
Array Insertion and Deletion P Systems

Henning Fernau1 Rudolf Freund2

Sergiu Ivanov3 Marion Oswald2

Markus L. Schmid1 K.G. Subramanian4

1 Universität Trier, D-54296 Trier, Germany
Email: {fernau,MSchmid}@uni-trier.de

2 Vienna Univ. of Technology, Austria
Email: {rudi,marion}@emcc.at

3 LACL, Université Paris Est, France
Email: sergiu.ivanov@u-pec.fr

4 Universiti Sains Malaysia, 11800 Penang, Malaysia
Email: kgsmani1948@yahoo.com

Theorietag 2013

Overview
Basic Definitions and Results

A General Model for Sequential Grammars
String Rewriting Grammars
Arrays and Array Grammars
P Systems

Undecidability Results for Array Grammars

Computational Completeness Results
P Systems with Minimal String

Insertion, Deletion, and Substitution Rules
P Systems with One-/Two-dimensional

Array Insertion and Deletion Rules

Future Research

A General Model for Sequential Grammars

R. Freund, M. Kogler, M. Oswald, A general framework
for regulated rewriting based on the applicability of rules,
in J. Kelemen and A. Kelemenová, Eds., Computation,
Cooperation, and Life - Essays Dedicated to Gheorghe
Păun on the Occasion of His 60th Birthday, LNCS 6610,
Springer, 2011, pp. 35-53.

A (sequential) grammar G is a construct
(O,OT ,w ,P ,=⇒G) where

I O is a set of objects,
I OT ⊆ O is a set of terminal objects,
I w ∈ O is the axiom (start object),
I P is a finite set of rules, and
I =⇒G⊆ O × O is the derivation relation of G .

A General Model for Sequential Grammars - Derivations

We assume that each of the rules p ∈ P induces a
relation =⇒p⊆ O × O with respect to =⇒G

fulfilling at least the following conditions:
(i) for each object x ∈ O, (x , y) ∈ =⇒p for only
finitely many objects y ∈ O;
(ii) there exists a finitely described mechanism (as,
for example, a Turing machine) which, given an
object x ∈ O, computes all objects y ∈ O such that
(x , y) ∈ =⇒p.

A General Model for Sequential Grammars –
Applicability of Rules, Derivations

A rule p ∈ P is called applicable to an object x ∈ O
if and only if there exists at least one object y ∈ O
such that (x , y) ∈ =⇒p; we also write x =⇒p y .

The derivation relation =⇒G is the union of all
=⇒p, i.e., =⇒G = ∪p∈P =⇒p. The reflexive and

transitive closure of =⇒G is denoted by
∗

=⇒G .

A General Model for Sequential Grammars –
Generated Languages

L∗ (G) =
{

v ∈ OT | A
∗

=⇒G v
}

language generated by G in the ∗-mode.

Lt (G) =
{

v ∈ OT | A
∗

=⇒G v ∧ ¬∃w : v
∗

=⇒G w
}

language generated by G in the t-mode.

L∗ (X) : family of languages generated by grammars
of type X in the ∗-mode.

Lt (X) : family of languages generated by grammars
of type X in the t-mode.

String Rewriting Grammar of Type X

G = (V ∗,T ∗,A,P) where

I V is a (finite) set of symbols,

I T ⊆ V is a set of terminal symbols,

I A ∈ V + is the axiom, and

I P is a finite set of rules of type X .

L (G) = L∗ (G) =
{

v ∈ T ∗ | A
∗

=⇒G v
}

language generated by G .

L (X) : family of languages generated by grammars of type X .

Rules Working at the Ends of a String

Post rewriting rule: P [x/y] with x , y ∈ V ∗:
P [x/y] (wx) = yw for w ∈ V ∗.

Left substitution: SL [x/y] with x , y ∈ V ∗:
SL [x/y] (xw) = yw for w ∈ V ∗.

Right substitution: SR [x/y] with x , y ∈ V ∗:
SR [x/y] (wx) = wy for w ∈ V ∗.

left insertion: SL [λ/y] is denoted by IL [y]

right insertion: SR [λ/y] is denoted by IR [y]

left deletion: SL [x , λ] is denoted by DL [x]

right deletion: SR [x , λ] is denoted by DR [x]

Types of String Grammars

Sk,m
L / Sk,m

R :
type of grammars using only substitution rules
SR [x/y] /Sk,m

L with |x | ≤ k and |y | ≤ m.

I m
L , I m

R , Dk
L , Dk

R :
left/right insertion/deletion of strings with lengths
at most m/k .

Dk I mSk ′m′
:

deletion/insertion/substitution of strings with
lengths at most k/m/k ′,m′.

Post System

grammar G = (V ,T ,A,P) of type PS :
Post rewriting rules P [x/y] in P .

Post system normal form (type PSNF):
Post rewriting rules P [x/y] in P are only of the
following forms, with a, b, c ∈ V :

I P [ab/c],

I P [a/bc],

I P [a/b],

I P [a/λ].

Post System

A Post system (V ,T ,A,P) is in Z-normal form
(type PSZNF) if it is in normal form and there
exists a special symbol Z ∈ V \ T such that

I P [Z/λ] is the only rule where Z appears;

I if P [Z/λ] is applied, the derivation stops
yielding a terminal string;

I applying P [Z/λ] is the only way to obtain a
terminal string.

Theorem

L (PS) = L (PSNF) = L (PSZNF) = RE .

d-dimensional Array

Let d ∈ N; then a d-dimensional array A over an
alphabet V is a function A : Zd → V ∪ {#}, where
shape (A) =

{
v ∈ Zd | A (v) 6= #

}
is finite and

/∈ V is called the background or blank symbol.

The set of all d-dimensional arrays over V is
denoted by V ∗d . For v ∈ Zd , v = (v1, . . . , vd), the
norm of v is ‖v‖ = max {|vi | | 1 ≤ i ≤ d}. For a
(non-empty) finite set W ⊂ Z d the norm of W is
defined as ‖W ‖ = max { ‖v − w‖ | v ,w ∈ W }.

d-dimensional Array Grammar

GA =
(

(N ∪ T)∗d ,T ∗d ,A0,P ,=⇒GA

)
where

I N is the alphabet of non-terminal symbols,
I T is the alphabet of terminal symbols,

N ∩ T = ∅,
I A0 ∈ (N ∪ T)∗d is the start array,
I P is a finite set of d-dimensional array rules

over V , V := N ∪ T ,
I =⇒GA

⊆ (N ∪ T)∗d × (N ∪ T)∗d

is the derivation relation induced by the array
rules in P .

Types of Array Rewriting Rules

A d-dimensional contextual array rule over the
alphabet V is a pair of finite d-dimensional arrays
(A1,A2) with dom (A1) ∩ dom (A2) = ∅ and
shape (A1) ∪ shape (A2) 6= ∅; we also call it an
array insertion rule, as its effect is that in the
context of A1 we insert A2; hence, we write
I (A1,A2). The pair (A1,A2) can also be
interpreted as having the effect that in the context
of A1 we delete A2; in this case, we speak of an
array deletion rule and write D (A1,A2).
For any (contextual, insertion, deletion) array rule
we define its norm by ‖dom (A1) ∪ dom (A2)‖.

Types of Array Grammars

The types of d-dimensional array grammars using
array insertion rules of norm ≤ k and array deletion
rules of norm ≤ m are denoted by d-DmI kA.

If only array insertion (i.e., contextual) rules are
used, we have the case of pure grammars, and the
type is denoted by d-CA.

Contextual Array Grammar Generating a Special Line

Example

Consider the contextual array grammar
Gline =

({
S̄ ,E , L,R

}
,E S̄E ,P

)
with

P =
{

E E ,E E , E R , L E
}
.

Then

Lt (Gline) =
{

LE nS̄E mR | n,m ≥ 1
}
,

whereas

L∗ (Gline) = {E nS̄E m,E nS̄E mR , LE nS̄E m,

LE nS̄E mR | n,m ≥ 1}.

d-dimensional Arrays - Literature

C. R. Cook and P. S.-P. Wang, A Chomsky hierarchy of
isotonic array grammars and languages, Computer
Graphics and Image Processing 8 (1978), pp. 144–152.

H. Fernau, R. Freund, M.L. Schmid, K.G. Subramanian, P.
Wiederhold, Contextual array grammars and array P
systems, submitted.

R. Freund, Gh. Păun, G. Rozenberg, Contextual array
grammars, in K.G. Subramanian, K. Rangarajan, and M.
Mukund, Eds., Formal Models, Languages and
Applications, Series in Machine Perception and Artificial
Intelligence 66, World Scientific, 2007, pp. 112–136.

A. Rosenfeld, Picture Languages, Academic Press,
Reading, MA, 1979.

P. S.-P. Wang, Some new results on isotonic array
grammars, Information Processing Letters 10 (1980), pp.
129–131.

P System of Type X

Π = (G , µ,R , i0) where

I G = (V ,T ,A,P): grammar of type X ;

I µ: membrane structure (tree);
the nodes of the tree representing µ are uniquely labelled

by labels from a set Lab;

I R : set of rules of the form (h, r , tar);
h ∈ Lab, r ∈ P , and
tar ∈ {here, in, out} ∪ {inj | 1 ≤ j ≤ n};

I i0: initial membrane; the axiom A is put in there
at the beginning of a computation.

Computations in a P System

(w1, h1) =⇒Π (w2, h2) (computation step):
for some (h1, r , tar) ∈ R , w1 =⇒r w2 and w2 is sent
from membrane h1 to membrane h2 indicated by tar .

halting computation: sequence (A, i0) =⇒∗Π (w , h)
of computation steps ending with a configuration
(w , h) to which no rule from R can be applied;
w (∈ OT) is the result of this computation.

L (Π) (language generated by Π):
consists of all objects from OT which are results of
a halting computation in Π.

Language Families Generated by P Systems

L (X -LP), (L
(
X -LP 〈n〉

)
):

family of languages generated by P systems using
rules of type X (of tree height at most n).

L (X -LsP), (L
(
X -LsP 〈n〉

)
): s = simple;

family of languages generated by P systems using
rules of type X (of tree height at most n);
only the targets here, in, out are used.

L (X -LcP), (L
(
X -LcP 〈n〉

)
): c = channel type;

family of languages generated by P systems using
rules of type X (of tree height at most n);
only the targets in and out are used.

P System of Type X as Acceptors

Π = (G , µ,R , i0)

I i0: initial membrane; the input is put in there at
the beginning of a computation.

La (Π) (language accepted by Π):

consists of all objects from OT which are accepted
by a halting computation in Π.

Language Families Accepted by P Systems

La (X -LP), (La

(
X -LP 〈n〉

)
):

family of languages accepted by P systems using
rules of type X (of tree height at most n).

La (X -LsP), (La

(
X -LsP 〈n〉

)
): s = simple;

family of languages accepted by P systems using
rules of type X (of tree height at most n);
only the targets here, in, out are used.

La (X -LcP), (La

(
X -LcP 〈n〉

)
): c = channel type;

family of languages accepted by P systems using
rules of type X (of tree height at most n);
only the targets in and out are used.

Undecidability for One-dimensional Array Grammars
with Array Insertion and Deletion Rules

Lemma

Let I = ((u1, . . . , un) , (v1, . . . , vn)) be an instance of the PCP
over T . Then we can effectively construct a one-dimensional
array insertion P system Π such that
L (Π) = {LL′hT (w) RR ′ | w ∈ L ((u1, . . . , un) , (v1, . . . , vn))} .

As the Post Correspondence Problem is undecidable, the
emptiness problem for Lt

(
1-DIA-LP 〈k〉

)
is undecidable:

Corollary

For any k ≥ 1, the emptiness problem for
Lt

(
1-DIA-LP 〈k〉

)
is undecidable.

Undecidability for More-dimensional
Contextual Array Grammars

Every recursively enumerable one-dimensional array
language can be characterized as the projection of
an array language generated by a two-dimensional
contextual array grammar using rules of norm one
only, see:

H. Fernau, R. Freund, and M. Holzer:
Representations of recursively enumerable array
languages by contextual array grammars,
Fundamenta Informaticae 64 (2005), pp.
159–170.

Hence, for d ≥ 2, even the emptiness problem for
Lt (d-CA) is undecidable.

P Systems with Minimal Left and Right
Insertion, Deletion, and Substitution Rules

R. Freund, Yu. Rogozhin, S. Verlan: P systems
with minimal left and right insertion and
deletion. In: J. Durand-Lose, N. Jonoska (eds.):
Unconventional Computation and Natural
Computation, 11th International Conference,
UCNC 2012. Orleans, France, September 3–7,
2012. Lecture Notes in Computer Science 7445,
82–93, Springer (2012).

R. Freund, Yu. Rogozhin, S. Verlan: Generating
and accepting P systems with minimal left and
right insertion and deletion. To appear in
Natural Computing.

Computational Power of String Grammars with Minimal
Left and Right Insertion and Deletion Rules

Theorem

Every language L ⊆ T ∗ in L
(
D1I 1S1,1

)
is of the

form T ∗l ST ∗r where Tl ,Tr ⊆ T and S ⊂fin T ∗.

Corollary

L
(
A-D1I 1S1,1

)
= L

(
A-I 1

)
⊂ REG .

The prefix A in front of the types indicates that we consider a
finite subset of axioms instead of a single axiom.

Computational Completeness of P Systems with
Minimal Insertion, Deletion, and Substitution Rules

Theorem

RE = L
(

D1
R I 1

L S1,1
R -LP 〈1〉

)
= La

(
D1

R I 1
L S1,1

R -LP 〈1〉
)

.

Theorem

RE = L
(
D1I 1-LsP 〈8〉

)
= La

(
D1I 1-LsP 〈8〉

)
.

Theorem

RE = L
(
D1I 1-LcP 〈8〉

)
= La

(
D1I 1-LcP 〈8〉

)
.

Computational Completeness of P Systems with
One-dimensional Array Insertion and Deletion Rules

Theorem

L∗ (1-ARBA) = Lt

(
1-D1I 1A-LsP 〈2〉

)
.

Allowing norm two, we even do not need the regulating
mechanism of membranes:

Theorem

L∗ (1-ARBA) = Lt

(
1-D2I 2A

)
.

It remains as an interesting question for future research
whether this result for array grammars only using array
insertion and deletion rules with norm at most two can also be
achieved in higher dimensions.

Computational Completeness of P Systems with
Two-dimensional Array Insertion and Deletion Rules

The corresponding computational completeness
result has been shown for 2-dimensional array
insertion and deletion P systems using rules with
norm at most two.

Theorem

L∗ (2-ARBA) = Lt

(
2-D2I 2A-LsP 〈2〉

)
.

H. Fernau, R. Freund, S. Ivanov, M. L. Schmid, and K. G.
Subramanian, Array insertion and deletion P systems, in
G. Mauri, A. Dennunzio, L. Manzoni, and A. E. Porreca,
Eds., UCNC 2013, Milan, Italy, July 1–5, 2013, LNCS
7956, Springer 2013, pp. 67–78.

Proof Idea for P Systems with
Two-dimensional Array Insertion and Deletion Rules

The main idea for showing computational
completeness for one-/two–dimensional array
insertion and deletion P systems using rules with
norm one/two is to generate a line and a
two-dimensional cube (rectangle) in which the rules
of an array grammar of specific normal form can be
simulated by erasing one symbol and inserting
another one at the same position.

Theorem

L∗ (k-ARBA) = Lt

(
k-Dk I kA-LsP 〈2〉

)
, k ∈ {1, 2}.

Future Research

(1) Array Grammars with
Array Insertion and Deletion Rules of Norm 2

For obtaining computational completeness, in general, i.e., for
any dimension, we only need array grammars using array
insertion and deletion rules with norm at most two:

Theorem

For any k ≥ 1,

L∗ (k-ARBA) = Lt

(
k-D2I 2A

)
.

Future Research

(2) P Systems with
Array Insertion and Deletion Rules of Norm 1

When using only array insertion and deletion rules with norm
at most one, we conjecture that we still need the control
mechanism of P systems.

For higher dimensions, the constructions needed for showing
computational completeness are very complicated, even for the
case k = 2, hence, currently we only may show:

Theorem

For k ∈ {1, 2},

L∗ (k-ARBA) = Lt

(
k-D1I 1A-LsP 〈2〉

)
.

THANK YOU VERY MUCH

FOR YOUR ATTENTION!

Requests for NCMA Proceedings:

rudi@emcc.at

	Basic Definitions and Results
	A General Model for Sequential Grammars
	String Rewriting Grammars
	Arrays and Array Grammars
	P Systems

	Undecidability Results for Array Grammars
	Computational Completeness Results
	P Systems with Minimal String Insertion, Deletion, and Substitution Rules
	P Systems with One-/Two-dimensional Array Insertion and Deletion Rules

	Future Research

