Discovering Hidden Repetitions in Words

Pawel Gawrychowki^a, Florin Manea^b, Dirk Nowotka^b

^aMax-Planck Institut für Informatik Saarbrücken ^bChristian-Albrechts-Universität zu Kiel

Ilmenau, September 2013

Notations

Word over V: w = w[1]...w[n] – a finite concatenation of letters $w[i] \in V$

Factor of a word: $w[i..j] = w[i] \cdots w[j]$ – elements from position *i* to *j* Let $f : V^* \to V^*$. We say that *f* is:

morphism:
$$f(xy) = f(x)f(y)$$
 for all $x, y \in V^*$,
in particular: $f(w) = f(w[1]) \cdots f(w[n])$;
non-erasing: $f(a) \neq \lambda$ for all $a \in V$;
uniform: $|f(a)| = k$ for all $a \in V$;
literal: $|f(a)| = 1$ for all $a \in V$;

antimorphism:
$$f(xy) = f(y)f(x)$$
 for all $x, y \in V^*$,
in particular: $f(w) = f(w[n]) \cdots f(w[1])$

Length type of f: the array $(|f(a)|)_{a \in V}$

Pseudo-repetitions: Initial motivation

Tandem repeats in DNA sequences :

```
...ACT ACT ACT...
```

Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Tandem repeats in DNA sequences :

```
...ACT ACT ACT...
```

Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Inverted repeats in DNA sequences:

```
... AAATCGG ... CCGATTT...
```

Important genetic elements for genome instability; may play role in DNA rearrangement reactions.

A sequence and its complement encode (almost) the same information.

Tandem repeats in DNA sequences :

```
...ACT ACT ACT...
```

Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Inverted repeats in DNA sequences:

```
... AAATCGG ... CCGATTT...
```

Important genetic elements for genome instability; may play role in DNA rearrangement reactions.

A sequence and its complement encode (almost) the same information.

Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.: Pseudo-repetitions: generalised tandem repeats, one sequence is followed by consecutive occurrences of either its copy or of its reversed complement.

... AAATCGG AAATCGG CCGATTT AAATCGG ...

A word w is

- repetition: w = tⁿ, for some proper prefix t (called root) primitive word: not a repetition.
- *f* is an anti-/morphism
 f-repetition: w ∈ t{t, f(t)}*, for some proper prefix t (called root)
 f-primitive word: not an *f*-repetition.

A word w is

- repetition: w = tⁿ, for some proper prefix t (called root) primitive word: not a repetition.
- *f* is an anti-/morphism
 f-repetition: w ∈ t{t, f(t)}*, for some proper prefix t (called root)
 f-primitive word: not an *f*-repetition.

A word w is

- repetition: w = tⁿ, for some proper prefix t (called root) primitive word: not a repetition.
- *f* is an anti-/morphism
 f-repetition: w ∈ t{t, f(t)}*, for some proper prefix t (called root)
 f-primitive word: not an *f*-repetition.

A word w is

- repetition: w = tⁿ, for some proper prefix t (called root) primitive word: not a repetition.
- *f* is an anti-/morphism
 f-repetition: w ∈ t{t, f(t)}*, for some proper prefix t (called root)
 f-primitive word: not an *f*-repetition.

EXAMPLE

ACGTAC

- primitive from the classical point of view
- *f*-primitive for morphism f: f(A) = T, f(C) = G, $f^2 = 1$.
- f-power for antimorphism $f: f(A) = T, f(C) = G, f^2 = 1$:

$$ACGTAC = AC \cdot f(AC) \cdot AC$$

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.

Repetitions and palindromes: central in combinatorics on words and applications!

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.

Repetitions and palindromes: central in combinatorics on words and applications!

Originated from biology (Watson-Crick complement: antimorphic involution)

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.

Repetitions and palindromes: central in combinatorics on words and applications!

Originated from biology (Watson-Crick complement: antimorphic involution) Such structures appear also in music: ternary song form, same fragment repeated on different pitches.

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.

Repetitions and palindromes: central in combinatorics on words and applications!

Originated from biology (Watson-Crick complement: antimorphic involution) Such structures appear also in music: ternary song form, same fragment repeated on different pitches.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and its optimality. Fundam. Informat. 2010.] [Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.] [Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012] [M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.] [M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.] [M., Müller, Nowotka. On the Pseudoperiodic Extension of $u^{\ell} = v^m w^n$. FSTTCS 2013.] [Xu. A Minimal Periods Algorithm with Applications. CPM 2010] [Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.

STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

HIDDEN REPETITIONS IN WORDS

3

nan

Given $w \in V^*$ and an anti-/morphism f, decide whether w is an f-repetition.

=

E

DQC

Given $w \in V^*$ and an anti-/morphism f, decide whether w is an f-repetition.

THEOREM (GAWRYCHOWSKI, MANEA, MERCAŞ, NOWOTKA, TISEANU, STACS 2013)

Given $w \in V^*$ and $f : V^* \to V^*$ a constant size anti-/morphism, we decide whether $w \in t\{t, f(t)\}^+$ in $\mathcal{O}(n \log n)$ time. If f is uniform we only need $\mathcal{O}(n)$ time.

Given $w \in V^*$ and an anti-/morphism f, decide whether w is an f-repetition.

Theorem (Gawrychowski, Manea, Mercaş, Nowotka, Tiseanu, STACS 2013)

Given $w \in V^*$ and $f : V^* \to V^*$ a constant size anti-/morphism, we decide whether $w \in t\{t, f(t)\}^+$ in $\mathcal{O}(n \log n)$ time. If f is uniform we only need $\mathcal{O}(n)$ time.

THEOREM (G., M., M., N., T., STACS 2013)

Given $w \in V^*$ and $f : V^* \to V^*$ be a constant size anti-/morphism, we decide whether $w \in \{t, f(t)\}\{t, f(t)\}^+$ in $\mathcal{O}(n^{1+\frac{1}{\log \log n}} \log n)$ time. If f is non-erasing we solve the problem in $\mathcal{O}(n \log n)$ time, while when f is uniform we only need $\mathcal{O}(n)$ time.

< E ≥ < E ≥ </p>

1

200

Hidden-repetitions

Given $w \in V^+$, decide whether there exists an anti-/morphism $f: V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$.

Given $w \in V^+$, decide whether there exists an anti-/morphism $f: V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

Given a word w and a vector T of |V| numbers, we decide whether there exists an anti-/morphism f of length type T such that $w \in t\{t, f(t)\}^+$ in $\mathcal{O}(n(\log n)^2)$ time. If T defines uniform anti-/morphisms: $\mathcal{O}(n)$ time.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

For a word $w \in V^+$, deciding the existence of $f : V^* \to V^*$ and a prefix t of w such that $w \in t\{t, f(t)\}^+$ with $|t| \ge 2$ (respectively, $w \in t\{t, f(t)\}\{t, f(t)\}^+$) takes linear time (respectively, is NP-complete) in the general case, is NP-complete for f non-erasing, and takes $\mathcal{O}(n^2)$ time for f uniform.

1

5900

Repetitive factors (G.M.M.N.T, STACS 2013)

Given a word $w \in V^*$ and f, (1) Enumerate all (i, j, ℓ) , $1 \le i, j, \ell \le |w|$, such that there exists t with $w[i..j] \in \{t, f(t)\}^{\ell}$. (2) Given ℓ , enumerate all (i, j), $1 \le i, j \le |w|$, so there exists t with $w[i..j] \in \{t, f(t)\}^k$.

Repetitive factors (G.M.M.N.T, STACS 2013)

Given a word $w \in V^*$ and f. (1) Enumerate all (i, j, ℓ) , $1 \le i, j, \ell \le |w|$, such that there exists t with $w[i...j] \in \{t, f(t)\}^{\ell}$. (2) Given ℓ , enumerate all (i, j), $1 \le i, j \le |w|$, so there exists t with $w[i...j] \in \{t, f(t)\}^k$.

Finding the set of all ℓ -repetitive factors (for all ℓ , resp. for a given ℓ):

▶ f general: $\mathcal{O}(n^{3.5})$, resp. $\mathcal{O}(n^2 \ell)$.

▶ f non-erasing: $\Theta(n^3)$, resp. $\Theta(n^2)$.

▶ f literal: $\Theta(n^2 \log n)$, resp. $\Theta(n^2)$.

Highlighted bounds: no other algorithm performs better in the worst case.

f-patterns

 $f: V^* \to V^*$ anti-/morphism. An unary *f*-pattern *p*: element of $\{x, f(x)\}^*$. If $p \in \{x, f(x)\}^k$, *k* is the length of *p*.

E

f-patterns

 $f: V^* \to V^*$ anti-/morphism. An unary *f*-pattern *p*: element of $\{x, f(x)\}^*$. If $p \in \{x, f(x)\}^k$, *k* is the length of *p*.

Instance of p: word obtained by replacing in p the variable x by $t \in V^+$.

f-patterns

 $f: V^* \to V^*$ anti-/morphism. An unary *f*-pattern *p*: element of $\{x, f(x)\}^*$. If $p \in \{x, f(x)\}^k$, *k* is the length of *p*.

Instance of p: word obtained by replacing in p the variable x by $t \in V^+$.

EXAMPLE

If $f = (\cdot)^R$, the mirror image, then $xf(x) = xx^R$ is a pattern whose instances are all palindromes of even length. If $f = \mathbf{1}$, the identity morphism, then $xf(x) = x^2$ is a pattern whose instances are all squares.

Practice and theory: literal functions!

Problem

Given $w \in V^+$, |w| = n, $f : V^* \to V^*$ a literal anti-/morphism, and an f-pattern p, decide whether there exists an instance of p occurring in w.

Problem

Given $w \in V^+$, |w| = n, $f : V^* \to V^*$ a literal anti-/morphism, and an integer k > 0, decide whether there exists a factor v of w with $v \in \{t, f(t)\}^k$ for some $t \in V^+$.

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:

- suffix array data structure for u;

– data structures allowing us to answer in $\mathcal{O}(1)$ queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted $LCPref_u(i,j)$.

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:

- suffix array data structure for u;

– data structures allowing us to answer in $\mathcal{O}(1)$ queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted $LCPref_u(i,j)$.

In our case:

- ▶ w is the input word,
- ► f a fixed anti-/morphism,
- ▶ u = wf(w), $|u| \in \mathcal{O}(|w|)$.

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over $|V| \in \mathcal{O}(n^c)$.

Build in linear time:

- suffix array data structure for u;

– data structures allowing us to answer in $\mathcal{O}(1)$ queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted $LCPref_u(i,j)$.

In our case:

- ▶ w is the input word,
- \blacktriangleright f a fixed anti-/morphism,
- ▶ u = wf(w), $|u| \in \mathcal{O}(|w|)$.
- ► Constant time: does w[i..j] / f(w[i..j]) occur at position s in w?

g-factorisation

 $g: V^* \to V^*$ literal anti-/morphism, $w \in V^*$. The g-factorisation of w is defined as follows. We factor $w = u_1 \cdots u_r$ if the following hold for all $i \ge 1$:

- If letter a occurs in w immediately after u₁ · · · u_{i-1} and neither a or g(a) appeared in u₁ · · · u_{i-1}, then u_i = a.
- ▶ Otherwise, u_i is the longest word such that u₁ ··· u_{i-1}u_i is a prefix of w and u_i or g(u_i) occurs at least once as a factor in u₁ ··· u_{i-1}.

 $g: V^* \to V^*$ literal anti-/morphism, $w \in V^*$. The g-factorisation of w is defined as follows. We factor $w = u_1 \cdots u_r$ if the following hold for all $i \ge 1$:

- If letter a occurs in w immediately after u₁ · · · u_{i-1} and neither a or g(a) appeared in u₁ · · · u_{i-1}, then u_i = a.
- ▶ Otherwise, u_i is the longest word such that u₁ ··· u_{i-1}u_i is a prefix of w and u_i or g(u_i) occurs at least once as a factor in u₁ ··· u_{i-1}.

Lemma

If g is a literal anti-/morphism we can compute the g-factorisation of a word w of length n in time O(n).

(Practical consequence: fast identification of inverted repeats in DNA, when g models the Watson-Crick complement.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Lemma

Let f be a literal morphism, w a word, and p a pattern of length $k \ge 2$, such that $p \ne x^{k-1}f(x)$. Let $w = u_1 \cdots u_r$ be the f-factorisation of w and consider all instances of p. Then for any instance w[i..j] with $|u_1 \cdots u_{h-1}| < j \le |u_1 \cdots u_h|$ we have two mutually exclusive possibilities: 1. $i > |u_1 \cdots u_{h-1}|$, and we call w[i..j] a secondary instance, completely contained in u_h ,

2. $j - i + 1 \le k(|u_{h-1}| + |u_h|)$, and we call w[i..j] a crossing instance. Furthermore, the leftmost instance of the pattern is crossing.

→ 문 → 문

Lemma

Let f be a literal anti-/morphism, w a word, and p a pattern of length $k \ge 3$, such that $p \notin \{x^{k-1}f(x), f(x)^{k-1}x\}$. Let $w = u_1 \cdots u_r$ be the 1-factorisation of w and consider all instances of the pattern p. Then for any such instance w[i..j] with $|u_1 \cdots u_{h-1}| < j \le |u_1 \cdots u_h|$ we have two mutually exclusive possibilities:

1. $i > |u_1 \cdots u_{h-1}|$, and w[i..j] is a secondary instance, completely contained in u_h ,

2. $j - i + 1 \le k(|u_{h-1}| + |u_h|)$, and w[i..j] is a crossing instance.

Furthermore, the leftmost instance of the pattern is crossing.

→ 문 → 문

Instances of x^k , xf(x), f(x)x, and $f(x)^k$ are found in linear time.

Instances of x^k , xf(x), f(x)x, and $f(x)^k$ are found in linear time.

Lemma

Let f be a literal antimorphism, w be an 1-factorized word, and p a pattern of length $k \ge 3$, such that $p \notin \{x^{k-1}f(x), f(x)x^{k-1}, f(x)^{k-1}x, xf(x)^{k-1}, x^k, f(x)^k\}$. We can output a crossing instance (as a pair of indices) of the pattern in $\mathcal{O}(nk^2)$ time.

Instances of x^k , xf(x), f(x)x, and $f(x)^k$ are found in linear time.

Lemma

Let f be a literal antimorphism, w be an 1-factorized word, and p a pattern of length $k \ge 3$, such that $p \notin \{x^{k-1}f(x), f(x)x^{k-1}, f(x)^{k-1}x, xf(x)^{k-1}, x^k, f(x)^k\}$. We can output a crossing instance (as a pair of indices) of the pattern in $\mathcal{O}(nk^2)$ time.

Figure : Finding tf(t)tf(t) in the catenation of two words.

Э

14

The remaining cases: p is $x^{k-1}f(x)$ or $xf(x)^{k-1}$ (and symmetrical).

The remaining cases: p is $x^{k-1}f(x)$ or $xf(x)^{k-1}$ (and symmetrical).

Solution $(p = x^{k-1}f(x))$: find a position *i* such that the pseudopalindromic radius at *i* is at least as long as the length of the shortest word whose *k*-th power is a suffix of w[1..i - 1].

The remaining cases: p is $x^{k-1}f(x)$ or $xf(x)^{k-1}$ (and symmetrical).

Solution $(p = x^{k-1}f(x))$: find a position *i* such that the pseudopalindromic radius at *i* is at least as long as the length of the shortest word whose *k*-th power is a suffix of w[1..i - 1].

Lemma

Given a word w of length n and $k \leq 2$, we can compute for each position i the smallest $\ell \leq 1$ such that $w[i - k\ell + 1...i]$ is a power of $w[i - \ell + 1...i]$, in O(n) total time.

5900

Theorem

Given a word $w \in V^*$, with |w| = n, a literal anti-/morphism $f: V^* \to V^*$, and an f-pattern p of length k, we can decide whether w contains an instance of p in $\mathcal{O}(nk^2)$ time; for a fixed pattern p, the problem can be solved in linear time.

Theorem

Given a word $w \in V^*$, with |w| = n, a literal anti-/morphism $f : V^* \to V^*$, and an f-pattern p of length k, we can decide whether w contains an instance of p in $\mathcal{O}(nk^2)$ time; for a fixed pattern p, the problem can be solved in linear time. If f is bijective, then the problem can be solved in $\mathcal{O}(n \log n)$ time.

Lemma

If w contains $\max(k,3)$ pseudopalindromes of length ℓ starting at positions $s, s + \delta_1, s + \delta_2, \ldots$ with all $\delta_i \leq \frac{\ell}{4}$, then w has a factor r^k with r = f(r). Accordingly, w contains an instance of any pattern of length k.

LEMMA

If w contains $\max(k,3)$ pseudopalindromes of length ℓ starting at positions $s, s + \delta_1, s + \delta_2, \ldots$ with all $\delta_i \leq \frac{\ell}{4}$, then w has a factor r^k with r = f(r). Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of x^{k} , $f^{k}(x)$, $f(x)^{k-1}x$, $xf(x)^{k-1}$, $x^{k-1}f(x)$, or $f(x)x^{k-1}...$

Lemma

If w contains $\max(k,3)$ pseudopalindromes of length ℓ starting at positions $s, s + \delta_1, s + \delta_2, \ldots$ with all $\delta_i \leq \frac{\ell}{4}$, then w has a factor r^k with r = f(r). Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of x^{k} , $f^{k}(x)$, $f(x)^{k-1}x$, $xf(x)^{k-1}$, $x^{k-1}f(x)$, or $f(x)x^{k-1}...$

2. Using the **1**-factorisation $w = u_1 \cdots u_r$, and the fact that there cannot be too many pseudo-palindromes, we generate all instances of xf(x) "near" the border between u_{h-1} and u_{h} ...

Lemma

If w contains $\max(k,3)$ pseudopalindromes of length ℓ starting at positions $s, s + \delta_1, s + \delta_2, \ldots$ with all $\delta_i \leq \frac{\ell}{4}$, then w has a factor r^k with r = f(r). Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of x^{k} , $f^{k}(x)$, $f(x)^{k-1}x$, $xf(x)^{k-1}$, $x^{k-1}f(x)$, or $f(x)x^{k-1}...$

2. Using the **1**-factorisation $w = u_1 \cdots u_r$, and the fact that there cannot be too many pseudo-palindromes, we generate all instances of xf(x) "near" the border between u_{h-1} and u_h ...

3. Try to construct a full instance of the pattern around such an instance of xf(x).

Theorem

Given a word $w \in V^*$, with |w| = n, a literal anti-/morphism $f: V^* \to V^*$, and a positive integer k, we can decide whether w contains a factor of the form $\{t, f(t)\}^k$, for some word t, in $\mathcal{O}(nk^2)$ time; for a constant k, the problem can be solved in linear time.

Theorem

Given a word $w \in V^*$, with |w| = n, a literal anti-/morphism $f: V^* \to V^*$, and a positive integer k, we can decide whether w contains a factor of the form $\{t, f(t)\}^k$, for some word t, in $\mathcal{O}(nk^2)$ time; for a constant k, the problem can be solved in linear time. If f is bijective, then we can compute the maximum k such that w contains a factor of the form $\{t, f(t)\}^k$, for some word t, in $\mathcal{O}(n \log n)$ time.

Thank you!

Э

3

Thank you!

10th International Conference on WORDS

Kiel, 2015

C A U Gawrychowski, Manea, Nowotka HIDDEN REPETITIONS IN WORDS