Size of Unary One-Way Multi-Head Finite Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
\{kutrib,malcher,matthias.wendlandt\}@informatik.uni-giessen.de

The Costs of Optimal Simulations of Unary Automata

In several cases the Landau function describes the costs of the optimal conversion between unary automata models. But there are still some other functions.

The Costs of Optimal Simulations of Unary Automata

In several cases the Landau function describes the costs of the optimal conversion between unary automata models. But there are still some other functions.
(Chrobak 1986), NFA $\rightarrow 2$ DFA $\} \Theta\left(n^{2}\right)$

The Costs of Optimal Simulations of Unary Automata

In several cases the Landau function describes the costs of the optimal conversion between unary automata models. But there are still some other functions.

$$
\left.\begin{array}{rlr}
\text { (Pighizzini 2009) }, & \text { DPDA } \rightarrow & \text { DFA } \\
& \text { DPDA } \rightarrow & \text { NFA } \\
& \text { DPDA } \rightarrow & 2 \mathrm{NFA}
\end{array}\right\} \Theta\left(2^{n}\right)
$$

How about Deterministic One-Way k-Head Finite Automata?

How about Deterministic One-Way k-Head Finite Automata?

\rightarrow The unary languages accepted by deterministic one-way k-head finite automata are semilinear and so regular.

How about Deterministic One-Way k-Head Finite Automata?

\rightarrow The unary languages accepted by deterministic one-way k-head finite automata are semilinear and so regular.
\rightarrow There is an infinite proper double hierarchy with respect to the number of states as well as to the number of heads (MK,AM,MW 2012).

How about Deterministic One-Way k-Head Finite Automata?

\rightarrow The unary languages accepted by deterministic one-way k-head finite automata are semilinear and so regular.
\rightarrow There is an infinite proper double hierarchy with respect to the number of states as well as to the number of heads (MK,AM,MW 2012).

One-Way k-Head Finite Automata

One-Way k-Head Finite Automata

$$
M=\left\langle S, A, k, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle
$$

$\rightarrow S$ is the finite set of internal states,

$\rightarrow s_{0} \in S$ is the initial state,

One-Way k-Head Finite Automata

$M=\left\langle S, A, k, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$
$\rightarrow S$ is the finite set of internal states,

$\rightarrow s_{0} \in S$ is the initial state,
$\rightarrow A$ is the finite set of input symbols,
$\rightarrow \triangleright \notin A$ is the left and $\triangleleft \notin A$ is the right endmarker of the workspace,

One-Way k-Head Finite Automata

$M=\left\langle S, A, k, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$
$\rightarrow S$ is the finite set of internal states,

$\rightarrow s_{0} \in S$ is the initial state,
$\rightarrow A$ is the finite set of input symbols,
$\rightarrow \triangleright \notin A$ is the left and $\triangleleft \notin A$ is the right endmarker of the workspace,
$\rightarrow k \geq 1$ is the number of heads,

One-Way k-Head Finite Automata

$M=\left\langle S, A, k, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$
$\rightarrow S$ is the finite set of internal states,

$\rightarrow s_{0} \in S$ is the initial state,
$\rightarrow A$ is the finite set of input symbols,
$\rightarrow \triangleright \notin A$ is the left and $\triangleleft \notin A$ is the right endmarker of the workspace,
$\rightarrow k \geq 1$ is the number of heads,
$\rightarrow F$ is the finite set of accepting states,

One-Way k-Head Finite Automata

$M=\left\langle S, A, k, \delta, \triangleright, \triangleleft, s_{0}, F\right\rangle$
$\rightarrow S$ is the finite set of internal states,

$\rightarrow s_{0} \in S$ is the initial state,
$\rightarrow A$ is the finite set of input symbols,
$\rightarrow \triangleright \notin A$ is the left and $\triangleleft \notin A$ is the right endmarker of the workspace,
$\rightarrow k \geq 1$ is the number of heads,
$\rightarrow F$ is the finite set of accepting states,
$\rightarrow \delta: S \times(A \cup\{\triangleright, \triangleleft\})^{k} \rightarrow S \times\{0,1\}^{k}$ is the partial transition function.

Language Recognition

\rightarrow It starts with all of its heads on the left endmarker.
\rightarrow It halts when the transition function is not defined for the current situation.
\rightarrow An input is accepted, if the automaton halts in an accepting state.

Example: For each $k, n \geq 2$, the unary singleton language

$$
L_{k, n}=\left\{a^{(k-1) n^{k}}\right\}
$$

is accepted by some $1 \mathrm{DFA}(k)$ with n states. $n=10, k=3$

Example: For each $k, n \geq 2$, the unary singleton language

$$
L_{k, n}=\left\{a^{(k-1) n^{k}}\right\}
$$

is accepted by some $1 \mathrm{DFA}(k)$ with n states.

$$
\mathrm{n}=10, \mathrm{k}=3
$$

Example: For each $k, n \geq 2$, the unary singleton language

$$
L_{k, n}=\left\{a^{(k-1) n^{k}}\right\}
$$

is accepted by some $1 \mathrm{DFA}(k)$ with n states.

$$
\mathrm{n}=10, \mathrm{k}=3
$$

Example: For each $k, n \geq 2$, the unary singleton language

$$
L_{k, n}=\left\{a^{(k-1) n^{k}}\right\}
$$

is accepted by some $1 \mathrm{DFA}(k)$ with n states.

$$
\mathrm{n}=10, \mathrm{k}=3
$$

1DFA (k) to 1DFA (1)

The Landau Function

As is often the case in connection with unary languages, the Landau function

$$
\begin{gathered}
F(n)=\max \left\{\operatorname{lcm}\left(c_{1}, c_{2} \ldots, c_{l}\right) \mid c_{1}, c_{2}, \ldots, c_{l} \geq 1\right. \\
\text { and } \left.c_{1}+c_{2}+\cdots+c_{l}=n\right\},
\end{gathered}
$$

is used.

The Landau Function

As an approximation of the landau function it is often used:

$$
F(n) \in e^{\Theta(\sqrt{n \cdot \ln n})}
$$

A closer look (Ellul 2004) shows that

$$
F(n) \in \Omega\left(e^{\sqrt{n \cdot \ln (n)}}\right) \quad \text { and } \quad F(n) \in O\left(e^{\sqrt{n \cdot \ln (n)}(1+o(1))}\right) .
$$

Head Reduction-Lower Bound

Theorem

For any integers $k, n \geq 2$ so that n is prime, there is a unary n-state $1 \mathrm{DFA}(k) M$, such that $n \cdot F(n)^{k-1}$ states are necessary for any DFA to accept the language $L(M)$.

Construction of a n-state 1DFA (k)

\rightarrow Let $c_{1}, c_{2}, \ldots, c_{l} \geq 2$ be integers such that $c_{1}+c_{2}+\cdots+c_{l} \leq n$ and $\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{l}\right)=F(n)$.
\rightarrow The first head moves in a cycle of length n until it reaches the right endmarker. Depending on in which state it arrives at the right endmarker, a c_{i} is chosen, for which the divisibility is tested afterwards.
\rightarrow Now the idea of the first example is used. So each time the next head h_{j} moves in a cycle of length c_{i}, while the others move only $c_{i}-1$ times, until head h_{j} reaches the right endmarker.
\rightarrow All together we have that $\ell=x_{1} \cdot n+c_{i}$ and $\ell=x_{k} \cdot c_{i}^{k-1}$.
\rightarrow Since both numbers n, c_{i} are relatively prime, an DFA accepting this language needs at least $n c_{i}^{k-1}$ states.

Construction of an n-state 1DFA (k)

An immediate generalization of the proof of the state complexity for the union of two unary deterministic finite automata languages (Yu 2001) shows that every DFA accepting $L(M)$ has a cycle of at least

$$
\operatorname{lcm}\left\{n c_{i}^{k-1} \mid 1 \leq i \leq l\right\}=n\left(c_{1} c_{2} \cdots c_{l}\right)^{k-1}=n \cdot F(n)^{k-1}
$$

states.

Head Reduction-Upper Bound

Theorem

Let $k, n \geq 1$ and M be a unary n-state $1 \mathrm{DFA}(k)$. Then there is a constant t depending only on k so that $O\left(n \cdot F(t \cdot n)^{k-1}\right)$ states are sufficient for a DFA to accept the language $L(M)$. The DFA can effectively be constructed from M.

Summary

1DFA (k) to NFA-Upper Bound

Theorem

Let $k, n \geq 2$ be constants and M be a unary n-state $1 \mathrm{DFA}(k)$. Then $O\left(n^{2 k}\right)$ states are sufficient for an NFA to accept the language $L(M)$. The NFA can effectively be constructed from M.

In (MK,AM,MW 2012) it is shown that the language of a unary n-state $1 \mathrm{DFA}(k)$ can be described by finitely many equations of the form:

$$
\ell=\frac{P}{Q}+x \cdot \frac{c_{1} c_{2} \cdots c_{k}}{Q}
$$

It holds $\frac{P}{Q}<2^{k-1} k n^{k}, c_{i} \leq n$.

In (MK,AM,MW 2012) it is shown that the language of a unary n-state $1 \mathrm{DFA}(k)$ can be described by finitely many equations of the form:

$$
\ell=\frac{P}{Q}+x \cdot \frac{c_{1} c_{2} \cdots c_{k}}{Q}
$$

It holds $\frac{P}{Q}<2^{k-1} k n^{k}, c_{i} \leq n$.

For an $1 \mathrm{DFA}(k) M$ there are at most n^{k} different equations describing the language $L(M)$.

Form k Heads to One Head NFA

\rightarrow For each equation a DFA can be constructed.
\rightarrow The union of these automata describes all words in $L(M)$. The size of each automaton is at most $2^{k-1} k n^{k}+n^{k}$.
\rightarrow The union of the different DFA is accepted by an NFA that initially guesses which of the DFA to simulate and, subsequently, simulates it.

1DFA (k) to NFA-Lower Bound

Theorem

For any integers $k, n \geq 2$, there is a unary n-state $1 \mathrm{DFA}(k) M$, such that $\Omega\left(n^{k}\right)$ states are necessary for any NFA to accept the language $L(M)$.

Consider the unary singleton language

$$
L_{k, n}=\left\{a^{(k-1) n^{k}}\right\}
$$

is accepted by some $1 \mathrm{DFA}(k)$ with n states.

Summary

From One-Head NFA to k-Head DFA Upper Bound

Theorem

Let $k \geq 1, n \geq 2$ be constants, $t=\left\lfloor\frac{-3+\sqrt{8 n+1}}{2}\right\rfloor$, and M be a unary n-state NFA. Then

$$
n^{\prime} \leq \begin{cases}n^{2}-2+F(n), & \text { if } k=1 \\ n^{2}-2+\left(n-\frac{t^{2}+t}{2}\right)^{\left\lceil\frac{t}{k}\right\rceil}, & \text { if } 1<k<t / 2 \\ 2 n^{2}, & \text { if } k \geq t / 2\end{cases}
$$

states are sufficient for a $1 \mathrm{DFA}(k) M^{\prime}$ to accept the language $L(M)$. The $1 \mathrm{DFA}(k)$ can effectively be constructed from M.
The basic idea is to let each head of the $1 \mathrm{DFA}(k) M^{\prime}$ simulates the behavior of $\lceil t / k\rceil$ cycles of M.

From One Head NFA to k Head DFA Lower Bound

Theorem

Let $k \geq 1$ be a constant. For any integer $m \geq 1$ there is an integer
$n>m$ and a unary n-state NFA M, such that $c_{2} \cdot \sqrt{e^{\sqrt{c_{1} \ln (\sqrt{2 n})}}}$ states are necessary for any $1 \mathrm{DFA}(k)$ to accept the language $L(M)$, where $c_{1}, c_{2}>0$ are two constants.

Summary

Computational Complexity

Theorem

Let $k \geq 1$ be an integer. Then for $1 \mathrm{DFA}(k)$ accepting unary languages the problems of testing emptiness, universality, finiteness, inclusion, and equivalence are LOGSPACE-complete.
\rightarrow It has been shown that the language $L(M)$ can be represented as union of some languages accepted by DFA, so that each DFA has at most $2^{k-1} k n^{k}+n^{k}$ states.
\rightarrow The idea for the Turing machine M is to simulate the given 1DFA $(k) M^{\prime}$ successively on all inputs of length at most $2^{k-1} k n^{k}+n^{k}$ until some input is accepted or all inputs tested are rejected.

Computational Complexity

Lemma

Let $k \geq 1$ and M be an n-state $1 \mathrm{DFA}(k)$. Then there exists an n-state $1 \mathrm{DFA}(k) M^{\prime}$ accepting the complement of $L(M)$. The $1 \mathrm{DFA}(k) M^{\prime}$ can effectively be constructed from M.
\rightarrow In order to decide non-universality, it has to be decided whether $\overline{L(M)}$, is non-empty.
\rightarrow Infiniteness can similarly be tested as emptiness.
\rightarrow To decide whether or not $L\left(M_{1}\right)$ is included in $L\left(M_{2}\right)$, for two $1 \mathrm{DFA}(k) M_{1}$ and M_{2}, one can decide whether $L\left(M_{1}\right) \cap \overline{L\left(M_{2}\right)}$ is empty and closely the same for equivalence.

Open Questions

\rightarrow What does the reduction of only one head cost?
\rightarrow Can we tighten the bound for converting a NFA to $1 \mathrm{DFA}(k)$?
\rightarrow What about simulating a nondeterministic one-way multihead finite automaton by DFAs or NFAs?

Thank you for your attention

