFA A = 〈Q,Σ, δ, q1, F 〉 there exists an equiv-
alent constant length DQA A′ = 〈Q′,Σ,Γ, δ′, q0,`, F ′, h〉
such that |Q′| ∈ O(|Q| · |Σ|), and |Γ| , h ∈ O(|Q|).



Conversion NFA → h-DQA

Key idea of the proof

Ü In its queue the constant length DQA stores the set of
successor states the NFA A may be in on reading an input
symbol.

Ü Let δ(s1, a) = {r1, . . . , rk} be a transition of A and the queue
content of A′ be s1s2 . . . sl#t1 . . . tm ` the DQA converts its
queue content in the following way by using λ-moves:

s1s2 . . . sl#t1 . . . tm `
a→ s2 . . . sl#t1 . . . tm `

λ→ · · · λ→ #t1 . . . tm ` s2 . . . sl
λ→ t1 . . . tm ` s2 . . . sl#

λ→ · · · λ→ ` s2 . . . sl#t1 . . . ti−1ti+1 . . . tm
λ→ s2 . . . sl#t1 . . . ti−1ti+1 . . . tmr1 . . . rk `



Conversion NFA → h-DQA

Key idea of the proof

Ü In its queue the constant length DQA stores the set of
successor states the NFA A may be in on reading an input
symbol.

Ü Let δ(s1, a) = {r1, . . . , rk} be a transition of A and the queue
content of A′ be s1s2 . . . sl#t1 . . . tm ` the DQA converts its
queue content in the following way by using λ-moves:

s1s2 . . . sl#t1 . . . tm `
a→ s2 . . . sl#t1 . . . tm `

λ→ · · · λ→ #t1 . . . tm ` s2 . . . sl

λ→ t1 . . . tm ` s2 . . . sl#
λ→ · · · λ→ ` s2 . . . sl#t1 . . . ti−1ti+1 . . . tm

λ→ s2 . . . sl#t1 . . . ti−1ti+1 . . . tmr1 . . . rk `



Conversion NFA → h-DQA

Key idea of the proof

Ü In its queue the constant length DQA stores the set of
successor states the NFA A may be in on reading an input
symbol.

Ü Let δ(s1, a) = {r1, . . . , rk} be a transition of A and the queue
content of A′ be s1s2 . . . sl#t1 . . . tm ` the DQA converts its
queue content in the following way by using λ-moves:

s1s2 . . . sl#t1 . . . tm `
a→ s2 . . . sl#t1 . . . tm `

λ→ · · · λ→ #t1 . . . tm ` s2 . . . sl
λ→ t1 . . . tm ` s2 . . . sl#

λ→ · · · λ→ ` s2 . . . sl#t1 . . . ti−1ti+1 . . . tm
λ→ s2 . . . sl#t1 . . . ti−1ti+1 . . . tmr1 . . . rk `



Conversion NFA → h-DQA

Key idea of the proof

Ü In its queue the constant length DQA stores the set of
successor states the NFA A may be in on reading an input
symbol.

Ü Let δ(s1, a) = {r1, . . . , rk} be a transition of A and the queue
content of A′ be s1s2 . . . sl#t1 . . . tm ` the DQA converts its
queue content in the following way by using λ-moves:

s1s2 . . . sl#t1 . . . tm `
a→ s2 . . . sl#t1 . . . tm `

λ→ · · · λ→ #t1 . . . tm ` s2 . . . sl
λ→ t1 . . . tm ` s2 . . . sl#

λ→ · · · λ→ ` s2 . . . sl#t1 . . . ti−1ti+1 . . . tm

λ→ s2 . . . sl#t1 . . . ti−1ti+1 . . . tmr1 . . . rk `



Conversion NFA → h-DQA

Key idea of the proof

Ü In its queue the constant length DQA stores the set of
successor states the NFA A may be in on reading an input
symbol.

Ü Let δ(s1, a) = {r1, . . . , rk} be a transition of A and the queue
content of A′ be s1s2 . . . sl#t1 . . . tm ` the DQA converts its
queue content in the following way by using λ-moves:

s1s2 . . . sl#t1 . . . tm `
a→ s2 . . . sl#t1 . . . tm `

λ→ · · · λ→ #t1 . . . tm ` s2 . . . sl
λ→ t1 . . . tm ` s2 . . . sl#

λ→ · · · λ→ ` s2 . . . sl#t1 . . . ti−1ti+1 . . . tm
λ→ s2 . . . sl#t1 . . . ti−1ti+1 . . . tmr1 . . . rk `



Determinization of h-NQA

NFA

h-NQA

DFA

h-DQA�
exp

-lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

lin

�

� �
?

exp

Theorem

For each constant length NQA A = 〈Q,Σ,Γ, δ, q0,`, F, h〉
there exists an equivalent constant length DQA A′ =
〈Q′,Σ,Γ′, δ′, q′0,`′, F ′, h′〉 with |Q′| ∈ O(|Q| ·

∣∣Γ≤h∣∣ · |Σ|)
and |Γ′| , h′ ∈ O(|Q| ·

∣∣Γ≤h∣∣). Furthermore, this conversion is
optimal.



Determinization of h-NQA

NFA

h-NQA

DFA

h-DQA�
exp

-lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

lin

�

� �
?

exp



Determinization of h-NQA

NFA

h-NQA

DFA

h-DQA�
< exp

-lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

lin

�

� �
?

exp



Conversions between h-PDA and h-QA

h-NPDA

h-NQA

h-DPDA

h-DQA

6

lin

6

lin

?

≤ exp

?

≤ exp

-lin

�
exp

-lin�-

� 
exp

�

� 
6
≤ exp

�
double

exp

�
�

�
�

�
�
�	

double
exp

�
�
�
�
�
�
��

lin



Conversions between h-PDA and h-QA

h-NPDA

h-NQA

h-DPDA

h-DQA

6

lin

6

lin

?

≤ exp

?

≤ exp

-lin

�
exp

-lin�-

� 
exp

�

� 
6
≤ exp

�
double

exp

�
�

�
�

�
�
�	

double
exp

�
�
�
�
�
�
��

lin



Straight Line Programs for Regular Expressions

Straight line programs (SLP) are used for the representation of
regular expressions. Given an alphabet Σ and a set of variables
X = {x1, . . . , xl}, an SLP is defined to be a finite sequence of
instructions of the form

Ü xi := ∅, xi := λ, or xi := a for any a ∈ Σ

Ü xi := xj + xk, xi := xj · xk, or xi := x∗j for 1 ≤ j, k < i

An SLP is always loopless. The variable xl contains the regular
expression.

Measure for an SLP P : (length(P ),fan-out(P ))

Ü length(P ): number of instructions in P

Ü fan-out(P ): maximum of occurrences of a reused variable



Straight Line Programs for Regular Expressions

Straight line programs (SLP) are used for the representation of
regular expressions. Given an alphabet Σ and a set of variables
X = {x1, . . . , xl}, an SLP is defined to be a finite sequence of
instructions of the form

Ü xi := ∅, xi := λ, or xi := a for any a ∈ Σ

Ü xi := xj + xk, xi := xj · xk, or xi := x∗j for 1 ≤ j, k < i

An SLP is always loopless. The variable xl contains the regular
expression.
Measure for an SLP P : (length(P ),fan-out(P ))

Ü length(P ): number of instructions in P

Ü fan-out(P ): maximum of occurrences of a reused variable



Conversion h-NPDA → SLP

Theorem [Geffert, CM, BP 2010]

Let A = 〈Q,Σ,Γ, δ, q0, {qf},`, h〉 be a constant height
NPDA. Then there exists an SLP PA such that reg-exp(P )
denotes L(A), with length(PA) ≤ O(h · |Q|4 · |Γ|+ |Q|2 · |Σ|)
and fan-out(PA) ≤ |Q|2 + 1.



Conversion h-NQA → SLP

Theorem

For each constant length NQA A = 〈Q,Σ,Γ, δ, q0,`, F, h〉,
there is an equivalent SLP of length O(|Q|4 ·

∣∣Γ≤h∣∣4 · |Σ|) and

fan-out O(|Q|2 ·
∣∣Γ≤h∣∣2).



Conversion h-NQA → SLP

The optimality of this bound is proved by the language

LΓ,h =
⋃
u∈Γh

{(#u)i$ : i ≥ 1}



Conversion h-NQA → SLP

LΓ,h =
⋃
u∈Γh

{(#u)i$ : i ≥ 1}

LΓ,h is accepted by

Ü a constant length DQA with O(h) states, queue alphabet
Γ ∪ {`,#}, and queue length h+ 1.

Ü an SLP with at least
∣∣Γh∣∣ variables.



Conversion h-NQA → SLP

LΓ,h =
⋃
u∈Γh

{(#u)i$ : i ≥ 1}

Ü x is called a star-variable if it occurs in a star-instruction
x := y∗. L(x) denotes the language represented by the
regular expression computed in x.



Conversion h-NQA → SLP

LΓ,h =
⋃
u∈Γh

{(#u)i$ : i ≥ 1}

Ü Let the SLP P compute a regular expression describing LΓ,h.

Ü The SLP P ′ is obtained from P by replacing every instruction
x := y∗ by x := λ.

Ü P ′ describes a finite language. Let m denote the length of its
longest word.

Ü For all words z ∈ LΓ,h with |z| > m, P must use a
star-variable to produce it.



Conversion h-NQA → SLP

LΓ,h =
⋃
u∈Γh

{(#u)i$ : i ≥ 1}

Ü Choosing zu = (#u)m$ ∈ LΓ,h, u ∈ Γh, we know that there
exists a star-variable xu in P that produces one part of zu.

Ü We can show that there exists a star-variable xu such that
L(xu) contains a word having the factor #u#.

Ü If P has less than Γh variables, there exist u, v ∈ Γh, u 6= v,
such that xu = xv.

Ü Then P describes words of the form α#u#β#v#γ 6∈ LΓ,h.



Summary of the Results

NFA

h-NPDA

h-NQA

h-DPDA

DFA

h-DQA SLP

6

lin

6

lin

?

exp

?

exp

-lin

�
exp

-lin -exp

�
lin

�-

� 
6exp

�
double

exp

�
�
�
�
�
�
��

poly

�
�

�
�

�
�
�	

lin

�
�

�
�

�
�
�	

double
exp

�
�
�
�
�
�
��

lin

6

exp

?

lin

6

exp

?

lin

@
@

@
@

@
@
@I

double
exp

-lin
�

exp

@
@
@
@
@
@
@R

lin

�-

� �

lin

�

� �
?

exp

?

� �
?

exp



Thank you for your attention


