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Notations

Word over V : w = w [1]. . .w [n] – a finite concatenation of letters
w [i ] ∈ V

Factor of a word: w [i ..j ] = w [i ] · · ·w [j ] – elements from position i to j

Let f : V ∗ → V ∗. We say that f is:

morphism: f (xy) = f (x)f (y) for all x , y ∈ V ∗,
in particular: f (w) = f (w [1]) · · · f (w [n]);
non-erasing: f (a) 6= λ for all a ∈ V ;
uniform: |f (a)| = k for all a ∈ V ;
literal: |f (a)| = 1 for all a ∈ V ;

antimorphism: f (xy) = f (y)f (x) for all x , y ∈ V ∗,
in particular: f (w) = f (w [n]) · · · f (w [1])

Length type of f : the array (|f (a)|)a∈V
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Pseudo-repetitions: Initial motivation

Tandem repeats in DNA sequences :
. . . ACT ACT ACT. . .

Used in genetics to determine an individual’s inherited treats, to determine
parentage, etc.

Inverted repeats in DNA sequences:
. . . AAATCGG . . . CCGATTT. . .

Important genetic elements for genome instability; may play role in DNA
rearrangement reactions.
A sequence and its complement encode (almost) the same information.

Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.:
Pseudo-repetitions: generalised tandem repeats, one sequence is followed
by consecutive occurrences of either its copy or of its reversed complement.

. . . AAATCGG AAATCGG CCGATTT AAATCGG . . .
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Pseudo-repetitions

A word w is

I repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

I f is an anti-/morphism
f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

I primitive from the classical point of view

I f -primitive for morphism f : f (A) = T , f (C ) = G , f 2 = 1.

I f -power for antimorphism f : f (A) = T , f (C ) = G , f 2 = 1:

ACGTAC = AC · f (AC ) · AC

Gawrychowski, Manea, Nowotka Hidden Repetitions in Words Theorietag 2013 3



Pseudo-repetitions

A word w is

I repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

I f is an anti-/morphism
f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

I primitive from the classical point of view

I f -primitive for morphism f : f (A) = T , f (C ) = G , f 2 = 1.

I f -power for antimorphism f : f (A) = T , f (C ) = G , f 2 = 1:

ACGTAC = AC · f (AC ) · AC

Gawrychowski, Manea, Nowotka Hidden Repetitions in Words Theorietag 2013 3



Pseudo-repetitions

A word w is

I repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

I f is an anti-/morphism
f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

I primitive from the classical point of view

I f -primitive for morphism f : f (A) = T , f (C ) = G , f 2 = 1.

I f -power for antimorphism f : f (A) = T , f (C ) = G , f 2 = 1:

ACGTAC = AC · f (AC ) · AC

Gawrychowski, Manea, Nowotka Hidden Repetitions in Words Theorietag 2013 3



Pseudo-repetitions

A word w is

I repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

I f is an anti-/morphism
f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

I primitive from the classical point of view

I f -primitive for morphism f : f (A) = T , f (C ) = G , f 2 = 1.

I f -power for antimorphism f : f (A) = T , f (C ) = G , f 2 = 1:

ACGTAC = AC · f (AC ) · AC

Gawrychowski, Manea, Nowotka Hidden Repetitions in Words Theorietag 2013 3



Why Pseudo-repetitions?

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend
both repetitions and palindromic structures.
Repetitions and palindromes: central in combinatorics on words and applications!

Originated from biology (Watson-Crick complement: antimorphic involution)
Such structures appear also in music: ternary song form, same fragment repeated
on different pitches.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[M., Müller, Nowotka. On the Pseudoperiodic Extension of u` = vmwn.
FSTTCS 2013.]
[Xu. A Minimal Periods Algorithm with Applications. CPM 2010]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]
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Pseudo-repetitions

Given w ∈ V ∗ and an anti-/morphism f , decide whether w is an
f -repetition.

Theorem (Gawrychowski, Manea, Mercaş, Nowotka,
Tiseanu, STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ a constant size anti-/morphism, we
decide whether w ∈ t{t, f (t)}+ in O(n log n) time. If f is uniform we only
need O(n) time.

Theorem (G., M., M., N., T., STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ be a constant size anti-/morphism, we

decide whether w ∈ {t, f (t)}{t, f (t)}+ in O(n1+ 1
log log n log n) time. If f is

non-erasing we solve the problem in O(n log n) time, while when f is
uniform we only need O(n) time.
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Hidden-repetitions

Given w ∈ V +, decide whether there exists an anti-/morphism
f : V ∗ → V ∗ and a prefix t of w such that w ∈ t{t, f (t)}+.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

Given a word w and a vector T of |V | numbers, we decide whether there
exists an anti-/morphism f of length type T such that w ∈ t{t, f (t)}+ in
O(n(log n)2) time. If T defines uniform anti-/morphisms: O(n) time.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

For a word w ∈ V +, deciding the existence of f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+ with |t| ≥ 2 (respectively,
w ∈ t{t, f (t)}{t, f (t)}+) takes linear time (respectively, is NP-complete)
in the general case, is NP-complete for f non-erasing, and takes O(n2)
time for f uniform.
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Repetitive factors (G.M.M.N.T, STACS 2013)

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j ] ∈ {t, f (t)}`.
(2) Given `, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j ] ∈ {t, f (t)}k .

Finding the set of all `-repetitive factors (for all `, resp. for a given `):

I f general: O(n3.5), resp. O(n2`).

I f non-erasing: Θ(n3), resp. Θ(n2).

I f literal: Θ(n2 log n), resp. Θ(n2).

Highlighted bounds: no other algorithm performs better in the worst case.
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f -patterns

f : V ∗ → V ∗ anti-/morphism.
An unary f -pattern p: element of {x , f (x)}∗.
If p ∈ {x , f (x)}k , k is the length of p.

Instance of p: word obtained by replacing in p the variable x by t ∈ V +.

Example

If f = (·)R , the mirror image, then xf (x) = xxR is a pattern whose
instances are all palindromes of even length.
If f = 1, the identity morphism, then xf (x) = x2 is a pattern whose
instances are all squares.
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Avoiding f -patterns

Practice and theory: literal functions!

Problem

Given w ∈ V +, |w | = n, f : V ∗ → V ∗ a literal anti-/morphism, and an
f -pattern p, decide whether there exists an instance of p occurring in w.

Problem

Given w ∈ V +, |w | = n, f : V ∗ → V ∗ a literal anti-/morphism, and an
integer k > 0, decide whether there exists a factor v of w with
v ∈ {t, f (t)}k for some t ∈ V +.
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Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over |V | ∈ O(nc).

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in O(1) queries:
“How long is the longest common prefix of u[i ..n] and u[j ..n]?”, denoted
LCPref u(i , j).

In our case:

I w is the input word,

I f a fixed anti-/morphism,

I u = wf (w), |u| ∈ O(|w |).

I Constant time: does w [i ..j ] / f (w [i ..j ]) occur at position s in w?
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g -factorisation

g : V ∗ → V ∗ literal anti-/morphism, w ∈ V ∗.
The g -factorisation of w is defined as follows. We factor w = u1 · · · ur if
the following hold for all i ≥ 1:

I If letter a occurs in w immediately after u1 · · · ui−1 and neither a or
g(a) appeared in u1 · · · ui−1, then ui = a.

I Otherwise, ui is the longest word such that u1 · · · ui−1ui is a prefix of
w and ui or g(ui ) occurs at least once as a factor in u1 · · · ui−1.

Lemma

If g is a literal anti-/morphism we can compute the g-factorisation of a
word w of length n in time O(n).

(Practical consequence: fast identification of inverted repeats in DNA,
when g models the Watson-Crick complement.)
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f -repetitions and f -factorisations, f morphism

Lemma

Let f be a literal morphism, w a word, and p a pattern of length k ≥ 2,
such that p 6= xk−1f (x). Let w = u1 · · · ur be the f -factorisation of w and
consider all instances of p. Then for any instance w [i ..j ] with
|u1 · · · uh−1| < j ≤ |u1 · · · uh| we have two mutually exclusive possibilities:

1. i > |u1 · · · uh−1|, and we call w [i ..j ] a secondary instance, completely
contained in uh,

2. j − i + 1 ≤ k(|uh−1|+ |uh|), and we call w [i ..j ] a crossing instance.

Furthermore, the leftmost instance of the pattern is crossing.
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f -repetitions and 1-factorisations

Lemma

Let f be a literal anti-/morphism, w a word, and p a pattern of length
k ≥ 3, such that p /∈ {xk−1f (x), f (x)k−1x}. Let w = u1 · · · ur be the
1-factorisation of w and consider all instances of the pattern p. Then for
any such instance w [i ..j ] with |u1 · · · uh−1| < j ≤ |u1 · · · uh| we have two
mutually exclusive possibilities:

1. i > |u1 · · · uh−1|, and w [i ..j ] is a secondary instance, completely
contained in uh,

2. j − i + 1 ≤ k(|uh−1|+ |uh|), and w [i ..j ] is a crossing instance.

Furthermore, the leftmost instance of the pattern is crossing.
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Finding the instances of p, for antimorphic f

Instances of xk , xf (x), f (x)x , and f (x)k are found in linear time.

Lemma

Let f be a literal antimorphism, w be an 1-factorized word, and p a
pattern of length k ≥ 3, such that
p /∈ {xk−1f (x), f (x)xk−1, f (x)k−1x , xf (x)k−1, xk , f (x)k}. We can output
a crossing instance (as a pair of indices) of the pattern in O(nk2) time.

t f(t) t

x f(x′) xy f(y′) y

t
=

x
y

`︷ ︸︸ ︷ `︷ ︸︸ ︷ `︷ ︸︸ ︷

f(t)

f(x′) f(y′)

w1 w2

f
(t)

=
x
′y

′

Figure : Finding tf (t)tf (t) in the catenation of two words.
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Instances of xk , xf (x), f (x)x , and f (x)k are found in linear time.

Lemma

Let f be a literal antimorphism, w be an 1-factorized word, and p a
pattern of length k ≥ 3, such that
p /∈ {xk−1f (x), f (x)xk−1, f (x)k−1x , xf (x)k−1, xk , f (x)k}. We can output
a crossing instance (as a pair of indices) of the pattern in O(nk2) time.
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Finding the instances of p, for antimorphic f

The remaining cases: p is xk−1f (x) or xf (x)k−1 (and symmetrical).

Solution (p = xk−1f (x)): find a position i such that the
pseudopalindromic radius at i is at least as long as the length of the
shortest word whose k-th power is a suffix of w [1..i − 1].

Lemma

Given a word w of length n and k ≤ 2, we can compute for each position i
the smallest ` ≤ 1 such that w [i − k`+ 1..i ] is a power of w [i − `+ 1..i ],
in O(n) total time.
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Result:

Theorem

Given a word w ∈ V ∗, with |w | = n, a literal anti-/morphism
f : V ∗ → V ∗, and an f -pattern p of length k, we can decide whether w
contains an instance of p in O(nk2) time; for a fixed pattern p, the
problem can be solved in linear time.

If f is bijective, then the problem can be solved in O(n log n) time.
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Finding k-repetitions, for antimorphic f

Lemma

If w contains max(k , 3) pseudopalindromes of length ` starting at
positions s, s + δ1, s + δ2, . . . with all δi ≤ `

4 , then w has a factor rk with
r = f (r). Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of xk , f k(x), f (x)k−1x , xf (x)k−1, xk−1f (x), or
f (x)xk−1...

2. Using the 1-factorisation w = u1 · · · ur , and the fact that there cannot
be too many pseudo-palindromes, we generate all instances of xf (x)
”near” the border between uh−1 and uh...

3. Try to construct a full instance of the pattern around such an instance
of xf (x).
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Result:

Theorem

Given a word w ∈ V ∗, with |w | = n, a literal anti-/morphism
f : V ∗ → V ∗, and a positive integer k, we can decide whether w contains
a factor of the form {t, f (t)}k , for some word t, in O(nk2) time; for a
constant k, the problem can be solved in linear time.

If f is bijective, then we can compute the maximum k such that w
contains a factor of the form {t, f (t)}k , for some word t, in O(n log n)
time.
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