Discovering Hidden Repetitions in Words

Pawel Gawrychowki ${ }^{a}$, Florin Manea ${ }^{b}$, Dirk Nowotka ${ }^{b}$

${ }^{\text {a }}$ Max-Planck Institut für Informatik Saarbrücken ${ }^{b}$ Christian-Albrechts-Universität zu Kiel

ITIU!

Ilmenau, September 2013

Notations

Word over $V: w=w[1] \ldots w[n]-$ a finite concatenation of letters $w[i] \in V$

Factor of a word: $w[i . . j]=w[i] \cdots w[j]$ - elements from position i to j Let $f: V^{*} \rightarrow V^{*}$. We say that f is:
morphism: $f(x y)=f(x) f(y)$ for all $x, y \in V^{*}$,
in particular: $f(w)=f(w[1]) \cdots f(w[n])$;
non-erasing: $f(a) \neq \lambda$ for all $a \in V$;
uniform: $|f(a)|=k$ for all $a \in V$;
literal: $|f(a)|=1$ for all $a \in V$;
antimorphism: $f(x y)=f(y) f(x)$ for all $x, y \in V^{*}$,
in particular: $f(w)=f(w[n]) \cdots f(w[1])$
Length type of f : the array $(|f(a)|)_{a \in V}$

Pseudo-repetitions: Initial motivation

Tandem repeats in DNA sequences:
...ACT ACT ACT...
Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Pseudo-repetitions: Initial motivation

Tandem repeats in DNA sequences:
...ACT ACT ACT...
Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Inverted repeats in DNA sequences:
... AAATCGG ... CCGATTT. . .
Important genetic elements for genome instability; may play role in DNA rearrangement reactions.
A sequence and its complement encode (almost) the same information.

Pseudo-repetitions: Initial motivation

Tandem repeats in DNA sequences:

$$
\ldots \mathrm{ACT} \text { ACT ACT... }
$$

Used in genetics to determine an individual's inherited treats, to determine parentage, etc.

Inverted repeats in DNA sequences:
... AAATCGG ... CCGATTT. . .
Important genetic elements for genome instability; may play role in DNA rearrangement reactions.
A sequence and its complement encode (almost) the same information.
Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.:
Pseudo-repetitions: generalised tandem repeats, one sequence is followed by consecutive occurrences of either its copy or of its reversed complement.
...AAATCGG AAATCGG CCGATTT AAATCGG...

Pseudo-repetitions

A word w is

- repetition: $w=t^{n}$, for some proper prefix t (called root) primitive word: not a repetition.
- f is an anti-/morphism
f-repetition: $w \in t\{t, f(t)\}^{*}$, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

Pseudo-repetitions

A word w is

- repetition: $w=t^{n}$, for some proper prefix t (called root) primitive word: not a repetition.
- f is an anti-/morphism
f-repetition: $w \in t\{t, f(t)\}^{*}$, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

Example

ACGTAC

- primitive from the classical point of view

Pseudo-repetitions

A word w is

- repetition: $w=t^{n}$, for some proper prefix t (called root) primitive word: not a repetition.
- f is an anti-/morphism
f-repetition: $w \in t\{t, f(t)\}^{*}$, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

EXAMPLE

ACGTAC

- primitive from the classical point of view
- f-primitive for morphism $f: f(A)=T, f(C)=G, f^{2}=1$.

Pseudo-repetitions

A word w is

- repetition: $w=t^{n}$, for some proper prefix t (called root) primitive word: not a repetition.
- f is an anti-/morphism
f-repetition: $w \in t\{t, f(t)\}^{*}$, for some proper prefix t (called root)
f-primitive word: not an f-repetition.

EXAMPLE

ACGTAC

- primitive from the classical point of view
- f-primitive for morphism $f: f(A)=T, f(C)=G, f^{2}=1$.
- f-power for antimorphism $f: f(A)=T, f(C)=G, f^{2}=1$:

$$
A C G T A C=A C \cdot f(A C) \cdot A C
$$

Why Pseudo-repetitions?

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.
Repetitions and palindromes: central in combinatorics on words and applications!

Why Pseudo-repetitions?

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.
Repetitions and palindromes: central in combinatorics on words and applications! Originated from biology (Watson-Crick complement: antimorphic involution)

Why Pseudo-repetitions?

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.
Repetitions and palindromes: central in combinatorics on words and applications!
Originated from biology (Watson-Crick complement: antimorphic involution) Such structures appear also in music: ternary song form, same fragment repeated on different pitches.

Why Pseudo-repetitions?

Pseudo-repetitions: words with intrinsic (yet, hidden) repetitive structure. Extend both repetitions and palindromic structures.
Repetitions and palindromes: central in combinatorics on words and applications!
Originated from biology (Watson-Crick complement: antimorphic involution) Such structures appear also in music: ternary song form, same fragment repeated on different pitches.
[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F \& W theorem and pseudo-repetitions. MFCS 2012.]
[M., Müller, Nowotka. On the Pseudoperiodic Extension of $u^{\ell}=v^{m} w^{n}$.
FSTTCS 2013.]
[Xu. A Minimal Periods Algorithm with Applications. CPM 2010]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]
[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions, CiE 2013.]

Pseudo-repetitions

Given $w \in V^{*}$ and an anti-/morphism f, decide whether w is an f-repetition.

Pseudo-repetitions

Given $w \in V^{*}$ and an anti-/morphism f, decide whether w is an f-repetition.

```
Theorem (Gawrychowski, Manea, Mercaş, Nowotka,
TisEANU, STACS 2013)
```

Given $w \in V^{*}$ and $f: V^{*} \rightarrow V^{*}$ a constant size anti-/morphism, we decide whether $w \in t\{t, f(t)\}^{+}$in $\mathcal{O}(n \log n)$ time. If f is uniform we only need $\mathcal{O}(n)$ time.

Pseudo-repetitions

Given $w \in V^{*}$ and an anti-/morphism f, decide whether w is an f-repetition.

Theorem (Gawrychowski, Manea, Mercaş, Nowotka, Tiseanu, STACS 2013)

Given $w \in V^{*}$ and $f: V^{*} \rightarrow V^{*}$ a constant size anti-/morphism, we decide whether $w \in t\{t, f(t)\}^{+}$in $\mathcal{O}(n \log n)$ time. If f is uniform we only need $\mathcal{O}(n)$ time.

Theorem (G., M., M., N., T., STACS 2013)

Given $w \in V^{*}$ and $f: V^{*} \rightarrow V^{*}$ be a constant size anti-/morphism, we decide whether $w \in\{t, f(t)\}\{t, f(t)\}^{+}$in $\mathcal{O}\left(n^{1+\frac{1}{\log \log n}} \log n\right)$ time. If f is non-erasing we solve the problem in $\mathcal{O}(n \log n)$ time, while when f is uniform we only need $\mathcal{O}(n)$ time.

Hidden-repetitions

Given $w \in V^{+}$, decide whether there exists an anti-/morphism $f: V^{*} \rightarrow V^{*}$ and a prefix t of w such that $w \in t\{t, f(t)\}^{+}$.

Hidden-repetitions

Given $w \in V^{+}$, decide whether there exists an anti-/morphism $f: V^{*} \rightarrow V^{*}$ and a prefix t of w such that $w \in t\{t, f(t)\}^{+}$.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

Given a word w and a vector T of $|V|$ numbers, we decide whether there exists an anti-/morphism f of length type T such that $w \in t\{t, f(t)\}^{+}$in $\mathcal{O}\left(n(\log n)^{2}\right)$ time. If T defines uniform anti-/morphisms: $\mathcal{O}(n)$ time.

Theorem (Gawrychowski, Manea, Nowotka, CiE 2013)

For a word $w \in V^{+}$, deciding the existence of $f: V^{*} \rightarrow V^{*}$ and a prefix t of w such that $w \in t\{t, f(t)\}^{+}$with $|t| \geq 2$ (respectively, $w \in t\{t, f(t)\}\{t, f(t)\}^{+}$) takes linear time (respectively, is NP-complete) in the general case, is NP-complete for f non-erasing, and takes $\mathcal{O}\left(n^{2}\right)$ time for f uniform.

Repetitive factors (G.M.M.N.T, STACS 2013)

Given a word $w \in V^{*}$ and f,
(1) Enumerate all $(i, j, \ell), 1 \leq i, j, \ell \leq|w|$, such that there exists t with $w[i . . j] \in\{t, f(t)\}^{\ell}$.
(2) Given ℓ, enumerate all $(i, j), 1 \leq i, j \leq|w|$, so there exists t with $w[i . . j] \in\{t, f(t)\}^{k}$.

Repetitive factors (G.M.M.N.T, STACS 2013)

Given a word $w \in V^{*}$ and f,
(1) Enumerate all $(i, j, \ell), 1 \leq i, j, \ell \leq|w|$, such that there exists t with $w[i . . j] \in\{t, f(t)\}^{\ell}$.
(2) Given ℓ, enumerate all $(i, j), 1 \leq i, j \leq|w|$, so there exists t with $w[i . . j] \in\{t, f(t)\}^{k}$.

Finding the set of all ℓ-repetitive factors (for all ℓ, resp. for a given ℓ):

- f general: $\mathcal{O}\left(n^{3.5}\right)$, resp. $\mathcal{O}\left(n^{2} \ell\right)$.
- f non-erasing: $\underline{\Theta\left(n^{3}\right)}$, resp. $\underline{\Theta\left(n^{2}\right)}$.
- f literal: $\underline{\Theta\left(n^{2} \log n\right)}$, resp. $\underline{\Theta\left(n^{2}\right)}$.

Highlighted bounds: no other algorithm performs better in the worst case.

f-patterns

$f: V^{*} \rightarrow V^{*}$ anti-/morphism.
An unary f-pattern p : element of $\{x, f(x)\}^{*}$. If $p \in\{x, f(x)\}^{k}, k$ is the length of p.

f-patterns

$f: V^{*} \rightarrow V^{*}$ anti-/morphism.
An unary f-pattern p : element of $\{x, f(x)\}^{*}$.
If $p \in\{x, f(x)\}^{k}, k$ is the length of p.
Instance of p : word obtained by replacing in p the variable x by $t \in V^{+}$.

f-patterns

$f: V^{*} \rightarrow V^{*}$ anti-/morphism.
An unary f-pattern p : element of $\{x, f(x)\}^{*}$.
If $p \in\{x, f(x)\}^{k}, k$ is the length of p.
Instance of p : word obtained by replacing in p the variable x by $t \in V^{+}$.

EXAMPLE

If $f=(\cdot)^{R}$, the mirror image, then $x f(x)=x x^{R}$ is a pattern whose instances are all palindromes of even length.
If $f=\mathbf{1}$, the identity morphism, then $\operatorname{xf}(x)=x^{2}$ is a pattern whose instances are all squares.

Avoiding f-patterns

Practice and theory: literal functions!

Problem

Given $w \in V^{+},|w|=n, f: V^{*} \rightarrow V^{*}$ a literal anti-/morphism, and an f-pattern p, decide whether there exists an instance of p occurring in w.

Problem

Given $w \in V^{+},|w|=n, f: V^{*} \rightarrow V^{*}$ a literal anti-/morphism, and an integer $k>0$, decide whether there exists a factor v of w with $v \in\{t, f(t)\}^{k}$ for some $t \in V^{+}$.

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with $|u|=n$, over $|V| \in \mathcal{O}\left(n^{c}\right)$.
Build in linear time:

- suffix array data structure for u;
- data structures allowing us to answer in $\mathcal{O}(1)$ queries:
"How long is the longest common prefix of $u[i . . n]$ and $u[j . . n]$?", denoted $\operatorname{LCPref}_{u}(i, j)$.

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with $|u|=n$, over $|V| \in \mathcal{O}\left(n^{c}\right)$.
Build in linear time:

- suffix array data structure for u;
- data structures allowing us to answer in $\mathcal{O}(1)$ queries:
"How long is the longest common prefix of $u[i . . n]$ and $u[j . . n]$?", denoted $L^{\text {CPref }}{ }_{u}(i, j)$.

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- $u=w f(w),|u| \in \mathcal{O}(|w|)$.

Basic tools

Computational model: RAM with logarithmic word size.
A word u, with $|u|=n$, over $|V| \in \mathcal{O}\left(n^{c}\right)$.
Build in linear time:

- suffix array data structure for u;
- data structures allowing us to answer in $\mathcal{O}(1)$ queries:
"How long is the longest common prefix of $u[i . . n]$ and $u[j . . n]$?", denoted $L^{\text {CPref }}{ }_{u}(i, j)$.

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- $u=w f(w),|u| \in \mathcal{O}(|w|)$.
- Constant time: does $w[i . . j] / f(w[i . . j])$ occur at position s in w ?

g-factorisation

$g: V^{*} \rightarrow V^{*}$ literal anti-/morphism, $w \in V^{*}$.
The g-factorisation of w is defined as follows. We factor $w=u_{1} \cdots u_{r}$ if the following hold for all $i \geq 1$:

- If letter a occurs in w immediately after $u_{1} \cdots u_{i-1}$ and neither a or $g(a)$ appeared in $u_{1} \cdots u_{i-1}$, then $u_{i}=a$.
- Otherwise, u_{i} is the longest word such that $u_{1} \cdots u_{i-1} u_{i}$ is a prefix of w and u_{i} or $g\left(u_{i}\right)$ occurs at least once as a factor in $u_{1} \cdots u_{i-1}$.

g-factorisation

$g: V^{*} \rightarrow V^{*}$ literal anti-/morphism, $w \in V^{*}$.
The g-factorisation of w is defined as follows. We factor $w=u_{1} \cdots u_{r}$ if the following hold for all $i \geq 1$:

- If letter a occurs in w immediately after $u_{1} \cdots u_{i-1}$ and neither a or $g(a)$ appeared in $u_{1} \cdots u_{i-1}$, then $u_{i}=a$.
- Otherwise, u_{i} is the longest word such that $u_{1} \cdots u_{i-1} u_{i}$ is a prefix of w and u_{i} or $g\left(u_{i}\right)$ occurs at least once as a factor in $u_{1} \cdots u_{i-1}$.

LEMMA

If g is a literal anti-/morphism we can compute the g-factorisation of a word w of length n in time $\mathcal{O}(n)$.
(Practical consequence: fast identification of inverted repeats in DNA, when g models the Watson-Crick complement.)

f-repetitions and f-factorisations, f morphism

LEMMA

Let f be a literal morphism, w a word, and p a pattern of length $k \geq 2$, such that $p \neq x^{k-1} f(x)$. Let $w=u_{1} \cdots u_{r}$ be the f-factorisation of w and consider all instances of p. Then for any instance $w[i . . j]$ with $\left|u_{1} \cdots u_{h-1}\right|<j \leq\left|u_{1} \cdots u_{h}\right|$ we have two mutually exclusive possibilities:

1. $i>\left|u_{1} \cdots u_{h-1}\right|$, and we call $w[i . . j]$ a secondary instance, completely contained in u_{h},
2. $j-i+1 \leq k\left(\left|u_{h-1}\right|+\left|u_{h}\right|\right)$, and we call $w[i . . j]$ a crossing instance.

Furthermore, the leftmost instance of the pattern is crossing.

f-repetitions and 1-factorisations

LEMMA

Let f be a literal anti-/morphism, w a word, and p a pattern of length $k \geq 3$, such that $p \notin\left\{x^{k-1} f(x), f(x)^{k-1} x\right\}$. Let $w=u_{1} \cdots u_{r}$ be the 1 -factorisation of w and consider all instances of the pattern p. Then for any such instance $w[i . . j]$ with $\left|u_{1} \cdots u_{h-1}\right|<j \leq\left|u_{1} \cdots u_{h}\right|$ we have two mutually exclusive possibilities:

1. $i>\left|u_{1} \cdots u_{h-1}\right|$, and $w[i . . j]$ is a secondary instance, completely contained in u_{h},
2. $j-i+1 \leq k\left(\left|u_{h-1}\right|+\left|u_{h}\right|\right)$, and $w[i . . j]$ is a crossing instance.

Furthermore, the leftmost instance of the pattern is crossing.

Finding the instances of p, for antimorphic f

Instances of $x^{k}, x f(x), f(x) x$, and $f(x)^{k}$ are found in linear time.

Finding the instances of p, for antimorphic f

Instances of $x^{k}, x f(x), f(x) x$, and $f(x)^{k}$ are found in linear time.

LEMMA

Let f be a literal antimorphism, w be an 1-factorized word, and p a pattern of length $k \geq 3$, such that $p \notin\left\{x^{k-1} f(x), f(x) x^{k-1}, f(x)^{k-1} x, x f(x)^{k-1}, x^{k}, f(x)^{k}\right\}$. We can output a crossing instance (as a pair of indices) of the pattern in $\mathcal{O}\left(n k^{2}\right)$ time.

Finding the instances of p, for antimorphic f

Instances of $x^{k}, x f(x), f(x) x$, and $f(x)^{k}$ are found in linear time.

LEMMA

Let f be a literal antimorphism, w be an 1-factorized word, and p a pattern of length $k \geq 3$, such that
$p \notin\left\{x^{k-1} f(x), f(x) x^{k-1}, f(x)^{k-1} x, x f(x)^{k-1}, x^{k}, f(x)^{k}\right\}$. We can output a crossing instance (as a pair of indices) of the pattern in $\mathcal{O}\left(n k^{2}\right)$ time.

Figure: Finding $t f(t) t f(t)$ in the catenation of two words.

Finding the instances of p, for antimorphic f

The remaining cases: p is $x^{k-1} f(x)$ or $x f(x)^{k-1}$ (and symmetrical).

Finding the instances of p, for antimorphic f

The remaining cases: p is $x^{k-1} f(x)$ or $x f(x)^{k-1}$ (and symmetrical).
Solution $\left(p=x^{k-1} f(x)\right)$: find a position i such that the pseudopalindromic radius at i is at least as long as the length of the shortest word whose k-th power is a suffix of $w[1 . . i-1]$.

Finding the instances of p, for antimorphic f

The remaining cases: p is $x^{k-1} f(x)$ or $x f(x)^{k-1}$ (and symmetrical).
Solution $\left(p=x^{k-1} f(x)\right)$: find a position i such that the pseudopalindromic radius at i is at least as long as the length of the shortest word whose k-th power is a suffix of $w[1 . . i-1]$.

LEMMA

Given a word w of length n and $k \leq 2$, we can compute for each position i the smallest $\ell \leq 1$ such that $w[i-k \ell+1 . . i]$ is a power of $w[i-\ell+1 . . i]$, in $\mathcal{O}(n)$ total time.

Result:

Theorem

Given a word $w \in V^{*}$, with $|w|=n$, a literal anti-/morphism $f: V^{*} \rightarrow V^{*}$, and an f-pattern p of length k, we can decide whether w contains an instance of p in $\mathcal{O}\left(n k^{2}\right)$ time; for a fixed pattern p, the problem can be solved in linear time.

Result:

Theorem

Given a word $w \in V^{*}$, with $|w|=n$, a literal anti-/morphism $f: V^{*} \rightarrow V^{*}$, and an f-pattern p of length k, we can decide whether w contains an instance of p in $\mathcal{O}\left(n k^{2}\right)$ time; for a fixed pattern p, the problem can be solved in linear time.
If f is bijective, then the problem can be solved in $\mathcal{O}(n \log n)$ time.

Finding k-repetitions, for antimorphic f

LEMMA

If w contains $\max (k, 3)$ pseudopalindromes of length ℓ starting at positions $s, s+\delta_{1}, s+\delta_{2}, \ldots$ with all $\delta_{i} \leq \frac{\ell}{4}$, then w has a factor r^{k} with $r=f(r)$. Accordingly, w contains an instance of any pattern of length k.

Finding k-repetitions, for antimorphic f

LEMMA

If w contains $\max (k, 3)$ pseudopalindromes of length ℓ starting at positions $s, s+\delta_{1}, s+\delta_{2}, \ldots$ with all $\delta_{i} \leq \frac{\ell}{4}$, then w has a factor r^{k} with $r=f(r)$. Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of $x^{k}, f^{k}(x), f(x)^{k-1} x, x f(x)^{k-1}, x^{k-1} f(x)$, or $f(x) x^{k-1} \ldots$

Finding k-repetitions, for antimorphic f

LEMMA

If w contains $\max (k, 3)$ pseudopalindromes of length ℓ starting at positions $s, s+\delta_{1}, s+\delta_{2}, \ldots$ with all $\delta_{i} \leq \frac{\ell}{4}$, then w has a factor r^{k} with $r=f(r)$. Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of $x^{k}, f^{k}(x), f(x)^{k-1} x, x f(x)^{k-1}, x^{k-1} f(x)$, or $f(x) x^{k-1} \ldots$
2. Using the 1 -factorisation $w=u_{1} \cdots u_{r}$, and the fact that there cannot be too many pseudo-palindromes, we generate all instances of $x f(x)$ " near" the border between u_{h-1} and $u_{h} \ldots$

Finding k-repetitions, for antimorphic f

LEMMA

If w contains $\max (k, 3)$ pseudopalindromes of length ℓ starting at positions $s, s+\delta_{1}, s+\delta_{2}, \ldots$ with all $\delta_{i} \leq \frac{\ell}{4}$, then w has a factor r^{k} with $r=f(r)$. Accordingly, w contains an instance of any pattern of length k.

1. Look for instances of $x^{k}, f^{k}(x), f(x)^{k-1} x, x f(x)^{k-1}, x^{k-1} f(x)$, or $f(x) x^{k-1} \ldots$
2. Using the 1 -factorisation $w=u_{1} \cdots u_{r}$, and the fact that there cannot be too many pseudo-palindromes, we generate all instances of $x f(x)$ " near" the border between u_{h-1} and $u_{h} \ldots$
3. Try to construct a full instance of the pattern around such an instance of $x f(x)$.

Result:

THEOREM

Given a word $w \in V^{*}$, with $|w|=n$, a literal anti-/morphism $f: V^{*} \rightarrow V^{*}$, and a positive integer k, we can decide whether w contains a factor of the form $\{t, f(t)\}^{k}$, for some word t, in $\mathcal{O}\left(n k^{2}\right)$ time; for a constant k, the problem can be solved in linear time.

Result:

Theorem

Given a word $w \in V^{*}$, with $|w|=n$, a literal anti-/morphism $f: V^{*} \rightarrow V^{*}$, and a positive integer k, we can decide whether w contains a factor of the form $\{t, f(t)\}^{k}$, for some word t, in $\mathcal{O}\left(n k^{2}\right)$ time; for a constant k, the problem can be solved in linear time. If f is bijective, then we can compute the maximum k such that w contains a factor of the form $\{t, f(t)\}^{k}$, for some word t, in $\mathcal{O}(n \log n)$ time.

Thank you!

Thank you!

$10^{\text {th }}$ International Conference on WORDS

Kiel, 2015

