On Boolean closed full trios and rational Kripke frames

Markus Lohrey¹ Georg Zetzsche²

¹Department für Elektrotechnik und Informatik Universität Siegen

²Fachbereich Informatik Technische Universität Kaiserslautern

Theorietag 2013

Example (Transducer)

3

イロト イヨト イヨト イヨト

Example (Transducer)

$$T(A) = \{ (u \# v \# w, x) \mid u, v, w, x \in \{0, 1\}^*, v \leq x \}$$

3

イロト イヨト イヨト イヨト

Example (Transducer)

$$T(A) = \{ (u \# v \# w, x) \mid u, v, w, x \in \{0, 1\}^*, v \leq x \}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ w \in X^* \mid \exists y \in L : (x, y) \in T \}$$

3

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

3

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

• Automatic structures beyond regular languages

Language class C is a *full trio*, if $TL \in C$ for every $L \in C$ and rational transductions T.

Equivalently: if ${\mathcal C}$ is closed under

- (arbitrary) homomorphisms,
- inverse homomorphisms, and
- intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages
- Complementation closure for union closed full trios

Boolean closed full trios

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

3

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \text{ for } n \ge 0, \quad \mathsf{AH}(L) = \bigcup_{n \ge 0} \Sigma_n(L).$$

3

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \text{ for } n \ge 0, \quad \mathsf{AH}(L) = \bigcup_{n \ge 0} \Sigma_n(L).$$

Theorem

Let \mathcal{T} be a Boolean closed full trio. If \mathcal{T} contains any non-regular language L, then \mathcal{T} includes AH(L).

3

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

(日) (周) (三) (三)

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

周 ト イ ヨ ト イ ヨ ト

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

1 if
$$\delta_i = +$$
, then $x_i = x_{i-1} + 1$,

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

• if
$$\delta_i = +$$
, then $x_i = x_{i-1} + 1$,
• if $\delta_i = -$, then $x_i = x_{i-1} - 1$, and

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

周 ト イ ヨ ト イ ヨ ト

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

First step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

Theorem (Myhill-Nerode)

L is regular if and only if \equiv_L has finite index.

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (*counter*) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$

3

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (*counter*) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (*counter*) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

• if
$$\delta_i = +$$
, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (counter) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

• if
$$\delta_i = +$$
, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

• if
$$\delta_i = -$$
, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (*counter*) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

• if
$$\delta_i = +$$
, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

• if
$$\delta_i = -$$
, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

• if
$$\delta_i = z$$
, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

Idea: In order to obtain C, construct \hat{C} :

Definition

Let \hat{C} (*counter*) be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \neq_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

• if
$$\delta_i = +$$
, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

• if
$$\delta_i = -$$
, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

• if
$$\delta_i = z$$
, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

Since L is non-regular, C can be obtained from \hat{C} .

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, \\ W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

 $W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$

3

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, \\ W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

 $W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\}$

3

<ロ> (日) (日) (日) (日) (日)

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{ u \# v \mid u, v \in X^*, u \neq_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{ u \# v \mid u, v \in X^*, u \neq_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$$

$$P = \{u \# v \mid u \equiv_L v\}$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

 $W = \{ u \# v \mid u, v \in X^*, u \not\equiv_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \not\equiv_L u_j \text{ for all } i \neq j\}$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{ u \# v \mid u, v \in X^*, u \neq_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \neq L u_j \text{ for all } i \neq j\} = (X^* \#)^* \setminus \{ru \# sv \# t \mid r, s, t \in (X^* \#)^*, u \# v \in P\}.$$

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

3

イロト イヨト イヨト イヨト

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

3

4 E b

Image: A match a ma

Let *M* (*matching*) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if
$$\delta = +$$
, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

• if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

- - E - N

Image: A match a ma

Let *M* (*matching*) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if
$$\delta = +$$
, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

• if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

• if
$$\delta = z$$
, then $v_1 \equiv_L v_2 \equiv_L u_1$.

- - E - N

Image: A match a ma

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if
$$\delta = +$$
, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

• if
$$\delta = -$$
, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

• if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{ v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P \}$$

$$\cup \{ v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P \}$$

$$\cup \{ v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^* \}$$

Let *M* (*matching*) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$. $M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$ $\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$

 $\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$

Let *E* (*error*) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \neq u_0$.

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

Let E (error) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \not\equiv_L u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

イロト イポト イヨト イヨト 二日

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{ v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P \}$$

$$\cup \{ v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P \}$$

$$\cup \{ v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^* \}$$

Let *E* (*error*) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \not\equiv_L u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

 $E = \left[(X^* \Delta X^* \# (X^* \#)^* \backslash E' \right]$

Let *M* (*matching*) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$. $M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$ $\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$

 $\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$

Let *E* (*error*) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \not\equiv_L u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

 $E = \left[(X^* \Delta X^* \# (X^* \#)^* \setminus E' \right] \cup \{ v_1 z v_2 \# u_0 r \mid v_1 \not\equiv_L u_0, \ r \in (X^* \#)^* \}.$

(日) (周) (三) (三)

E nar

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta v_i \#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

3

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta v_i \#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

 $N' = \{ w \in (X^* \Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},\$

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta v_i \#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

$$N' = \{ w \in (X^* \Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \}, \\ N = (X^* \Delta)^+ X^* \# (X^* \#)^* \backslash N'.$$

3

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta v_i \#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

$$N' = \{ w \in (X^*\Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},$$
$$N = (X^*\Delta)^+ X^* \# (X^* \#)^* \backslash N'.$$

Now we have

$$\hat{C}=N\cap (X^*\Delta)^*X^*\#S.$$

Hence, $C \in \mathcal{T}$.

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

3

- ∢ ≣ →

- $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:
 - Use intersection to get counter language for two counters.

< 67 ▶

- $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:
 - Use intersection to get counter language for two counters.
 - Use transducer to obtain language accepted by given two-counter automaton.

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

For $AH(L) \subseteq \mathcal{T}$: show that $K \in \mathcal{T}$ implies $RE(K) \subseteq \mathcal{T}$ (as above).

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

3

∃ → < ∃</p>

< 4 →

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation closed.

3

□ ▶ ▲ □ ▶ ▲ □

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L.

3

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R.

3

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \mathsf{RE}(L) \subsetneq \mathsf{AH}(L)$.

3

< 回 > < 三 > < 三 >

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \operatorname{AH}(L)$. If \mathcal{T} were complementation closed, it would contain $\operatorname{AH}(L)$, contradiction!

< 回 ト < 三 ト < 三 ト

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.

M has finitely many right-invertible elements.

3

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.

M has finitely many right-invertible elements.

Proof.

If M is finitely generated, VA(M) is a principal full trio.

3

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.

M has finitely many right-invertible elements.

Proof.

If *M* is finitely generated, VA(M) is a principal full trio. Equivalence of 2 and 3 has been shown by Render (2009) and Z. (2011).

< 回 > < 三 > < 三 >

Syntax of multimodal logic

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_{\mathsf{a}} \varphi \mid \Box_{\mathsf{a}} \varphi$$

for propositions $p \in P$ and actions $a \in A$.

3

(人間) トイヨト イヨト

Syntax of multimodal logic

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Diamond_{\mathsf{a}} \varphi \mid \Box_{\mathsf{a}} \varphi$$

for propositions $p \in P$ and actions $a \in A$.

Semantics of multimodal logic

A Kripke structure is a tuple

$$\mathcal{K} = (V, (E_a)_{a \in A}, (U_p)_{p \in P}),$$

where

- V is a set of worlds,
- A and P are finite sets of actions and propositions, respectively,
- for every $a \in A$, $E_a \subseteq V \times V$, and
- for every $p \in P$, $U_p \subseteq V$.

The tuple $\mathcal{F} = (V, (E_a)_{a \in A})$ is then also called a *Kripke frame*.

Semantics

For
$$\mathcal{K} = (V, (E_a)_{a \in A}, (U_p)_{p \in P})$$
, we have

$$\begin{split} \llbracket p \rrbracket_{\mathcal{K}} &= U_{p}, \\ \llbracket \neg \varphi \rrbracket_{\mathcal{K}} &= V \setminus \llbracket \varphi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \wedge \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cup \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \Box_{a} \varphi \rrbracket_{\mathcal{K}} &= \{ v \in V \mid \forall u \in V : (v, u) \in E_{a} \rightarrow u \in \llbracket \varphi \rrbracket_{\mathcal{K}} \}, \\ \llbracket \Diamond_{a} \varphi \rrbracket_{\mathcal{K}} &= \{ v \in V \mid \exists u \in V : (v, u) \in E_{a} \land u \in \llbracket \varphi \rrbracket_{\mathcal{K}} \}. \end{split}$$

3

<ロ> (日) (日) (日) (日) (日)

Semantics

For
$$\mathcal{K} = (V, (E_a)_{a \in A}, (U_p)_{p \in P})$$
, we have

$$\begin{split} \llbracket p \rrbracket_{\mathcal{K}} &= U_{p}, \\ \llbracket \neg \varphi \rrbracket_{\mathcal{K}} &= V \setminus \llbracket \varphi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \wedge \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cap \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \varphi \vee \psi \rrbracket_{\mathcal{K}} &= \llbracket \varphi \rrbracket_{\mathcal{K}} \cup \llbracket \psi \rrbracket_{\mathcal{K}}, \\ \llbracket \Box_{a} \varphi \rrbracket_{\mathcal{K}} &= \{ v \in V \mid \forall u \in V : (v, u) \in E_{a} \rightarrow u \in \llbracket \varphi \rrbracket_{\mathcal{K}} \}, \\ \llbracket \Diamond_{a} \varphi \rrbracket_{\mathcal{K}} &= \{ v \in V \mid \exists u \in V : (v, u) \in E_{a} \land u \in \llbracket \varphi \rrbracket_{\mathcal{K}} \}. \end{split}$$

Rational Kripke frames

$$\mathcal{F} = (V, (E_a)_{a \in A})$$
 is called *rational*, if

- $V = X^*$ for some alphabet X
- $E_a \subseteq X^* \times X^*$ is a rational transduction.

 \mathcal{K} is called *rational* if, in addition, U_p is regular for each $p \in P$.

Rational Kripke frames

$$\mathcal{F} = (V, (E_a)_{a \in A})$$
 is called *rational*, if

• $V = X^*$ for some alphabet X

• $E_a \subseteq X^* \times X^*$ is a rational transduction.

 \mathcal{K} is called *rational* if, in addition, U_p is regular for each $p \in P$.

Theorem (Bekker, Goranko 2007)

If $\mathcal{K} = (V, (E_a)_{a \in A}, (U_p)_{p \in P})$ is rational If \mathcal{F} is rational and U_p is regular for each $p \in P$, the set $\llbracket \varphi \rrbracket_{\mathcal{K}}$ is effectively regular. Hence, the model-checking problem is decidable.

- 4 週 ト - 4 三 ト - 4 三 ト

Rational Kripke frames

$$\mathcal{F} = (V, (E_a)_{a \in A})$$
 is called *rational*, if

• $V = X^*$ for some alphabet X

• $E_a \subseteq X^* \times X^*$ is a rational transduction.

 \mathcal{K} is called *rational* if, in addition, U_p is regular for each $p \in P$.

Theorem (Bekker, Goranko 2007)

If $\mathcal{K} = (V, (E_a)_{a \in A}, (U_p)_{p \in P})$ is rational If \mathcal{F} is rational and U_p is regular for each $p \in P$, the set $\llbracket \varphi \rrbracket_{\mathcal{K}}$ is effectively regular. Hence, the model-checking problem is decidable.

Theorem

Let $X = \{0, 1\}$. There is a rational Kripke frame $\mathcal{F} = (X^*, R, S, T)$, $R, S, T \subseteq X^* \times X^*$ such that for any non-regular L, in the Kripke structure $\mathcal{K} = (X^*, R, S, T, L)$, for each $K \in AH(L)$, there is a φ with $[\![\varphi]\!]_{\mathcal{K}} = K$.