Primitive Words are Unavoidable for Context-Free Languages

Peter Leupold

Theorietag 2013, Ilmenau

Starting Question

Is the language Q of all primitive words context-free?

Starting Question

Is the language Q of all primitive words context-free?

Primitive: not an integer power.

Starting Question

Is the language Q of all primitive words context-free?

The language of all primitive words is NOT

- regular
- linear
- deterministic context-free
- unambiguous context-free

Starting Question

Is the language Q of all primitive words context-free?

The language of all primitive words is NOT

- regular
- linear
- deterministic context-free
- unambiguous context-free
- context-free ??? (Dömösi, Horváth, Ito, 1991)
Q is semi-linear and fulfills all known pumping conditions.

Starting Question

Why does Q resist all attempts?

Starting Question

Why does Q resist all attempts?

Differences to standard pumping languages like $a^{n} b^{n} c^{n}$?

Starting Question

Why does Q resist all attempts?

Differences to standard pumping languages like $a^{n} b^{n} c^{n}$?

There are very many primitive words.

Primitive Words

What do I mean by very many?

Primitive Words

What do I mean by very many?

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages $p^{*} q$ and $p q^{*}$.

Primitive Words

> What do I mean by very many?

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages $p^{*} q$ and $p q^{*}$.

Pumping inevitably produces primitive words.

Primitive Words

> What do I mean by very many?

Lemma

For two distinct primitive words p and q there are at most two non-primitive words in each of the languages $p^{*} q$ and $p q^{*}$.

Pumping inevitably produces primitive words.

Primitivity and Pumping

Primitivity and Pumping

Primitivity and Pumping

Primitivity and Pumping

Primitivity and Pumping

Unavoidability

Primitive Words are Unavoidable

Unavoidability

Primitive Words are Unavoidable

Unavoidability

Primitive Words are Unavoidable

Trivial examples

Trivial examples

Example: Squares unavoidable in REG/CF

Unavoidable Languages

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.

Unavoidable Languages

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.
\sqrt{w} : the unique primitive word such that $w \in p^{+}$.

Root of a language L :

$$
\sqrt{L}:=\bigcup_{w \in L} \sqrt{w}
$$

Unavoidable Languages

Theorem

The language of primitive words is strongly unavoidable for regular languages with infinite root.
\sqrt{w} : the unique primitive word such that $w \in p^{+}$.

Root of a language L :

$$
\sqrt{L}:=\bigcup_{w \in L} \sqrt{w}
$$

$(a b)^{+}$has finite root, while $a b^{+}$has infinite root (itself).

Q unavoidable for REG with infinite root

Q unavoidable for REG with infinite root

Q unavoidable for REG with infinite root

Q unavoidable for REG with infinite root

Primitive and non-primitive words in CF

Non-Primitive Words in CF

Lemma

$$
\text { If } w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5} \in Q^{(2)} \text { for all } i \geq 0 \text {, }
$$

then w_{2} and w_{4} are cyclic permutations of each other.

$$
\begin{gathered}
\text { Moreover, } w=\left(f g^{k} h\right)^{2} \text { such that } \\
w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5}=\left(f g^{i+k} h\right)^{2} .
\end{gathered}
$$

Non-Primitive Words in CF

Lemma

$$
\text { If } w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5} \in Q^{(2)} \text { for all } i \geq 0 \text {, }
$$ then w_{2} and w_{4} are cyclic permutations of each other.

$$
\begin{gathered}
\text { Moreover, } w=\left(f g^{k} h\right)^{2} \text { such that } \\
w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5}=\left(f g^{i+k} h\right)^{2} .
\end{gathered}
$$

Notice:

ababab ababab

Non-Primitive Words in CF

Lemma

$$
\text { If } w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5} \in Q^{(2)} \text { for all } i \geq 0 \text {, }
$$ then w_{2} and w_{4} are cyclic permutations of each other.

$$
\begin{gathered}
\text { Moreover, } w=\left(f g^{k} h\right)^{2} \text { such that } \\
w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5}=\left(f g^{i+k} h\right)^{2} .
\end{gathered}
$$

Notice:

abababab
abababab

Non-Primitive Words in CF

Lemma

$$
\text { If } w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5} \in Q^{(2)} \text { for all } i \geq 0,
$$ then w_{2} and w_{4} are cyclic permutations of each other.

$$
\begin{gathered}
\text { Moreover, } w=\left(f g^{k} h\right)^{2} \text { such that } \\
w_{1} w_{2}^{i} w_{3} w_{4}^{i} w_{5}=\left(f g^{i+k} h\right)^{2} .
\end{gathered}
$$

Notice:

ababababab ababababab

Conjugacy class
$a \quad b \quad a \quad b \quad b \quad c \quad a \quad c \quad b \quad b \quad a$

Conjugacy class

Conjugacy class

Conjugacy class

$a \quad b \quad a \quad c \quad b \quad b \quad c \quad a \quad c \quad b \quad b \quad a$ $b \quad a \quad b \quad b \quad c \quad a \quad c \quad b \quad b \quad a \quad a$ $a \quad c \quad b \quad b \quad c \quad a \quad c \quad b \quad b \quad a \quad a \quad b$ $c \quad b \quad b \quad c \quad a \quad b \quad b \quad a \quad a \quad b \quad a$ $b \quad b \quad c \quad a \quad b \quad b \quad a \quad a \quad b \quad a \quad c$ $b \quad c \quad a \quad c \quad b \quad b \quad a \quad a \quad b \quad a \quad c \quad b$ c $a \quad c \quad b \quad b \quad a \quad a \quad b \quad a \quad c \quad b \quad b$ $a \quad c \quad b \quad b \quad a \quad a \quad b \quad a \quad c \quad b \quad b \quad c$

Non-Primitive Words in CF

Consequence:

Theorem

All context-free subsets of $Q^{(2)}$ are finite unions of languages of the form

$$
\left\{\left(f g^{i} h\right)^{2}: i \geq 0\right\}
$$

thus they are slender and linear.

Non-Primitive Words in CF

Consequence:

Theorem

All context-free subsets of $Q^{(2)}$ are finite unions of languages of the form

$$
\left\{\left(f g^{i} h\right)^{2}: i \geq 0\right\}
$$

thus they are slender and linear.

Theorem

For a context-free language it is decidable, whether it is a subset of $Q^{(2)}$.

Unavoidability

Theorem

The language of primitive words is strongly unavoidable for CF \backslash LIN.
Suppose $L \cap Q$ finite

Unavoidability

Theorem

The language of primitive words is strongly unavoidable for CF \backslash LIN.
Suppose $L \cap Q$ finite

Unavoidability

Theorem

The language of primitive words is strongly unavoidable for CF \backslash LIN.
Suppose $L \cap Q$ finite

Unavoidability

Theorem

The language of primitive words is strongly unavoidable for CF \backslash LIN.
Suppose $L \cap Q$ finite

Unavoidability

Theorem

The language of primitive words is strongly unavoidable for CF \backslash LIN.
Suppose $L \cap Q$ finite

Primitive Words in CF

Corollary

Every context-free language that contains only finitely many primitive words is bounded.

Theorem

For a context-free language it is decidable, whether it contains infinitely many primitive words.

Primitive Words in CF

Is there some unavoidable subset of primitive words?
For example: palindromes.

Primitive Words in CF

Is there some unavoidable subset of primitive words?
For example: palindromes.
even:

odd:

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

Two even palindromes in the same conjugacy class

$v v^{R}$ conjugated to itself \Longrightarrow not primitive

Two odd palindromes in the same conjugacy class

Primitive palindromes

Theorem (with Fazekas and Shikishima-Tsuji)

In a primitive word's conjugacy class there is either

- no palindrome or
- one odd palindrome or
- two even palindromes.

Much less primitive palindromes than primitive words.

Unavoidability of primitive palindromes

Theorem (with Fazekas and Shikishima-Tsuji)

The language $Q^{(2)}$ of squares of primitive words is strongly unavoidable for

- non-regular
- context-free
- palindromic languages
- containing only finitely many primitive words.

Unavoidability of primitive palindromes

Theorem (with Fazekas and Shikishima-Tsuji)

The language $Q^{(2)}$ of squares of primitive words is strongly unavoidable for

- non-regular
- context-free
- palindromic languages
- containing only finitely many primitive words.

As a consequence, $Q \cup Q^{(2)}$ is strongly unavoidable for non-regular context-free palindromic languages.

Questions

Open Problem
 Other nice examples of unavoidability?

Open Problem

Are non-primitive words unavoidable for non-regular and/or non-linear and/or non-deterministic context-free languages, or for context-free languages with infinite root?

Open Problem

Is the language Q of all primitive words context-free?

