
Recognisability
and

Algebras of Infinite Trees

Achim Blumensath



Algebraic Language¿eory

Recognisability

φ ∶ free algebra→ finite algebra

L = φ−[P]
Which algebras?

finite words monoid/semigroup
infinite words ω-semigroup
finite trees clones, preclones, term algebras, forest algebras,. . .
infinite trees ?



ω-semigroups

⟨S, Sω⟩ with associative operations

• S × S → S

• S × Sω → Sω

• Sω → Sω

Example

S ∶= [], Sω ∶= [] with products

• S × S → S ∶ (s, t)↦max{s, t}
• S × Sω → Sω ∶ (s, u)↦ u

• Sω → Sω ∶ (sn)n ↦ lim supn→∞ sn

recognises the set of all ω-words containing infinitely many letters a.

(a ↦  and b ↦ )



Wilke algebras

Replace infinite product Sω → Sω by ω-power operation S → Sω .

¿eorem¿e infinite product is uniquely determined by the ω-power
operation.

Proof Every infinite product π(a , a , . . . ) has a factorisation
(a⋯ak−)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s

⋅ (ak⋯a l−)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u

⋅ (a l⋯am−)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u

⋯

(¿eorem of Ramsey). Hence,

π(a , a , . . . ) = s ⋅ uω .



Algebras for infinite trees

Term algebra

Elements: tuples of finite and infinite terms with variables x , x , . . .

⎡⎢⎢⎢⎢⎣
f

x g

x

,

g

g

x

,

g

f

x x

⎤⎥⎥⎥⎥⎦
  

   

Operations

• horizontal product: concatenation
  

   

⊕

 

  

=

    

      

• reordering
  

   

↝

  

   



• vertical product: substitution

  

   

⋅

  

   

=

  

     

• infinite product

Hyperclones: homomorphic images of the term algebra



Automata to hyperclones

Path-hyperclones

hyperclones associated with an ω-semigroup ⟨S, Sω⟩
Elements: ℘(Sn × ℘(Sω))<ω

x y z

s t

(s, t, {x , y, z})

Example

S ∶= [], Sω ∶= [] with max as product.

¿e corresponding hyperclone recognises the set of all trees containing at
least one vertex with label a. (a ↦  and b ↦ )



ω-semigroup for an automaton

S ∶= Q × D ×Q ∪ � Sω ∶= Q ∪ �

(p, d , q) ⋅ (p′ , d′, q′) ∶= ⎧⎪⎪⎨⎪⎪⎩
(p, min{d , d′}, q′) if q = p′

� otherwise

homomorphism

transition (p, a, q , . . . , qn−)
(p,Ω(q i), q i)

¿eorem

¿e hyperclone associated with an automatonA recognises L(A).



Hyperclones to automata

Problem: To evaluate an infinite product

⋮⋮⋮

an automaton needs to access each “slice”.

Idea: Compute infinite products one branch at a time.



Fix a branch β.

For each v ∉ β, guess the value bv of the subtree.

Insert these values and compute the remaining
product.

Tr(β) : the values collected in this way

⋮⋮⋮ β

bv

Definition

A hyperclone is path-continuous if π(a , a , . . . ) is determined by{Tr(β) ∣ β a branch}.



Examples

(a) Every path-hyperclone is path-continuous.

(b)¿e following hyperclone is not path-continuous:

Elements: []n
a ⋅ b̄ ∶=max{a, b , . . . , bn−}
π(a , a , . . . ) ∶=max ({x} ∪ { a i ∣ i < ω })

x ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

 if there are infinitely many branches from which

you can always reach a value >

 if there are finitely many such branches

 if there are no such branches



¿eorem

Let L be a set of infinite trees. ¿e following statements are equivalent:

() L is recognised by a tree automaton.

() L is recognised by a finitary, path-continuous hyperclone.

() L is recognised by a path-hyperclone associated with a finite
ω-semigroup.



Wilke algebras

Problem

To specify a hyperclone we need an infinite amount of data:

• infinitely many sorts

• infinite product

Solution

•We only need to consider finitely many sorts at a time.

•We can replace π by the ω-power ω : aω ∶= π(a, a, . . . )



ω-power

Obviously π determines ω .

Question: what about the converse?

¿eorem

For finitary, path-continuous hyperclones, ω determines π.

Proof idea

We have to evaluate π(a , a , . . . ) using only ⋅ and ω .

Find a regular sequence a′ , a
′

 , . . . such that

π(a , a , . . . ) = π(a′ , a′ , . . . ).
We can represent a′ , a

′

 , . . . as u ⋅ v
ω and set

π(a , a , . . . ) ∶= u ⋅ vω .



Path labellings

Additive labelling

T tree, ⟨S, Sω⟩ ω-semigroup, λ ∶ { (x , y) ∈ T ∣ x < y } → S

λ(x , z) = λ(x , y) ⋅ λ(y, z) for x < y < z

Labelling for a hyperclone

If y is the k-th successor of x define

λ(x , y) ∶= { a ⋅k b ∣ a the element at x , b arbitrary}
x

y



Ramseyan splits
λ additive labelling of T , σ ∶ T → [k]
• x ⊑σ y iff x ≤ y and σ(x) = σ(y) ≤ σ(z), for all x ≤ z ≤ y

• σ is a Ramseyan split if

λ(u, v) ⋅ λ(x , y) = λ(u, v) for all u ⊑σ x ⊏σ y, u ⊏σ v with
v , y comparable

¿eorem (Colcombet)

Every additive labelling λ has a Ramseyan split σ ∶ T → [k] with k ≤ ∣S∣.
¿eorem

Let λ be an additive labelling of T . ¿ere exists a prefix T ⊆ T of bounded
height (in terms of S) with back-edges such that

{ λ(β) ∣ β a branch of T } = { λ(β) ∣ β a branch of T } .



¿e syntactic congruence

Definition

a ∼L b : iff { x ⊕ yaz ∈ L ⇔ x ⊕ ybz ∈ L

x ⊕ y ⋅ (a ⊕ z)ω ∈ L ⇔ x ⊕ y ⋅ (b ⊕ z)ω ∈ L

¿eorem

∼L is the coarsest congruence saturating L.

¿eorem

If C is finitary and path-continuous, ∼P is decidable.



Hyperclones and monadic second-order logic

Lemma

¿e class of languages recognised by finitary, path-continuous hyperclones
is effectively closed under

• boolean operations,

• projection.

¿eorem

For everyMSO-formula φ, we can effectively construct a hyperclone
recognising L(φ).
Corollary (Rabin)

It is decidable whether anMSO-formula has a tree model.



Summary

• equivalence automata↔ hyperclones

•Wilke algebras

• syntactic congruence

• translationMSO↦ hyperclones

To do

• simplify definitions

• effective characterisations

• pseudo-varieties


