
Size of Unary One-Way Multi-Head
Finite Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de



The Costs of Optimal Simulations of Unary
Automata

In several cases the Landau function describes the costs of the
optimal conversion between unary automata models. But there are
still some other functions.

(Chrobak 1986),NFA→ DFA

2DFA→ DFA

2DFA→ NFA

(Mereghetti, Pighizzini 2001), 2NFA→ DFA

2NFA→ NFA


eΘ(
√

n·ln(n))



The Costs of Optimal Simulations of Unary
Automata

In several cases the Landau function describes the costs of the
optimal conversion between unary automata models. But there are
still some other functions.

(Chrobak 1986),NFA→ 2DFA
}

Θ(n2)



The Costs of Optimal Simulations of Unary
Automata

In several cases the Landau function describes the costs of the
optimal conversion between unary automata models. But there are
still some other functions.

(Pighizzini 2009),DPDA→ DFA

DPDA→ NFA

DPDA→ 2NFA

Θ(2n)



How about Deterministic One-Way k-Head
Finite Automata?

Ü The unary languages accepted by deterministic one-way
k-head finite automata are semilinear and so regular.

Ü There is an infinite proper double hierarchy with respect to
the number of states as well as to the number of heads
(MK,AM,MW 2012).



How about Deterministic One-Way k-Head
Finite Automata?

Ü The unary languages accepted by deterministic one-way
k-head finite automata are semilinear and so regular.

Ü There is an infinite proper double hierarchy with respect to
the number of states as well as to the number of heads
(MK,AM,MW 2012).



How about Deterministic One-Way k-Head
Finite Automata?

Ü The unary languages accepted by deterministic one-way
k-head finite automata are semilinear and so regular.

Ü There is an infinite proper double hierarchy with respect to
the number of states as well as to the number of heads
(MK,AM,MW 2012).



How about Deterministic One-Way k-Head
Finite Automata?

Ü The unary languages accepted by deterministic one-way
k-head finite automata are semilinear and so regular.

Ü There is an infinite proper double hierarchy with respect to
the number of states as well as to the number of heads
(MK,AM,MW 2012).

1DFA(k)

NFADFA

eΘ(
√

n·log(n))



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉

⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉 ⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉 ⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉 ⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉 ⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



One-Way k-Head Finite Automata

M = 〈S,A, k, δ,B,C, s0, F 〉 ⊲ ⊳· · ·

S

Ü S is the finite set of internal states,

Ü s0 ∈ S is the initial state,

Ü A is the finite set of input symbols,

Ü B /∈ A is the left and C /∈ A is the right endmarker of the
workspace,

Ü k ≥ 1 is the number of heads,

Ü F is the finite set of accepting states,

Ü δ : S × (A ∪ {B,C})k → S × {0, 1}k is the partial transition
function.



Language Recognition

Ü It starts with all of its heads on the left endmarker.

Ü It halts when the transition function is not defined for the
current situation.

Ü An input is accepted, if the automaton halts in an accepting
state.



Example: For each k, n ≥ 2, the unary singleton language

Lk,n = { a(k−1)nk }

is accepted by some 1DFA(k) with n states.

n=10,k=3

`B C

9·`
10

B C

99·`
100

B C



Example: For each k, n ≥ 2, the unary singleton language

Lk,n = { a(k−1)nk }

is accepted by some 1DFA(k) with n states.

n=10,k=3

`B C

9·`
10

B C

99·`
100

B C



Example: For each k, n ≥ 2, the unary singleton language

Lk,n = { a(k−1)nk }

is accepted by some 1DFA(k) with n states.

n=10,k=3

`B C

9·`
10

B C

99·`
100

B C



Example: For each k, n ≥ 2, the unary singleton language

Lk,n = { a(k−1)nk }

is accepted by some 1DFA(k) with n states.

n=10,k=3

`B C

9·`
10

B C

99·`
100

B C



1DFA(k) to 1DFA(1)



The Landau Function

As is often the case in connection with unary languages, the
Landau function

F (n) = max{ lcm(c1, c2 . . . , cl) | c1, c2, . . . , cl ≥ 1

and c1 + c2 + · · ·+ cl = n },
is used.



The Landau Function

As an approximation of the landau function it is often used:

F (n) ∈ eΘ(
√
n·lnn)

A closer look (Ellul 2004) shows that

F (n) ∈ Ω
(
e
√

n·ln(n)
)

and F (n) ∈ O
(
e
√

n·ln(n)(1+o(1))
)
.



Head Reduction—Lower Bound

Theorem

For any integers k, n ≥ 2 so that n is prime, there is a unary
n-state 1DFA(k) M , such that n · F (n)k−1 states are necessary

for any DFA to accept the language L(M).



Construction of a n-state 1DFA(k)

Ü Let c1, c2, . . . , cl ≥ 2 be integers such that
c1 + c2 + · · ·+ cl ≤ n and lcm(c1, c2, . . . , cl) = F (n).

Ü The first head moves in a cycle of length n until it reaches the
right endmarker. Depending on in which state it arrives at the
right endmarker, a ci is chosen, for which the divisibility is
tested afterwards.

Ü Now the idea of the first example is used. So each time the
next head hj moves in a cycle of length ci, while the others
move only ci − 1 times, until head hj reaches the right
endmarker.

Ü All together we have that ` = x1 · n+ ci and ` = xk · ck−1
i .

Ü Since both numbers n, ci are relatively prime, an DFA
accepting this language needs at least nck−1

i states.



Construction of an n-state 1DFA(k)

An immediate generalization of the proof of the state complexity
for the union of two unary deterministic finite automata languages
(Yu 2001) shows that every DFA accepting L(M) has a cycle of at
least

lcm{nck−1
i | 1 ≤ i ≤ l } = n(c1c2 · · · cl)k−1 = n · F (n)k−1

states.



Head Reduction—Upper Bound

Theorem

Let k, n ≥ 1 and M be a unary n-state 1DFA(k). Then there is a
constant t depending only on k so that O(n · F (t · n)k−1) states
are sufficient for a DFA to accept the language L(M). The DFA

can effectively be constructed from M .



Summary

n · F (n)k−1 ≤ ·
≤ n · F (t · n)k−1

eΘ(
√

n·log(n))

1DFA(k)

NFADFA



1DFA(k) to NFA—Upper Bound

Theorem

Let k, n ≥ 2 be constants and M be a unary n-state 1DFA(k).
Then O(n2k) states are sufficient for an NFA to accept the

language L(M). The NFA can effectively be constructed from M .



In (MK,AM,MW 2012) it is shown that the language of a unary
n-state 1DFA(k) can be described by finitely many equations of
the form:

` =
P

Q
+ x · c1c2 · · · ck

Q
.

It holds P
Q < 2k−1knk, ci ≤ n.

For an 1DFA(k) M there are at most nk different equations
describing the language L(M).



In (MK,AM,MW 2012) it is shown that the language of a unary
n-state 1DFA(k) can be described by finitely many equations of
the form:

` =
P

Q
+ x · c1c2 · · · ck

Q
.

It holds P
Q < 2k−1knk, ci ≤ n.

For an 1DFA(k) M there are at most nk different equations
describing the language L(M).



Form k Heads to One Head NFA

Ü For each equation a DFA can be constructed.

Ü The union of these automata describes all words in L(M).
The size of each automaton is at most 2k−1knk + nk.

Ü The union of the different DFA is accepted by an NFA that
initially guesses which of the DFA to simulate and,
subsequently, simulates it.



1DFA(k) to NFA—Lower Bound

Theorem

For any integers k, n ≥ 2, there is a unary n-state 1DFA(k) M ,
such that Ω(nk) states are necessary for any NFA to accept the

language L(M).

Consider the unary singleton language

Lk,n = { a(k−1)nk }

is accepted by some 1DFA(k) with n states.



Summary

n · F (n)k−1 ≤ ·
≤ n · F (t · n)k−1

eΘ(
√

n·log(n))

1DFA(k)

NFADFA
nk ≤ · ≤ n2k



From One-Head NFA to k-Head DFA
Upper Bound

Theorem

Let k ≥ 1, n ≥ 2 be constants, t = b−3+
√

8n+1
2 c, and M be a

unary n-state NFA. Then

n′ ≤


n2 − 2 + F (n), if k = 1;

n2 − 2 +
(
n− t2+t

2

)d t
ke
, if 1 < k < t/2;

2n2, if k ≥ t/2.

states are sufficient for a 1DFA(k) M ′ to accept the
language L(M). The 1DFA(k) can effectively be

constructed from M .

The basic idea is to let each head of the 1DFA(k) M ′ simulates
the behavior of dt/ke cycles of M .



From One Head NFA to k Head DFA
Lower Bound

Theorem

Let k ≥ 1 be a constant. For any integer m ≥ 1 there is an integer

n > m and a unary n-state NFA M , such that c2 ·
k

√
e

√
2n√

c1 ln(
√
2n)

states are necessary for any 1DFA(k) to accept the language
L(M), where c1, c2 > 0 are two constants.



Summary

n · F (n)k−1 ≤ ·
≤ n · F (t · n)k−1

eΘ(
√

n·log(n))

1DFA(k)

NFADFA
nk ≤ · ≤ n2k

c2 ·
k

√
e

√
2n√

c1 ln(
√

2n) ≤ · ≤

n2 − 2 +
(
n− t2+t

2

)d t
ke



Computational Complexity

Theorem

Let k ≥ 1 be an integer. Then for 1DFA(k) accepting unary
languages the problems of testing emptiness, universality,

finiteness, inclusion, and equivalence are LOGSPACE-complete.

Ü It has been shown that the language L(M) can be
represented as union of some languages accepted by DFA, so
that each DFA has at most 2k−1knk + nk states.

Ü The idea for the Turing machine M is to simulate the given
1DFA(k) M ′ successively on all inputs of length at most
2k−1knk + nk until some input is accepted or all inputs tested
are rejected.



Computational Complexity

Lemma

Let k ≥ 1 and M be an n-state 1DFA(k). Then there exists an
n-state 1DFA(k) M ′ accepting the complement of L(M). The

1DFA(k) M ′ can effectively be constructed from M .

Ü In order to decide non-universality, it has to be decided
whether L(M), is non-empty.

Ü Infiniteness can similarly be tested as emptiness.

Ü To decide whether or not L(M1) is included in L(M2), for
two 1DFA(k) M1 and M2, one can decide whether
L(M1)∩L(M2) is empty and closely the same for equivalence.



Open Questions

Ü What does the reduction of only one head cost?

Ü Can we tighten the bound for converting a NFA to 1DFA(k)?

Ü What about simulating a nondeterministic one-way multihead
finite automaton by DFAs or NFAs?



Thank you for your attention


