Primitive Words are Unavoidable for Context-Free Languages

Peter Leupold

Theorietag 2013, Ilmenau

P. Leupold Primitive Words are Unavoidable

Primitive: not an integer power.

The language of all primitive words is NOT

- regular
- linear
- deterministic context-free
- unambiguous context-free

The language of all primitive words is NOT

- regular
- linear
- deterministic context-free
- unambiguous context-free
- context-free ??? (Dömösi, Horváth, Ito, 1991)

Q is semi-linear and fulfills all known pumping conditions.

Why does Q resist all attempts?

Why does Q resist all attempts?

Differences to standard pumping languages like $a^n b^n c^n$?

Why does Q resist all attempts?

Differences to standard pumping languages like $a^n b^n c^n$?

There are very many primitive words.

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages p^*q and pq^* .

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages p^*q and pq^* .

Pumping inevitably produces primitive words.

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages p^*q and pq^* .

Pumping inevitably produces primitive words.

P. Leupold Primitive Words are Unavoidable

P. Leupold Primitive Words are Unavoidable

Unavoidability

Unavoidability

Unavoidability

Trivial examples

Trivial examples

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.

 \sqrt{w} : the unique primitive word such that $w \in p^+$.

Root of a language L:

$$\sqrt{L} := \bigcup_{w \in L} \sqrt{w}$$

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.

 \sqrt{w} : the unique primitive word such that $w \in p^+$.

Root of a language L:

$$\sqrt{L} := \bigcup_{w \in L} \sqrt{w}$$

 $(ab)^+$ has finite root, while ab^+ has infinite root (itself).

Primitive and non-primitive words in CF

Primitive and non-primitive words in CF

Primitive and non-primitive words in CF

Primitive and non-primitive words in CF

If $w_1 w_2^i w_3 w_4^i w_5 \in Q^{(2)}$ for all $i \ge 0$, then w_2 and w_4 are cyclic permutations of each other. Moreover, $w = (fg^k h)^2$ such that $w_1 w_2^i w_3 w_4^i w_5 = (fg^{i+k} h)^2$.

If $w_1 w_2^i w_3 w_4^i w_5 \in Q^{(2)}$ for all $i \ge 0$, then w_2 and w_4 are cyclic permutations of each other. Moreover, $w = (fg^k h)^2$ such that $w_1 w_2^i w_3 w_4^i w_5 = (fg^{i+k} h)^2$.

Notice:

ab<mark>ab</mark>ab aba<mark>ba</mark>b

If $w_1 w_2^i w_3 w_4^i w_5 \in Q^{(2)}$ for all $i \ge 0$, then w_2 and w_4 are cyclic permutations of each other. Moreover, $w = (fg^k h)^2$ such that $w_1 w_2^i w_3 w_4^i w_5 = (fg^{i+k} h)^2$.

Notice:

abababab abababab

If $w_1 w_2^i w_3 w_4^i w_5 \in Q^{(2)}$ for all $i \ge 0$, then w_2 and w_4 are cyclic permutations of each other. Moreover, $w = (fg^k h)^2$ such that $w_1 w_2^i w_3 w_4^i w_5 = (fg^{i+k} h)^2$.

Notice:

abababab abababab

a b a c b b c a c b b a

P. Leupold Primitive Words are Unavoidable

Conjugacy class

Conjugacy class

Conjugacy class

Non-Primitive Words in CF

Consequence:

Theorem

All context-free subsets of $Q^{(2)}$ are finite unions of languages of the form

 $\{(fg^{i}h)^{2}: i \geq 0\};$

thus they are slender and linear.

Non-Primitive Words in CF

Consequence:

Theorem

All context-free subsets of $Q^{(2)}$ are finite unions of languages of the form

 $\{(fg^{i}h)^{2}: i \geq 0\};$

thus they are slender and linear.

Theorem

For a context-free language it is decidable, whether it is a subset of $Q^{(2)}$.

Theorem

The language of primitive words is strongly unavoidable for CF \setminus LIN.

Theorem

The language of primitive words is strongly unavoidable for CF \setminus LIN.

Theorem

The language of primitive words is strongly unavoidable for CF \setminus LIN.

Theorem

The language of primitive words is strongly unavoidable for CF \setminus LIN.

Theorem

The language of primitive words is strongly unavoidable for CF \setminus LIN.

Corollary

Every context-free language that contains only finitely many primitive words is bounded.

Theorem

For a context-free language it is decidable, whether it contains infinitely many primitive words.

Is there some unavoidable subset of primitive words?

For example: palindromes.

Is there some unavoidable subset of primitive words?

For example: palindromes.

even:

|--|

$$v = u_2 u_3 u_3^R = (u_2^R u_1^R u_1)^R$$

$$v = u_2 u_3 u_3^R = (u_2^R u_1^R u_1)^R = u_1^R u_1 u_2$$

$$v = u_2 u_3 u_3^R = (u_2^R u_1^R u_1)^R = u_1^R u_1 u_2$$

 vv^R conjugated to itself \implies not primitive

Theorem (with Fazekas and Shikishima-Tsuji)

In a primitive word's conjugacy class there is either

- no palindrome or
- one odd palindrome or
- two even palindromes.

Much less primitive palindromes than primitive words.

Unavoidability of primitive palindromes

Theorem (with Fazekas and Shikishima-Tsuji)

The language $Q^{(2)}$ of squares of primitive words is strongly unavoidable for

- non-regular
- context-free
- palindromic languages
- containing only finitely many primitive words.

Unavoidability of primitive palindromes

Theorem (with Fazekas and Shikishima-Tsuji)

The language $Q^{(2)}$ of squares of primitive words is strongly unavoidable for

- non-regular
- context-free
- palindromic languages
- containing only finitely many primitive words.

As a consequence, $Q \cup Q^{(2)}$ is strongly unavoidable for non-regular context-free palindromic languages.

Open Problem

Other nice examples of unavoidability?

Open Problem

Are non-primitive words unavoidable for non-regular and/or non-linear and/or non-deterministic context-free languages, or for context-free languages with infinite root?

Open Problem

Is the language Q of all primitive words context-free?