Recognisability and Algebras of Infinite Trees Achim Blumensath

Algebraic Language Theory

Recognisability

 φ : free algebra \rightarrow finite algebra $L = \varphi^{-1}[P]$

Which algebras?

finite words	monoid/semigroup
infinite words	<i>ω</i> -semigroup
finite trees	clones, preclones, term algebras, forest algebras,
infinite trees	?

ω -semigroups

 $\langle S, S_{\omega} \rangle$ with associative operations

- $S \times S \rightarrow S$
- $S \times S_{\omega} \to S_{\omega}$
- $\bullet \: S^\omega \to S_\omega$

Example

 $S := [2], S_{\omega} := [2]$ with products

• $S \times S \rightarrow S$: $(s, t) \mapsto \max\{s, t\}$

•
$$S \times S_{\omega} \to S_{\omega} : (s, u) \mapsto u$$

• $S^{\omega} \to S_{\omega}$: $(s_n)_n \mapsto \limsup_{n \to \infty} s_n$

recognises the set of all ω -words containing infinitely many letters a. ($a \mapsto 1$ and $b \mapsto 0$)

Wilke algebras

Replace infinite product $S^{\omega} \to S_{\omega}$ by ω -power operation $S \to S^{\omega}$.

Theorem The infinite product is uniquely determined by the ω -power operation.

Proof Every infinite product $\pi(a_0, a_1, ...)$ has a factorisation

 $\underbrace{(a_{\circ}\cdots a_{k-1})}_{s} \cdot \underbrace{(a_{k}\cdots a_{l-1})}_{u} \cdot \underbrace{(a_{l}\cdots a_{m-1})}_{u} \cdots$ (Theorem of Ramsey). Hence, $\pi(a_{\circ}, a_{1}, \dots) = s \cdot u^{\omega}.$

Algebras for infinite trees

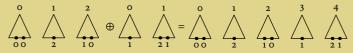
Term algebra

Elements: tuples of finite and infinite terms with variables x_0, x_1, \ldots

$$\begin{bmatrix} \begin{array}{cccc} & f & g & g \\ x_0 & g, & g, & f \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

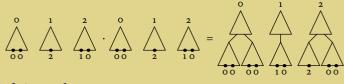
Operations

horizontal product: concatenation



reordering

• vertical product: substitution



infinite product

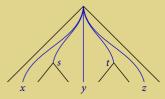
Hyperclones: homomorphic images of the term algebra

Automata to hyperclones

Path-hyperclones

hyperclones associated with an ω -semigroup (S, S_{ω})

```
Elements: \mathscr{P}(S^n \times \mathscr{P}(S_\omega))^{<\omega}
```



$$(s,t,\{x,y,z\})$$

Example

 $S := [2], S_{\omega} := [2]$ with max as product.

The corresponding hyperclone recognises the set of all trees containing at least one vertex with label *a*. ($a \mapsto 1$ and $b \mapsto 0$)

ω -semigroup for an automaton

$$S := Q \times D \times Q \cup \bot \qquad S_{\omega} := Q \cup \bot$$
$$(p, d, q) \cdot (p', d', q') := \begin{cases} (p, \min\{d, d'\}, q') & \text{if } q = p' \\ \bot & \text{otherwise} \end{cases}$$

homomorphism

transition $(p, a, q_0, \ldots, q_{n-1})$

= p'

Theorem

The hyperclone associated with an automaton \mathcal{A} recognises $L(\mathcal{A})$.

Hyperclones to automata

Problem: To evaluate an infinite product

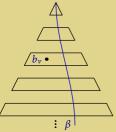
an automaton needs to access each "slice".

Idea: Compute infinite products one branch at a time.

Fix a branch β .

For each $v \notin \beta$, guess the value b_v of the subtree. Insert these values and compute the remaining product.

 $Tr(\beta)$: the values collected in this way



Definition

A hyperclone is **path-continuous** if $\pi(a_0, a_1, ...)$ is determined by $\{ \operatorname{Tr}(\beta) \mid \beta \text{ a branch } \}.$

Examples

(a) Every path-hyperclone is path-continuous.

(b) The following hyperclone is not path-continuous:

Elements: $[4]^n$

$$a \cdot \overline{b} \coloneqq \max \{a, b_0, \dots, b_{n-1}\}$$
$$\pi(a_0, a_1, \dots) \coloneqq \max (\{x\} \cup \{a_i \mid i < \omega\})$$

 $x := \begin{cases} 3 & \text{if there are infinitely many branches from which} \\ you can always reach a value >0 \\ 2 & \text{if there are finitely many such branches} \\ 0 & \text{if there are no such branches} \end{cases}$

Theorem

Let *L* be a set of infinite trees. The following statements are equivalent:

- (1) *L* is recognised by a tree automaton.
- (2) *L* is recognised by a finitary, path-continuous hyperclone.
- (3) *L* is recognised by a **path-hyperclone** associated with a finite ω -semigroup.

Wilke algebras

Problem

To specify a hyperclone we need an infinite amount of data:

- infinitely many sorts
- infinite product

Solution

- We only need to consider finitely many sorts at a time.
- We can replace π by the ω -power $\omega : a^{\omega} := \pi(a, a, ...)$

ω-power

Obviously π determines $^{\omega}$.

Question: what about the converse?

Theorem

For finitary, path-continuous hyperclones, $^{\omega}$ determines π .

Proof idea

We have to evaluate $\pi(a_0, a_1, ...)$ using only \cdot and ω .

Find a regular sequence a'_0, a'_1, \ldots such that

 $\pi(a_{o},a_{1},\ldots)=\pi(a_{o}',a_{1}',\ldots).$

We can represent a'_0, a'_1, \ldots as $u \cdot v^{\omega}$ and set

 $\pi(a_{o},a_{1},\dots)\coloneqq u\cdot v^{\omega}.$

Path labellings

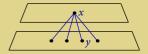
Additive labelling

T tree,
$$\langle S, S_{\omega} \rangle \omega$$
-semigroup, $\lambda : \{ (x, y) \in T^2 \mid x < y \} \to S$
 $\lambda(x, z) = \lambda(x, y) \cdot \lambda(y, z) \text{ for } x < y < z$

Labelling for a hyperclone

If y is the k-th successor of x define

 $\lambda(x, y) \coloneqq \{ a \cdot_k b \mid a \text{ the element at } x, b \text{ arbitrary} \}$



Ramseyan splits

 λ additive labelling of $T, \sigma: T \to [k]$

• $x \sqsubseteq_{\sigma} y$ iff $x \le y$ and $\sigma(x) = \sigma(y) \le \sigma(z)$, for all $x \le z \le y$

• σ is a Ramseyan split if

$$\lambda(u,v)\cdot\lambda(x,y)=\lambda(u,v)$$

for all $u \sqsubseteq_{\sigma} x \sqsubset_{\sigma} y$, $u \sqsubset_{\sigma} v$ with v, y comparable

Theorem (Colcombet)

Every additive labelling λ has a Ramseyan split $\sigma : T \rightarrow [k]$ with $k \leq |S|$.

Theorem

Let λ be an additive labelling of *T*. There exists a prefix $T_0 \subseteq T$ of bounded height (in terms of *S*) with back-edges such that

 $\{\lambda(\beta) \mid \beta \text{ a branch of } T_{\circ}\} = \{\lambda(\beta) \mid \beta \text{ a branch of } T\}.$

The syntactic congruence

Definition

$$a \sim_L b$$
 : iff $\begin{cases} x \oplus yaz \in L \iff x \oplus ybz \in L \\ x \oplus y \cdot (a \oplus z)^{\omega} \in L \iff x \oplus y \cdot (b \oplus z)^{\omega} \in L \end{cases}$

Theorem

 \sim_L is the coarsest congruence saturating *L*.

Theorem

If \mathfrak{C} is finitary and path-continuous, \sim_P is decidable.

Hyperclones and monadic second-order logic

Lemma

The class of languages recognised by finitary, path-continuous hyperclones is effectively closed under

- boolean operations,
- projection.

Theorem

For every MSO-formula φ , we can effectively construct a hyperclone recognising $L(\varphi)$.

Corollary (Rabin)

It is decidable whether an MSO-formula has a tree model.

Summary

- equivalence automata \leftrightarrow hyperclones
- Wilke algebras
- syntactic congruence
- translation MSO \mapsto hyperclones

To do

- simplify definitions
- effective characterisations
- pseudo-varieties