On Boolean closed full trios and rational Kripke frames

Markus Lohrey ${ }^{1}$ Georg Zetzsche ${ }^{2}$
${ }^{1}$ Department für Elektrotechnik und Informatik Universität Siegen
${ }^{2}$ Fachbereich Informatik
Technische Universität Kaiserslautern

Theorietag 2013

Example (Transducer)

$$
\begin{gathered}
0|\lambda, 1| \lambda \\
\lambda|0, \lambda| 1
\end{gathered}
$$

Example (Transducer)

$$
T(A)=\left\{(u \# v \# w, x) \mid u, v, w, x \in\{0,1\}^{*}, v \leqslant x\right\}
$$

Example (Transducer)

$$
T(A)=\left\{(u \# v \# w, x) \mid u, v, w, x \in\{0,1\}^{*}, v \leqslant x\right\}
$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^{*} \times Y^{*}$ and language $L \subseteq Y^{*}$, let

$$
T L=\left\{w \in X^{*} \mid \exists y \in L:(x, y) \in T\right\}
$$

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages

Definition

Language class \mathcal{C} is a full trio, if $T L \in \mathcal{C}$ for every $L \in \mathcal{C}$ and rational transductions T.
Equivalently: if \mathcal{C} is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages
- Complementation closure for union closed full trios
$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} \text {. }
$$

$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} .
$$

Relative arithmetical hierarchy:

$$
\Sigma_{0}(L)=\operatorname{REC}(L), \quad \Sigma_{n+1}(L)=\operatorname{RE}\left(\Sigma_{n}(L)\right) \text { for } n \geqslant 0, \quad \mathrm{AH}(L)=\bigcup_{n \geqslant 0} \Sigma_{n}(L) .
$$

$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} .
$$

Relative arithmetical hierarchy:
$\Sigma_{0}(L)=\operatorname{REC}(L), \quad \Sigma_{n+1}(L)=\operatorname{RE}\left(\Sigma_{n}(L)\right)$ for $n \geqslant 0, \quad \mathrm{AH}(L)=\bigcup_{n \geqslant 0} \Sigma_{n}(L)$.

Theorem
Let \mathcal{T} be a Boolean closed full trio. If \mathcal{T} contains any non-regular language L, then \mathcal{T} includes $\mathrm{AH}(L)$.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition
 $u \equiv{ }_{L} v$: for each $w \in X^{*}, u w \in L$ iff $v w \in L$.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

$u \equiv{ }_{L} v$: for each $w \in X^{*}, u w \in L$ iff $v w \in L$.

Theorem (Myhill-Nerode)
L is regular if and only if \equiv_{L} has finite index.

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv L u_{\ell}(k \neq \ell)$

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{F}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{F}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv{ }_{L} u_{j}, v_{i} \equiv{ }_{L} u_{j-1}$

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv{ }_{L} u_{j}, v_{i} \equiv{ }_{L} u_{j-1}$
- if $\delta_{i}=z$, then $v_{i-1} \equiv_{L} v_{i} \equiv_{L} u_{j} \equiv_{L} u_{0}$.

Proof II

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv{ }_{L} u_{j}, v_{i} \equiv{ }_{L} u_{j-1}$
- if $\delta_{i}=z$, then $v_{i-1} \equiv L v_{i} \equiv L u_{j} \equiv L u_{0}$.

Since L is non-regular, C can be obtained from \hat{C}.

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
W^{\prime}=\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right) \\
W= & \left\{u \# v \mid u, v \in X^{*}, u \neq L v\right\}
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\{u \# v \mid u \equiv \iota v\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\{u \# v \mid u \equiv \iota v\}=X^{*} \# X^{*} \backslash W
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\left\{u \# v \mid u \equiv\llcorner v\}=X^{*} \# X^{*} \backslash W\right.
$$

$$
S=\left\{u_{0} \# u_{1} \# \cdots u_{n} \# \mid u_{i} \not \equiv L u_{j} \text { for all } i \neq j\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
& W^{\prime}=\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right) \\
& W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\} \\
& P=\left\{u \# v \mid u \equiv\llcorner v\}=X^{*} \# X^{*} \backslash W\right. \\
& S=\left\{u_{0} \# u_{1} \# \cdots u_{n} \# \mid u_{i} \not \equiv L u_{j} \text { for all } i \neq j\right\} \\
& =\left(X^{*} \#\right)^{*} \backslash\left\{r u \# s v \# t \mid r, s, t \in\left(X^{*} \#\right)^{*}, u \# v \in P\right\} \text {. }
\end{aligned}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv\left\llcorner u_{1}\right.$ and $v_{2} \equiv \sum_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv L u_{1}$ and $v_{2} \equiv L u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

$$
E=\left[\left(X^{*} \Delta X^{*} \#\left(X^{*} \#\right)^{*} \backslash E^{\prime}\right]\right.
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv \equiv_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

$$
E=\left[\left(X^{*} \Delta X^{*} \#\left(X^{*} \#\right)^{*} \backslash E^{\prime}\right] \cup\left\{v_{1} z v_{2} \# u_{0} r \mid v_{1} \not \equiv L u_{0}, r \in\left(X^{*} \#\right)^{*}\right\}\right.
$$

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv\left\llcorner u_{0}\right.$.

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.
$N^{\prime}=\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\}$,

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.
$N^{\prime}=\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\}$,
$N=\left(X^{*} \Delta\right)^{+} X^{*} \#\left(X^{*} \#\right)^{*} \backslash N^{\prime}$.

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.

$$
\begin{aligned}
N^{\prime} & =\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\} \\
N & =\left(X^{*} \Delta\right)^{+} X^{*} \#\left(X^{*} \#\right)^{*} \backslash N^{\prime}
\end{aligned}
$$

Now we have

$$
\hat{C}=N \cap\left(X^{*} \Delta\right)^{*} X^{*} \# S .
$$

Hence, $C \in \mathcal{T}$.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.
For $\mathrm{AH}(L) \subseteq \mathcal{T}$: show that $K \in \mathcal{T}$ implies $\operatorname{RE}(K) \subseteq \mathcal{T}$ (as above).

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(\mathrm{L})$.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \mathrm{AH}(L)$.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \mathrm{AH}(L)$. If \mathcal{T} were complementation closed, it would contain $\mathrm{AH}(L)$, contradiction!

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\operatorname{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG .
(3) M has finitely many right-invertible elements.

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\mathrm{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG.
(0) M has finitely many right-invertible elements.

Proof.

If M is finitely generated, $\mathrm{VA}(M)$ is a principal full trio.

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\operatorname{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG .
(3) M has finitely many right-invertible elements.

Proof.

If M is finitely generated, $\operatorname{VA}(M)$ is a principal full trio. Equivalence of 2 and 3 has been shown by Render (2009) and Z. (2011).

An application

Syntax of multimodal logic

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \diamond_{a} \varphi \mid \square_{a} \varphi
$$

for propositions $p \in P$ and actions $a \in A$.

An application

Syntax of multimodal logic

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \nabla_{a} \varphi \mid \square_{a} \varphi
$$

for propositions $p \in P$ and actions $a \in A$.
Semantics of multimodal logic
A Kripke structure is a tuple

$$
\mathcal{K}=\left(V,\left(E_{a}\right)_{a \in A},\left(U_{p}\right)_{p \in P}\right),
$$

where

- V is a set of worlds,
- A and P are finite sets of actions and propositions, respectively,
- for every $a \in A, E_{a} \subseteq V \times V$, and
- for every $p \in P, U_{p} \subseteq V$.

The tuple $\mathcal{F}=\left(V,\left(E_{a}\right)_{a \in A}\right)$ is then also called a Kripke frame.

An application

Semantics

For $\mathcal{K}=\left(V,\left(E_{a}\right)_{a \in A},\left(U_{p}\right)_{p \in P}\right)$, we have

$$
\begin{aligned}
\llbracket p \rrbracket_{\mathcal{K}} & =U_{p}, \\
\llbracket \neg \varphi \rrbracket_{\mathcal{K}} & =V \backslash \llbracket \varphi \rrbracket_{\mathcal{K}}, \\
\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{K}} & =\llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\
\llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} & =\llbracket \varphi \rrbracket_{\mathcal{K}} \cup \llbracket \psi \rrbracket_{\mathcal{K}}, \\
\llbracket \square \rrbracket_{\mathrm{a}} \varphi \rrbracket_{\mathcal{K}} & =\left\{v \in V \mid \forall u \in V:(v, u) \in E_{a} \rightarrow u \in \llbracket \varphi \rrbracket_{\mathcal{K}}\right\}, \\
\llbracket\rangle_{a} \varphi \rrbracket_{\mathcal{K}} & =\left\{v \in V \mid \exists u \in V:(v, u) \in E_{a} \wedge u \in \llbracket \varphi \rrbracket_{\mathcal{K}}\right\} .
\end{aligned}
$$

An application

Semantics

For $\mathcal{K}=\left(V,\left(E_{a}\right)_{a \in A},\left(U_{p}\right)_{p \in P}\right)$, we have

$$
\begin{aligned}
\llbracket p \rrbracket_{\mathcal{K}} & =U_{p}, \\
\llbracket \neg \varphi \rrbracket_{\mathcal{K}} & =V \backslash \llbracket \varphi \rrbracket_{\mathcal{K}}, \\
\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{K}} & =\llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\
\llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} & =\llbracket \varphi \rrbracket_{\mathcal{K}} \cup \llbracket \psi \rrbracket_{\mathcal{K}}, \\
\llbracket \square_{a} \varphi \rrbracket_{\mathcal{K}} & =\left\{v \in V \mid \forall u \in V:(v, u) \in E_{a} \rightarrow u \in \llbracket \varphi \rrbracket_{\mathcal{K}}\right\}, \\
\llbracket\rangle_{a} \varphi \rrbracket_{\mathcal{K}} & =\left\{v \in V \mid \exists u \in V:(v, u) \in E_{a} \wedge u \in \llbracket \varphi \rrbracket_{\mathcal{K}}\right\} .
\end{aligned}
$$

Rational Kripke frames

$\mathcal{F}=\left(V,\left(E_{a}\right)_{a \in A}\right)$ is called rational, if

- $V=X^{*}$ for some alphabet X
- $E_{a} \subseteq X^{*} \times X^{*}$ is a rational transduction.
\mathcal{K} is called rational if, in addition, U_{p} is regular for each $p \in P$.

An application

Rational Kripke frames

$\mathcal{F}=\left(V,\left(E_{\mathrm{a}}\right)_{\mathrm{a} \in \mathrm{A}}\right)$ is called rational, if

- $V=X^{*}$ for some alphabet X
- $E_{a} \subseteq X^{*} \times X^{*}$ is a rational transduction.
\mathcal{K} is called rational if, in addition, U_{p} is regular for each $p \in P$.
Theorem (Bekker, Goranko 2007)
If $\mathcal{K}=\left(V,\left(E_{a}\right)_{a \in A},\left(U_{p}\right)_{p \in P}\right)$ is rational If \mathcal{F} is rational and U_{p} is regular for each $p \in P$, the set $\llbracket \varphi \rrbracket_{\mathcal{K}}$ is effectively regular. Hence, the model-checking problem is decidable.

An application

Rational Kripke frames

$\mathcal{F}=\left(V,\left(E_{a}\right)_{a \in A}\right)$ is called rational, if

- $V=X^{*}$ for some alphabet X
- $E_{a} \subseteq X^{*} \times X^{*}$ is a rational transduction.
\mathcal{K} is called rational if, in addition, U_{p} is regular for each $p \in P$.
Theorem (Bekker, Goranko 2007)
If $\mathcal{K}=\left(V,\left(E_{a}\right)_{a \in A},\left(U_{p}\right)_{p \in P}\right)$ is rational If \mathcal{F} is rational and U_{p} is regular for each $p \in P$, the set $\llbracket \varphi \rrbracket \mathcal{K}$ is effectively regular. Hence, the model-checking problem is decidable.

Theorem

Let $X=\{0,1\}$. There is a rational Kripke frame $\mathcal{F}=\left(X^{*}, R, S, T\right)$,
$R, S, T \subseteq X^{*} \times X^{*}$ such that for any non-regular L, in the Kripke structure $\mathcal{K}=\left(X^{*}, R, S, T, L\right)$, for each $K \in \mathrm{AH}(L)$, there is a φ with $\llbracket \varphi \rrbracket \mathcal{K}=K$.

