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Example (Transducer)

o[\, 1]\ 0lo, 11 0[A, 1]\
|\ ()
R O G
A0, AL

T(A) = {(u#v#w,x) | u,v,w,x € {0,1}*, v < x}

Definition
@ Rational transduction: set of pairs given by a finite state transducer.

@ For rational transduction T € X* x Y* and language L < Y'*, let

TL={weX*|3yel:(x,y)e T}
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Definition

transductions T.

Language class C is a full trio, if TL € C for every L € C and rational
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Definition

Language class C is a full trio, if TL € C for every L € C and rational
transductions T.

Equivalently: if C is closed under

o (arbitrary) homomorphisms,
@ inverse homomorphisms, and

@ intersection with regular languages.
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Language class C is a full trio, if TL € C for every L € C and rational
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@ inverse homomorphisms, and
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Boolean closed: closed under union, intersection, and complementation.

Observation
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Boolean closed full trios
Are there Boolean closed full trios beyond REG?

v

Lohrey, Zetzsche (Uni Siegen, TU KL) Boolean closed full trios Theorietag 2013 3/15



Definition
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transductions T.

Equivalently: if C is closed under

o (arbitrary) homomorphisms,
@ inverse homomorphisms, and
@ intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation
The regular languages constitute a Boolean closed full trio.
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Are there Boolean closed full trios beyond REG?

@ Automatic structures beyond regular languages
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Definition

Language class C is a full trio, if TL € C for every L € C and rational
transductions T.

Equivalently: if C is closed under

o (arbitrary) homomorphisms,
@ inverse homomorphisms, and

@ intersection with regular languages.

Boolean closed: closed under union, intersection, and complementation.

Observation
The regular languages constitute a Boolean closed full trio.

Boolean closed full trios
Are there Boolean closed full trios beyond REG?
@ Automatic structures beyond regular languages

@ Complementation closure for union closed full trios

v
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RE(C): Accepted by Turing machine with oracle L € C.

Definition
Arithmetical hierarchy:

Yo = REC, Y41 = RE(X,) forn=0, AH = U Y.
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RE(C): Accepted by Turing machine with oracle L € C.

Definition
Arithmetical hierarchy:

Yo = REC, Y41 = RE(X,) forn=0, AH = U Y.

Relative arithmetical hierarchy:

Yo(L) = REC(L), Tny1(L) = RE(Z4(L) for n >0, AH(L) = | J Za(L).
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RE(C): Accepted by Turing machine with oracle L € C.

Definition
Arithmetical hierarchy:

Yo = REC, Y41 = RE(X,) forn=0, AH = U Y.

Relative arithmetical hierarchy:

Yo(L) = REC(L), Tny1(L) = RE(Z4(L) for n >0, AH(L) = | J Za(L).

Theorem

Let T be a Boolean closed full trio. If T contains any non-regular
language L, then T includes AH(L).
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.
Definition

Let C € A* be the set of words 1 -+, 01,...,0m € A, for which there
are numbers xp, .

..y Xm € N such that for 1 </ < m:
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.
Definition

Let C € A* be the set of words 91 - - - 9, 01,

..,0m € A, for which there
are numbers xp, .

..y Xm € N such that for 1 </ < m:
Q if 6 = +, then x; = x;_1 + 1,
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.
Definition

Let C € A* be the set of words 1 -+, 01,...,0m € A, for which there
are numbers xg, ..., Xm € N such that for 1 </ < m:

Q if 6 = +, then x; = x;_1 + 1,
Q if 9; = —, then x; = x,_1 — 1, and
Q if §; = z, then x; = x;_1 = 0.
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.
Definition

Let C € A* be the set of words 1 -+, 01,...,0m € A, for which there
are numbers xg, ..., Xm € N such that for 1 </ < m:

Q if 6 = +, then x; = x;_1 + 1,
Q if 9; = —, then x; = x,_1 — 1, and
Q if §; = z, then x; = x;_1 = 0.

First step: If T contains non-regular L, then T contains C.
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Proof |
Let A = {+, —, z}: increment, decrement, and zero test.

Definition

Let C € A* be the set of words 1 -+, 01,...,0m € A, for which there

are numbers xg, ..., Xm € N such that for 1 </ < m:
Q if 6 = +, then x; = x;_1 + 1,
Q if 9; = —, then x; = x,_1 — 1, and
Q if §; = z, then x; = x;_1 = 0.

First step: If T contains non-regular L, then T contains C.
Definition

u=; v: foreach we X* uw e L iff vw e L.
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Proof |

Let A = {+, —, z}: increment, decrement, and zero test.

Definition

Let C € A* be the set of words 1 -+, 01,...,0m € A, for which there

are numbers xg, ..., Xm € N such that for 1 </ < m:
Q if 6 = +, then x; = x;_1 + 1,
Q if 9; = —, then x; = x,_1 — 1, and
Q if §; = z, then x; = x;_1 = 0.

First step: If T contains non-regular L, then T contains C.
Definition
u=; v: foreach we X* uw e L iff vw e L.

Theorem (Myhill-Nerode)

L is regular if and only if = has finite index.

Lohrey, Zetzsche (Uni Siegen, TU KL) Boolean closed full trios Theorietag 2013

5/15



Proof Il

Idea: In order to obtain C, construct C:
Definition

Let C (counter) be the set of all words

VoO1VL - - - OmVmFFUoFE - - - UnFF
with §; € A, v; € X*, uj € X*
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Proof Il

Idea: In order to obtain C, construct C:
Definition

Let C (counter) be the set of all words

VOO1VL  + * OmVm#UoHE - - UnH
with §; € A, v; € X*, uj € X*, such that u, #; uy (k # £) and for each
1<i< mthereisal<j < nwith
o if ; = +, then v;_; =, Ui—1, Vi =L Uj

@ if §; = —, then v;_1 =; Uj, Vi = Uj—1
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Proof Il

Idea: In order to obtain C, construct C:
Definition

Let C (counter) be the set of all words

VOO1VL * * * OmVmFF UoF - - - UnFt
with §; € A, v; € X*, uj € X*, such that u, #; uy (k # £) and for each
1<i< mthereisal<j < nwith
o if ; = +, then v;_; =, Ui—1, Vi =L Uj
@ if §; = —, then v;_1 =; Uj, Vi = Uj—1

o if §; = z, then vi_1 = vi = uj =, wp.
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Proof Il

Idea: In order to obtain C, construct C:
Definition

Let C (counter) be the set of all words

VOO1VL * * * OmVmFF UoF - - - UnFt
with §; € A, v; € X*, uj € X*, such that u, #; uy (k # £) and for each
1<i< mthereisal<j < nwith
o if ; = +, then v;_; =, Ui—1, Vi =L Uj
@ if §; = —, then v;_1 =; Uj, Vi = Uj—1

o if §; = z, then vi_1 = vi = uj =, wp.

Since L is non-regular, C can be obtained from C.
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Proof Il

Lohrey, Zetzsche (Uni Siegen, TU KL)

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (WlﬂWQ)U(WlF\ W2)
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (WlﬂWQ)U(Wlﬁ W2)

W = {u#v | u,veX* u# v}
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (WlﬂWQ)U(Wlﬁ W2)

W = {uftv | u,ve X* u# v} = {u#tv | uftv#w e W for some w e X*}
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (WlﬂWQ)U(Wlﬁ W2)

W = {uftv | u,ve X* u# v} = {u#tv | uftv#w e W for some w e X*}

P={u#v|u= v}
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (Wl sz)u(Wlm W2)

W = {uftv | u,ve X* u# v} = {u#tv | uftv#w e W for some w e X*}

P ={u#v|u=v}=X"#X\W
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (Wl sz)u(Wlm W2)

W = {uftv | u,ve X* u# v} = {u#tv | uftv#w e W for some w e X*}
P ={u#v|u=v}=X"#X\W

S = {uoFtur# - up#t | uj #1 uj for all i # j}
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Proof Il

Wy = {u#tv#w | u,v,w e X*, uw € L},
Wo = {u#tv#w | u,v,w e X*, vw e L}.

W' = {u#v#w | u,v,we X* (uwe L,vw ¢ L) or (uw ¢ L,vw e L)}
= (Wl sz)u(Wlm W2)

W = {uftv | u,ve X* u# v} = {u#tv | uftv#w e W for some w e X*}
P = {u#v|u= v}=X"#X\W

S = {uo#ui# - up# | ui £ uj for all i # j}
= (X*#)"\{ru#tsv#t | r,s, t € (X*#)*, u#v € P}.
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Proof IV

Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with
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Proof IV

Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,

Lohrey, Zetzsche (Uni Siegen, TU KL) Boolean closed full trios Theorietag 2013 8 /15



Proof IV
Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with

@ if § =+, then vi =; vy and v» =; uy,

o if § = —, then v =; u» and v =; 1y, and
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Proof IV

Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with

@ if § =+, then vi =; vy and v» =; uy,

o if § = —, then v =; u» and v =; 1y, and

@ if § =z then vy =) vo = uy.
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Proof IV
Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,
o if § = —, then v =; u» and v =; 1y, and
@ if § =z then vy =) vo = uy.
M = {V1+V2#U1#U2 | vl#ul S P, V2#U2 S P}
U {vi—wa#HwnH#Huw | vi#u € P, vf#tu € P}
U {viznn#ufup | viFtve € P, vi#ug € P, up € X*}
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Proof IV
Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,
e if 6 = —, then vi = u» and v» =; 11, and
@ if § =z then vy =) vo = uy.
M = {vi+w#Hwun#uw | vi#ui € P, vatuy € P}
U {vi—wa#HwnH#Huw | vi#u € P, vf#tu € P}
U {vizvaftui#uy | i#ve € P, viFtup € P, up € X*}

Let E (error) be the set of words vidvo#uo# - - - up# such that for every
1</ < n, we have vidvo#u;_1#uj ¢ M or we have 6 = z and vi #; up.
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Proof IV
Let M (matching) be the set of all words vidva#u1#us,
vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,
e if 6 = —, then vi = u» and v» =; 11, and
@ if § =z then vy =) vo = uy.
M = {vi+w#Hwun#uw | vi#ui € P, vatuy € P}
U {vi—wa#HwnH#Huw | vi#u € P, vf#tu € P}
U {vizvaftui#uy | i#ve € P, viFtup € P, up € X*}

Let E (error) be the set of words vidvo#uo# - - - up# such that for every

1</ < n, we have vidvo#u;_1#uj ¢ M or we have 6 = z and vi #; up.

E' = {vidvaFtrinFuo#ts | vidva#ui#up € M, r,s € (X*#)*}
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Proof IV
Let M (matching) be the set of all words vidva#u1#us,

vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,
e if 6 = —, then vi = u» and v» =; 11, and

o if 0 =z, then vi =, v» = 1.
M = {vi+w#HuH#u | i#us € P, w#up € P}
U{vi—vaH#unFup | i#u € P, w#u € P}
U {vizvo# i #ur | vi##Fvo € P, vi#ui € P, up € X*}

Let E (error) be the set of words vidvo#uo# - - - up# such that for every
1</ < n, we have vidvo#u;_1#uj ¢ M or we have 6 = z and vi #; up.

E' = {vidvaFtrinFuo#ts | vidva#ui#up € M, r,s € (X*#)*}

E = [(X*AX*#(X*#)"\E']
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Proof IV
Let M (matching) be the set of all words vidva#u1#us,

vi, vo, U1, U € X*, with
@ if § =+, then vi =; vy and v» =; uy,
e if 6 = —, then vi = u» and v» =; 11, and

o if 0 =z, then vi =, v» = 1.
M = {vi+w#HuH#u | i#us € P, w#up € P}
U{vi—vaH#unFup | i#u € P, w#u € P}
U {vizvo# i #ur | vi##Fvo € P, vi#ui € P, up € X*}

Let E (error) be the set of words vidvo#uo# - - - up# such that for every
1</ < n, we have vidvo#u;_1#uj ¢ M or we have 6 = z and vi #; up.

E' = {vidvaFtrinFuo#ts | vidva#ui#up € M, r,s € (X*#)*}

E = [(X*AX*#(X*#)\E'] U {vizvattuor | vi #1 ug, re (X*#)*}.
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Proof V

Let N (no error) be the set of words vodivy -+ OmVm#Uo# - - - UpFF such
that for every 1 </ < m, thereisa 1l <j < nwith vi_1dvi#uj_1#uje M
and if §; = z, then vi_1 =/ ug.
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Proof V

Let N (no error) be the set of words vodivy -+ OmVm#Uo# - - - UpFF such
that for every 1 </ < m, thereisa 1l <j < nwith vi_1dvi#uj_1#uje M
and if §; = z, then vi_1 =/ ug.

N ={w e (X*A)*viova(AX*)* #uo# - - - upt | vidvatuo# - - - up# € E},
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Proof V

Let N (no error) be the set of words vodivy -+ OmVm#Uo# - - - UpFF such
that for every 1 </ < m, thereisa 1l <j < nwith vi_1dvi#uj_1#uje M
and if §; = z, then vi_1 =/ ug.

N ={w e (X*A)*viova(AX*)* #uo# - - - upt | vidvatuo# - - - up# € E},
N = (X*A)F X (X #)\N.
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Proof V

Let N (no error) be the set of words vodivy -+ OmVm#Uo# - - - UpFF such
that for every 1 </ < m, thereisa 1l <j < nwith vi_1dvi#uj_1#uje M
and if §; = z, then vi_1 =/ ug.

N' = {w e (X*A)* vidvo(AX*)* H#uo# - - un# | vidvaFuo# - - - up# € E},
N = (X*A)TX*#(X*#)\N.
Now we have A
C=Nn (X*A)*X*#S.
Hence, Ce 7.
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Proof VI

RE < T follows by standard techniques:
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Proof VI

RE < T follows by standard techniques:

@ Use intersection to get counter language for two counters.
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Proof VI

RE < T follows by standard techniques:
@ Use intersection to get counter language for two counters.

@ Use transducer to obtain language accepted by given two-counter
automaton.

For AH(L) < T show that K € T implies RE(K) < T (as above).
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Corollary

AH(L).

Let L be non-regular. The smallest Boolean closed full trio containing L is
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Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is
AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation
closed.

v
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Other than the regular languages, no principal full trio is complementation
closed.
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Proof.
Let 7 be generated by L.
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Let L be non-regular. The smallest Boolean closed full trio containing L is
AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation
closed.

Proof.
Let 7 be generated by L. It consists of RL for rational transductions R.
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Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is
AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation
closed.

v

Proof.

Let 7 be generated by L. It consists of RL for rational transductions R.
Hence, T is union-closed and 7 < RE(L) < AH(L).
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Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is
AH(L).

Corollary

Other than the regular languages, no principal full trio is complementation
closed.

Proof.

Let 7 be generated by L. It consists of RL for rational transductions R.
Hence, 7 is union-closed and 7 < RE(L) & AH(L). If T were
complementation closed, it would contain AH(L), contradiction! O
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Corollary

Let M be a finitely generated monoid. The following are equivalent:
@ VA(M) is complementation closed.
@ VA(M) = REG.

© M has finitely many right-invertible elements.
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Corollary

Let M be a finitely generated monoid. The following are equivalent:
Q@ VA(M) is complementation closed.
@ VA(M) = REG.

© M has finitely many right-invertible elements.

Proof.
If M is finitely generated, VA(M) is a principal full trio.
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Corollary
Let M be a finitely generated monoid. The following are equivalent:
Q@ VA(M) is complementation closed.

@ VA(M) = REG.

© M has finitely many right-invertible elements.

Proof.
If M is finitely generated, VA(M) is a principal full trio. Equivalence of 2
and 3 has been shown by Render (2009) and Z. (2011). O

v
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An application

Syntax of multimodal logic

pu=pl-plorplove|dap |y
for propositions p € P and actions a € A.

Lohrey, Zetzsche (Uni Siegen, TU KL)

o F
Boolean closed full trios



An application

Syntax of multimodal logic

pu=pl-plornp|eve| Q|

for propositions p € P and actions a € A.

Semantics of multimodal logic
A Kripke structure is a tuple

K= (V, (Ea)aeAa (UP)PGP)v

where
@ V is a set of worlds,
@ A and P are finite sets of actions and propositions, respectively,
o foreveryac A E; < V x V, and

o forevery pe P, U, C V.
The tuple F = (V, (E,).ea) is then also called a Kripke frame.
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An application

Semantics
For K = (V, (Ea)aea, (Up)peP), we have

[[P]]IC = Up:
[—ellc = V\[elk,
[ rnvlxe = [elcn [Pk,
[evele = el v [¥lk,
[Caellc = {veV|VueV:(v,u)eE,— ue[e]k}
[Callc = {veV]|3JueV:(v,u)e E, nuce [e]k}
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An application

Semantics
For IC = (V, (EJ)aea, (Up)pep), we have

[[P]]IC = Upa
[—ellc = V\[elk,
[ rnvlxe = [elcn [Pk,
[evele = el v [¥lk,
[Caellc = {veV|VueV:(v,u)eE,— ue[e]k}
[Callc = {veV]|3JueV:(v,u)e E, nuce [e]k}

Rational Kripke frames
F = (V,(Ea)aea) is called rational, if
e V = X* for some alphabet X
@ F, < X* x X* is a rational transduction.

K is called rational if, in addition, U, is regular for each p € P.
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An application

Rational Kripke frames
F = (V,(Es)aea) is called rational, if
e V = X* for some alphabet X
e £, < X* x X* is a rational transduction.

K is called rational if, in addition, U, is regular for each p € P.

Theorem (Bekker, Goranko 2007)

If I = (V,(Ea)aca, (Up)pep) is rational If F is rational and U, is regular
for each p € P, the set @]\« is effectively regular. Hence, the
model-checking problem is decidable.
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An application

Rational Kripke frames
F = (V,(Es)aea) is called rational, if
e V = X* for some alphabet X
e £, < X* x X* is a rational transduction.

K is called rational if, in addition, U, is regular for each p € P.

Theorem (Bekker, Goranko 2007)

If I = (V,(Ea)aca, (Up)pep) is rational If F is rational and U, is regular
for each p € P, the set @]\« is effectively regular. Hence, the
model-checking problem is decidable.

Theorem

Let X = {0,1}. There is a rational Kripke frame F = (X*,R,S, T),
R,S, T < X* x X* such that for any non-regular L, in the Kripke structure
K=(X*R,S,T,L), for each K € AH(L), there is a v with [¢]lx = K.
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