Queue Automata of Constant Length

Sebastian Jakobi Katja Meckel Carlo Mereghetti Beatrice Palano

Institut für Informatik, Universität Giessen, Germany Dipartimento di Informatica, Università degli Studi di Milano Milano, Italy

Theorietag 2013, Ilmenau

Finite State Automata with Memory

Starting from DFA and NFA we can define

- 1. Pushdown Automata (PDA) by adding a LIFO storage
- 2. Queue Automata (QA) by adding a FIFO storage

Note

These automata models are simply Turing machines with restrictions of the access of the working tape.

Finite State Automata with Memory

Starting from DFA and NFA we can define

- 1. Pushdown Automata (PDA) by adding a LIFO storage
- 2. Queue Automata (QA) by adding a FIFO storage

Note

These automata models are simply Turing machines with restrictions of the access of the working tape.

Restricting the storage sizes to a constant h we get

- 1. constant height PDA (h-PDA)
- 2. constant length QA (*h*-QA)

Measuring Constant Memory Automata

Measure for Constant Memory Automata

Our measure for constant memory automata is an ordered triple consisting of

- 1. the number of states of the finite control,
- 2. the size of memory alphabet,
- 3. the memory limit.

This definition was already used for results on constant height pushdown automata. [Geffert, CM, BP 2010]

Conversion h-PDA \rightarrow FA

The following trade-offs were shown [Bednárová, Geffert, CM, BP 2012]

- → h-NPDA → NFA: exponential
- → h-NPDA → DFA: double exponential

Conversion h-PDA \rightarrow FA

The following trade-offs were shown [Bednárová, Geffert, CM, BP 2012]

- → h-NPDA → NFA: exponential
- → h-NPDA → DFA: double exponential
- → h-DPDA → NFA: exponential
- → h-DPDA → DFA: exponential

Conversion h-PDA \rightarrow FA

The following trade-offs were shown [Bednárová, Geffert, CM, BP 2012]

- → h-NPDA → NFA: exponential
- → h-NPDA → DFA: double exponential
- → h-DPDA → NFA: exponential
- → h-DPDA → DFA: exponential

What are the trade-offs for the conversions between constant length queue automata and finite automata?

Conversion $h\text{-}QA \rightarrow FA$

Theorem

For each constant length NQA $A = \langle Q, \Sigma, \Gamma, \delta, q_0, \vdash, F, h \rangle$, there exists an equivalent NFA $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ with $|Q'| \leq |Q| \cdot |\Gamma^{\leq h}|$. Moreover, if A is a DQA then A' is a DFA.

Optimality of the bound

The language

$$D_{\Gamma,h} = \{ w \# w : w \in \Gamma^{\leq h} \}$$

is accepted by

- a constant length DQA with 3 states, queue alphabet
 Γ ∪ {#,⊢}, and constant length h,
- → an NFA with at least $|\Gamma^{\leq h}|$ states (fooling set).

Theorem

Any constant length NQA with state set Q, queue alphabet Γ , and queue length h can be converted into an equivalent DFA with $2^{|Q| \cdot |\Gamma^{\leq h}|}$ states.

Conversion $h\text{-NQA} \rightarrow \text{DFA}$

Optimality of the bound

The language

$$S_{\Gamma,h} = \{v_1 v_2 \dots v_r \# w_1 w_2 \dots w_t \mid v_i, w_j \in \Gamma^h, \exists i, j : v_i = w_j\}$$

Optimality of the bound

is accepted by

- → a constant length NQA with O(h) states, queue alphabet $\Gamma \cup \{\vdash\}$, and constant length h,
- → a DFA with at least $2^{|\Gamma^h|}$ states.

Theorem

For each NFA $A = \langle Q, \Sigma, \delta, q_1, F \rangle$ there exists an equivalent constant length DQA $A' = \langle Q', \Sigma, \Gamma, \delta', q_0, \vdash, F', h \rangle$ such that $|Q'| \in O(|Q| \cdot |\Sigma|)$, and $|\Gamma|, h \in O(|Q|)$.

- → In its queue the constant length DQA stores the set of successor states the NFA A may be in on reading an input symbol.
- → Let δ(s₁, a) = {r₁,...,r_k} be a transition of A and the queue content of A' be s₁s₂...s_l#t₁...t_m ⊢ the DQA converts its queue content in the following way by using λ-moves:

$$s_1 s_2 \dots s_l \# t_1 \dots t_m \vdash \\ \stackrel{a}{\to} s_2 \dots s_l \# t_1 \dots t_m \vdash$$

- → In its queue the constant length DQA stores the set of successor states the NFA A may be in on reading an input symbol.
- → Let δ(s₁, a) = {r₁,...,r_k} be a transition of A and the queue content of A' be s₁s₂...s_l#t₁...t_m ⊢ the DQA converts its queue content in the following way by using λ-moves:

$$s_1 s_2 \dots s_l \# t_1 \dots t_m \vdash \\ \stackrel{a}{\rightarrow} s_2 \dots s_l \# t_1 \dots t_m \vdash \\ \stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \# t_1 \dots t_m \vdash s_2 \dots s_l$$

- → In its queue the constant length DQA stores the set of successor states the NFA A may be in on reading an input symbol.
- → Let δ(s₁, a) = {r₁,...,r_k} be a transition of A and the queue content of A' be s₁s₂...s_l#t₁...t_m ⊢ the DQA converts its queue content in the following way by using λ-moves:

$$s_{1}s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash \\ \stackrel{a}{\rightarrow} s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash \\ \stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \#t_{1}\dots t_{m} \vdash s_{2}\dots s_{l} \\ \stackrel{\lambda}{\rightarrow} t_{1}\dots t_{m} \vdash s_{2}\dots s_{l}\#$$

- → In its queue the constant length DQA stores the set of successor states the NFA A may be in on reading an input symbol.
- → Let δ(s₁, a) = {r₁,...,r_k} be a transition of A and the queue content of A' be s₁s₂...s_l#t₁...t_m ⊢ the DQA converts its queue content in the following way by using λ-moves:

$$s_{1}s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash$$

$$\stackrel{a}{\rightarrow} s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash$$

$$\stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \#t_{1}\dots t_{m} \vdash s_{2}\dots s_{l}$$

$$\stackrel{\lambda}{\rightarrow} t_{1}\dots t_{m} \vdash s_{2}\dots s_{l}\#$$

$$\stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \vdash s_{2}\dots s_{l}\#t_{1}\dots t_{i-1}t_{i+1}\dots t_{m}$$

- In its queue the constant length DQA stores the set of successor states the NFA A may be in on reading an input symbol.
- → Let δ(s₁, a) = {r₁,...,r_k} be a transition of A and the queue content of A' be s₁s₂...s_l#t₁...t_m ⊢ the DQA converts its queue content in the following way by using λ-moves:

$$s_{1}s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash$$

$$\stackrel{a}{\rightarrow} s_{2}\dots s_{l}\#t_{1}\dots t_{m} \vdash$$

$$\stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \#t_{1}\dots t_{m} \vdash s_{2}\dots s_{l}$$

$$\stackrel{\lambda}{\rightarrow} t_{1}\dots t_{m} \vdash s_{2}\dots s_{l}\#$$

$$\stackrel{\lambda}{\rightarrow} \dots \stackrel{\lambda}{\rightarrow} \vdash s_{2}\dots s_{l}\#t_{1}\dots t_{i-1}t_{i+1}\dots t_{m}$$

$$\stackrel{\lambda}{\rightarrow} s_{2}\dots s_{l}\#t_{1}\dots t_{i-1}t_{i+1}\dots t_{m}r_{1}\dots r_{k} \vdash$$

Determinization of *h*-NQA

Theorem

For each constant length NQA $A = \langle Q, \Sigma, \Gamma, \delta, q_0, \vdash, F, h \rangle$ there exists an equivalent constant length DQA $A' = \langle Q', \Sigma, \Gamma', \delta', q'_0, \vdash', F', h' \rangle$ with $|Q'| \in O(|Q| \cdot |\Gamma^{\leq h}| \cdot |\Sigma|)$ and $|\Gamma'|, h' \in O(|Q| \cdot |\Gamma^{\leq h}|)$. Furthermore, this conversion is optimal.

Determinization of *h***-NQA**

Determinization of *h***-NQA**

Conversions between *h*-PDA and *h*-QA

Conversions between *h*-PDA and *h*-QA

Straight Line Programs for Regular Expressions

Straight line programs (SLP) are used for the representation of regular expressions. Given an alphabet Σ and a set of variables $X = \{x_1, \ldots, x_l\}$, an SLP is defined to be a finite sequence of instructions of the form

→
$$x_i := \emptyset, x_i := \lambda$$
, or $x_i := a$ for any $a \in \Sigma$

$$ightarrow x_i := x_j + x_k, x_i := x_j \cdot x_k$$
, or $x_i := x_j^*$ for $1 \le j, k < i$

An SLP is always loopless. The variable x_l contains the regular expression.

Straight Line Programs for Regular Expressions

Straight line programs (SLP) are used for the representation of regular expressions. Given an alphabet Σ and a set of variables $X = \{x_1, \ldots, x_l\}$, an SLP is defined to be a finite sequence of instructions of the form

•
$$x_i := \emptyset, x_i := \lambda$$
, or $x_i := a$ for any $a \in \Sigma$

$$ightarrow x_i := x_j + x_k, x_i := x_j \cdot x_k$$
, or $x_i := x_j^*$ for $1 \leq j,k < i$

An SLP is always loopless. The variable x_l contains the regular expression.

Measure for an SLP P: (length(P),fan-out(P))

- → length(P): number of instructions in P
- → fan-out(P): maximum of occurrences of a reused variable

Conversion $h\text{-NPDA} \rightarrow \text{SLP}$

Theorem [Geffert, CM, BP 2010]

Let $A = \langle Q, \Sigma, \Gamma, \delta, q_0, \{q_f\}, \vdash, h \rangle$ be a constant height NPDA. Then there exists an SLP P_A such that reg-exp(P) denotes L(A), with length $(P_A) \leq O(h \cdot |Q|^4 \cdot |\Gamma| + |Q|^2 \cdot |\Sigma|)$ and fan-out $(P_A) \leq |Q|^2 + 1$.

Theorem

For each constant length NQA $A = \langle Q, \Sigma, \Gamma, \delta, q_0, \vdash, F, h \rangle$, there is an equivalent SLP of length $O(|Q|^4 \cdot |\Gamma^{\leq h}|^4 \cdot |\Sigma|)$ and fan-out $O(|Q|^2 \cdot |\Gamma^{\leq h}|^2)$.

The optimality of this bound is proved by the language

$$L_{\Gamma,h} = \bigcup_{u \in \Gamma^h} \{ (\#u)^i \$: i \ge 1 \}$$

$$L_{\Gamma,h} = \bigcup_{u \in \Gamma^h} \{ (\#u)^i \$: i \ge 1 \}$$

 $L_{\Gamma,h}$ is accepted by

- → a constant length DQA with O(h) states, queue alphabet $\Gamma \cup \{\vdash, \#\}$, and queue length h + 1.
- → an SLP with at least $|\Gamma^h|$ variables.

$$L_{\Gamma,h} = \bigcup_{u \in \Gamma^h} \{ (\#u)^i \$: i \ge 1 \}$$

→ x is called a star-variable if it occurs in a star-instruction x := y*. L(x) denotes the language represented by the regular expression computed in x.

$$L_{\Gamma,h} = \bigcup_{u \in \Gamma^h} \{ (\#u)^i \$: i \ge 1 \}$$

- → Let the SLP P compute a regular expression describing $L_{\Gamma,h}$.
- → The SLP P' is obtained from P by replacing every instruction x := y* by x := λ.
- → P' describes a finite language. Let m denote the length of its longest word.
- → For all words z ∈ L_{Γ,h} with |z| > m, P must use a star-variable to produce it.

$$L_{\Gamma,h} = \bigcup_{u \in \Gamma^h} \{ (\#u)^i \$: i \ge 1 \}$$

- → Choosing $z_u = (\#u)^m \$ \in L_{\Gamma,h}, u \in \Gamma^h$, we know that there exists a star-variable x_u in P that produces one part of z_u .
- → We can show that there exists a star-variable x_u such that L(x_u) contains a word having the factor #u#.
- → If P has less than Γ^h variables, there exist $u, v \in \Gamma^h, u \neq v$, such that $x_u = x_v$.
- → Then P describes words of the form $\alpha # u # \beta # v # \gamma \notin L_{\Gamma,h}$.

Summary of the Results

Thank you for your attention