Automata and Logic for Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification

Workshop Automaten und Logik Theorietag Automaten und Formale Sprachen 25.-27. September 2013, Ilmenau

• Collection of autonomous computing entities (processes) connected by some communication medium

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:

• Purpose:

entities collaborate on a task:

terminating computation with input and output

 entities model a reactive system: focus on behavior, properties of performed action sequence (e.g., mutual exclusion)

- Collection of autonomous computing entities (processes) connected by some communication medium
- Processes access and update shared resources (e.g., variables, channels, databases, ...)
- Schematic view:

• Purpose:

- entities collaborate on a task:
 - terminating computation with input and output
- entities model a reactive system: focus on behavior, properties of performed action sequence (e.g., mutual exclusion)
- In this talk: formal modeling of concurrent reactive systems (in terms of automata) to make them accessible to formal methods

2. Classification

Form of communication

Form of communication

Form of communication

System architecture

System architecture

System architecture

Type of single process

Type of single process

Type of single process

Behavior

Words

Behavior

► Words

System model

- Finite automata
- Kripke structures

Behavior

Words

System model

- Finite automata
- Kripke structures

Specification

- Linear-time temporal logic (LTL)
- Monadic second-order logic (MSO)
- Regular expressions

Behavior

 Mazurkiewicz traces [Mazurkiewicz '86]

Behavior

Mazurkiewicz traces
[Mazurkiewicz '86]

System model

- Asynchronous automata [Zielonka '87]
- Asynchronous cellular automata

Behavior

 Mazurkiewicz traces [Mazurkiewicz '86]

System model

- Asynchronous automata [Zielonka '87]
- Asynchronous cellular automata

Specification

- Temporal logic (such as LTL)
- Monadic second-order logic (MSO)
- Regular (rational) expressions

Behavior

Message sequence charts

Behavior

Message sequence charts

System model

- Communicating automata [Brand-Zafiropulo '83]
- Lossy channel systems [Finkel '87, Abdulla-Jonsson '96]

Behavior

Message sequence charts

System model

- Communicating automata [Brand-Zafiropulo '83]
- Lossy channel systems [Finkel '87, Abdulla-Jonsson '96]

Specification

- Temporal logic
- Monadic second-order logic (MSO)
- High-level expressions

Behavior

Dynamic message sequence charts

Behavior

Dynamic message sequence charts

System model

 Dynamic communicating automata [B., Cyriac, Hélouët, Kara, Schwentick '13]

Behavior

Dynamic message sequence charts

System model

 Dynamic communicating automata [B., Cyriac, Hélouët, Kara, Schwentick '13]

Specification

High-level expressions with registers

Behavior

► Words ?

Behavior

► Words ?

System model

 Parametric ad-hoc networks [Delzanno-Sangnier et al. '10–'13]

Behavior

► Words ?

System model

 Parametric ad-hoc networks [Delzanno-Sangnier et al. '10–'13]

Specification

Reachability questions

Behavior

Nested traces

Behavior

Nested traces

System model

- Multi-stack systems
 [La Torre et al. '07-'13], [Atig et al.]
- Nested-word automata [Alur et al. '04]

Behavior

Nested traces

System model

- Multi-stack systems
 [La Torre et al. '07-'13], [Atig et al.]
- Nested-word automata [Alur et al. '04]

Specification

- Temporal logic (such as LTL)
- Monadic second-order logic (MSO)
- Regular (rational) expressions

Words Mazurkiewicz traces Message Sequence Charts Nested words

Asynchronous automata Message-passing automata Multi-stack automata

Landscape and Objectives: Linear-Time Setting

In this talk:

- Finite-State Sequential Systems
- Finite-State Shared-Memory Systems
- Recursive Shared-Memory Systems
- Message-Passing Systems

In this talk:

- Finite-State Sequential Systems
- Finite-State Shared-Memory Systems
- Recursive Shared-Memory Systems
- Message-Passing Systems

with static and known system architecture

Theorem (Büchi-Elgot-Trakhtenbrot '60s)

Every MSO formula is equivalent to some (deterministic) finite automaton.

Theorem (Büchi-Elgot-Trakhtenbrot '60s; Sistla-Clarke '85)

Model checking against MSO is decidable, but nonelementary. Model checking LTL is PSPACE-complete.

4. Finite-State Shared-Memory Systems

Finite-State Shared-Memory Systems

 $\begin{array}{ll} \mbox{Asynchronous Automata and Mazurkiewicz Traces} \\ \mbox{Proc} = \{1,2\} & \Sigma_1 = \{a_1,b_1,c\} & \Sigma_2 = \{a_2,b_2,c\} \end{array}$

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Mazurkiewicz Trace

 (a_1)

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automaton

Asynchronous Automata and Mazurkiewicz Traces $Proc = \{1, 2\}$ $\Sigma_1 = \{a_1, b_1, c\}$ $\Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace

Asynchronous Automata and Mazurkiewicz Traces $Proc = \{1, 2\}$ $\Sigma_1 = \{a_1, b_1, c\}$ $\Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace

Asynchronous Automata and Mazurkiewicz Traces $Proc = \{1, 2\}$ $\Sigma_1 = \{a_1, b_1, c\}$ $\Sigma_2 = \{a_2, b_2, c\}$

Asynchronous Automaton

Mazurkiewicz Trace

$\mathsf{Mazurkiewicz\ Trace} \qquad t = (E, \rightarrow_1, \rightarrow_2, \lambda) \qquad \lambda : E \rightarrow \Sigma \stackrel{\scriptscriptstyle \mathsf{def}}{=} \Sigma_1 \cup \Sigma_2$

Mazurkiewicz Trace $t = (E, \rightarrow_1, \rightarrow_2, \lambda)$ $\lambda : E \rightarrow \Sigma \stackrel{\text{def}}{=} \Sigma_1 \cup \Sigma_2$

Linearizations $w \in Lin(t) \subseteq \Sigma^* \quad \rightsquigarrow \quad trace(w) = t$

Mazurkiewicz Trace $t = (E, \rightarrow_1, \rightarrow_2, \lambda)$ $\lambda : E \rightarrow \Sigma \stackrel{\text{def}}{=} \Sigma_1 \cup \Sigma_2$

Mazurkiewicz Trace $t = (E, \rightarrow_1, \rightarrow_2, \lambda)$ $\lambda : E \rightarrow \Sigma \stackrel{\text{def}}{=} \Sigma_1 \cup \Sigma_2$

Mazurkiewicz Trace $t = (E, \rightarrow_1, \rightarrow_2, \lambda)$ $\lambda : E \rightarrow \Sigma \stackrel{\text{def}}{=} \Sigma_1 \cup \Sigma_2$ $\overset{(a_1 - 1}{\longrightarrow} c \stackrel{1}{\longrightarrow} c \stackrel{1}{\longrightarrow}$

Theorem (Sakarovitch '92)

Realizability for regular specifications is undecidable.

Theorem (Zielonka '87)

Let $L \subseteq \Sigma^*$ be a \sim -closed regular language. There is a (deterministic) asynchronous automaton \mathcal{A} such that $L(\mathcal{A}) = trace(L)$.

Theorem (Muscholl '94, Peled-Wilke-Wolper '98)

It is decidable (PSPACE-complete) if the language of a finite automaton is \sim -closed (PTIME for deterministic automata).

Monadic Second-Order Logic (MSO)

▶ $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$

Monadic Second-Order Logic (MSO)

 $\begin{array}{ll} x \rightarrow_p y & x \text{ and } y \text{ are successive events on process } p \in Proc \\ \bullet a(x) & \text{event } x \text{ is labeled with } a \in \Sigma \end{array}$

Monadic Second-Order Logic (MSO)

x →_p y x and y are successive events on process p ∈ Proc
 a(x) event x is labeled with a ∈ Σ
 x = y

Monadic Second-Order Logic (MSO)

►	$x \rightarrow_{p} y$	x and y are successive events on process $p \in \mathit{Proc}$
	a(x)	event x is labeled with $a \in \Sigma$
►	x = y	

• $x \in X$ event x is contained in set of events X

Monadic Second-Order Logic (MSO)			
► X	$ ightarrow_{ ho}$ y	x and y are successive events on process $p \in Proc$	
► a(x)	event x is labeled with $a \in \Sigma$	
► X	= y		
► x	$\in X$	event x is contained in set of events X	
► ∃x	¢φ	there is event x such that φ	

Aonadic Second-Order Logic (MSO)				
$\blacktriangleright x \to_p y$	x and y are successive events on process $p \in Proc$			
► a(x)	event x is labeled with $a \in \Sigma$			
▶ <i>x</i> = <i>y</i>				
► $x \in X$	event x is contained in set of events X			
► ∃xφ	there is event x such that $arphi$			
► $\exists X \varphi$	there is set of event X such that $arphi$			

Aonadic Second-Order Logic (MSO)				
$\blacktriangleright x \rightarrow_p y$	x and y are successive events on process $p \in Proc$			
► a(x)	event x is labeled with $a \in \Sigma$			
▶ <i>x</i> = <i>y</i>				
▶ <i>x</i> ∈ <i>X</i>	event x is contained in set of events X			
► ∃xφ	there is event x such that $arphi$			
► $\exists X \varphi$	there is set of event X such that $arphi$			
$\blacktriangleright \neg \varphi \qquad \varphi \lor \psi$				

Aonadic Second-Order Logic (MSO)				
• $x \rightarrow_p y$	x and y are successive events on process $p \in Proc$			
► a(x)	event x is labeled with $a \in \Sigma$			
▶ <i>x</i> = <i>y</i>				
► <i>x</i> ∈ <i>X</i>	event x is contained in set of events X			
► $\exists x \varphi$	there is event x such that $arphi$			
► $\exists X \varphi$	there is set of event X such that $arphi$			
$\blacktriangleright \neg \varphi \qquad \varphi \lor \psi$				

Example

$$= \exists x \exists y (b_1(x) \land b_2(x) \land x \leq y)$$

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$

Theorem (Thomas '90)

MSO logic and asynchronous automata are expressively equivalent.

Theorem (Thomas '90)

MSO logic and asynchronous automata are expressively equivalent.

 \Rightarrow MSO model checking is decidable.

Global Temporal Logic

$$\mathsf{LTrL}_\forall \qquad \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \qquad \quad a \in \Sigma$$

Global Temporal Logic

 $\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle \mathbf{a} \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & \mathbf{a} \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTr}\mathsf{L}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTr}\mathsf{L}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTr}\mathsf{L}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTr}\mathsf{L}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{lll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle \mathsf{a} \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & \mathsf{a} \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{lll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle \mathsf{a} \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & \mathsf{a} \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{ll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle a \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & a \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Global Temporal Logic

$$\begin{array}{lll} \mathsf{LTrL}_\forall & \varphi ::= \mathsf{tt} \mid \langle \mathsf{a} \rangle \varphi \mid \varphi_1 \, \mathsf{U}_\forall \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 & \mathsf{a} \in \Sigma \\ \mathsf{LTrL}_\exists & \varphi ::= & \mathsf{U}_\exists \end{array}$$

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

• $LTrL_{\forall}$ model checking is nonelementary.

Theorem (Walukiewicz '98; Alur-McMillan-Peled '98)

- $LTrL_{\forall}$ model checking is nonelementary.
- $LTrL_{\exists}$ model checking is undecidable.

Local Temporal Logic

$$\begin{array}{ll} \varphi & ::= & a \mid \mathsf{EX}\varphi \mid \mathsf{EX}_p\varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \mid \varphi_1 \, \mathsf{U}_p \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & a \in \Sigma, p \in \mathit{Proc} \end{array}$$

Local Temporal Logic

$$\begin{array}{ll} \varphi & ::= & a \mid \mathsf{EX}\varphi \mid \mathsf{EX}_p\varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \mid \varphi_1 \, \mathsf{U}_p \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & a \in \Sigma, p \in \mathit{Proc} \end{array}$$

Semantics (wrt. trace $t = (E, (\rightarrow_{\rho})_{\rho \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \mathsf{EX}\varphi$ if there is $f \in E$ such that $e \lessdot f$ and $t, f \models \varphi$

Local Temporal Logic

$$\begin{split} \varphi & ::= & a \mid \mathsf{EX}\varphi \mid \mathsf{EX}_p\varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \mid \varphi_1 \, \mathsf{U}_p \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & a \in \Sigma, p \in \mathit{Proc} \end{split}$$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

Local Temporal Logic

$$\begin{array}{ll} \varphi & ::= & a \mid \mathsf{EX}\varphi \mid \mathsf{EX}_p\varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \mid \varphi_1 \, \mathsf{U}_p \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & a \in \Sigma, p \in \mathit{Proc} \end{array}$$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \mathsf{EX}_p \varphi$ if there is $f \in E$ such that $e \leq f$ and $e \rightarrow_p f$ and $t, f \models \varphi$

Local Temporal Logic

$$\begin{array}{ll} \varphi & ::= & a \mid \mathsf{EX}\varphi \mid \mathsf{EX}_p\varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \mid \varphi_1 \, \mathsf{U}_p \, \varphi_2 \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \\ & a \in \Sigma, p \in \mathit{Proc} \end{array}$$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \mathsf{EX}\varphi$ if there is $f \in E$ such that $e \lessdot f$ and $t, f \models \varphi$ (a) $\frac{1}{2} + (2) + (2$

• $t, e \models \mathsf{EX}_p \varphi$ if there is $f \in E$ such that $e \leq f$ and $e \rightarrow_p f$ and $t, f \models \varphi$ $\stackrel{\mathsf{EX}_1 \varphi}{\stackrel{\circ}{=} \frac{\varphi}{\stackrel{\circ}{=} \frac{\varphi}{\stackrel{\circ}{$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \overline{\mathsf{EX}}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first *p*-event not below *e* wrt. \leq

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \overline{\mathsf{EX}}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first *p*-event not below *e* wrt. \leq

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \overline{\mathsf{EX}}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first *p*-event not below *e* wrt. \leq

• $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \le e' < f$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \overline{\mathsf{EX}}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first *p*-event not below *e* wrt. \leq

• $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \le e' < f$

Semantics (wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)

• $t, e \models \overline{\mathsf{EX}}_p \varphi$ if there is $f \in E$ such that $\lambda(f) \in \Sigma_p$ and $t, f \models \varphi$ and f is the first *p*-event not below *e* wrt. \leq

• $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \le e' < f$

Observation (Gastin-Kuske '03)

All these modalities are MSO-definable!

Observation (Gastin-Kuske '03)

All these modalities are MSO-definable!

Semantics(wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)• $t, e \models EX\varphi$ if there is $f \in E$ such that e < f and $t, f \models \varphi$ • $t, e \models EX_p\varphi$ if there is $f \in E$ such that $e \rightarrow_p f$ and $t, f \models \varphi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \le e' < f$

Observation (Gastin-Kuske '03)

All these modalities are MSO-definable!

Semantics(wrt. trace $t = (E, (\rightarrow_p)_{p \in Proc}, \lambda)$ and $e \in E$)• $t, e \models EX\varphi$ if there is $f \in E$ such that e < f and $t, f \models \varphi$ • $t, e \models EX_p\varphi$ if there is $f \in E$ such that $e \rightarrow_p f$ and $t, f \models \varphi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \leq e' < f$

Example

•
$$\mathsf{MSO}^{\mathsf{EX}}(x,Y) = \exists y (y \in Y \land x \lessdot y)$$

Observation (Gastin-Kuske '03)

All these modalities are MSO-definable!

Semantics $(\text{wrt. trace } t = (E, (\rightarrow_p)_{p \in Proc}, \lambda) \text{ and } e \in E)$ • $t, e \models EX\varphi$ if there is $f \in E$ such that e < f and $t, f \models \varphi$ • $t, e \models EX_p\varphi$ if there is $f \in E$ such that $e \rightarrow_p f$ and $t, f \models \varphi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ • $t, e \models \varphi \cup \psi$ if there is $f \in E$ such that $t, f \models \psi$ and $t, e' \models \varphi$ for all $e' \in E$ with $e \le e' < f$

Example

- $\mathsf{MSO}^{\mathsf{EX}}(x,Y) = \exists y (y \in Y \land x \lessdot y)$
- $\mathsf{MSO}^{\mathsf{U}}(x, X, Y) = \exists y (y \in Y \land x \leq y \land \forall x'(x \leq x' < y \rightarrow x' \in X))$

Theorem (Gastin-Kuske '03)

Model checking for any MSO-definable temporal logic is in PSPACE.

Theorem (Gastin-Kuske '03)

Model checking for any MSO-definable temporal logic is in PSPACE.

Proof.

Precompile MSO modalities into finite automata. Inductively build finite automaton equivalent to the input formula.

5. Recursive Shared-Memory Systems

Recursive Shared-Memory Systems

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{a_1,b_1,c\} \qquad \Sigma_2 = \{a_2,b_2,c\} \qquad \Sigma_{\mathsf{call}} = \{a_1,a_2\} \qquad \Sigma_{\mathsf{ret}} = \{b_1,b_2\}$

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

Nested Trace

 (a_1)

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,c\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,c\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

$\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,c\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,c\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\textsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\textsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $\textit{Proc} = \{1,2\} \qquad \Sigma_1 = \{\textit{a}_1,\textit{b}_1,\textit{c}\} \qquad \Sigma_2 = \{\textit{a}_2,\textit{b}_2,\textit{c}\} \qquad \Sigma_{\mathsf{call}} = \{\textit{a}_1,\textit{a}_2\} \qquad \Sigma_{\mathsf{ret}} = \{\textit{b}_1,\textit{b}_2\}$

Asynchronous MPA

 $Proc = \{1,2\} \qquad \Sigma_1 = \{a_1, b_1, c\} \qquad \Sigma_2 = \{a_2, b_2, c\} \qquad \Sigma_{\mathsf{call}} = \{a_1, a_2\} \qquad \Sigma_{\mathsf{ret}} = \{b_1, b_2\}$

Asynchronous MPA

Nested Trace $t = (E, \rightarrow_1, \rightarrow_2, \frown_1, \frown_2, \lambda)$

Nested Traces and Their Linearizations

Nested Trace $t = (E, \rightarrow_1, \rightarrow_2, \curvearrowright_1, \curvearrowright_2, \lambda)$

Nested Traces and Their Linearizations

Nested Trace $t = (E, \rightarrow_1, \rightarrow_2, \frown_1, \frown_2, \lambda)$

Linearizations $w \in Lin(t) \rightsquigarrow trace(w) = t$

Nested Traces and Their Linearizations

Nested Trace $t = (E, \rightarrow_1, \rightarrow_2, \frown_1, \frown_2, \lambda)$

Linearizations

Definition

• In a context, only one process modifies its stack.

Definition

- In a context, only one process modifies its stack.
- In a phase, only one process pops from its stack.

Definition

- In a context, only one process modifies its stack.
- In a phase, only one process pops from its stack.

A nested word is

• <u>k-scope bounded</u> if each call-return lies within k contexts.

Definition

- In a context, only one process modifies its stack.
- In a phase, only one process pops from its stack.
- A nested word is
 - <u>k-scope bounded</u> if each call-return lies within k contexts.
 - ordered if a pop is performed only on the first nonempty stack.

Definition

- In a context, only one process modifies its stack.
- In a phase, only one process pops from its stack.
- A nested word is
 - <u>k-scope bounded</u> if each call-return lies within k contexts.
 - ordered if a pop is performed only on the first nonempty stack.

Bounded Nested Traces

Definition

A nested trace if *k*-context bounded / *k*-phase bounded / *k*-scope bounded / ordered if at least one linearization is so.

Bounded Nested Traces

Definition

A nested trace if *k*-context bounded / *k*-phase bounded / *k*-scope bounded / ordered if at least one linearization is so.

Theorem (B.-Grindei-Habermehl '09)

Let *L* be a \sim -closed language recognized by some sequential MPA. There is an asynchronous MPA \mathcal{A} such that $L(\mathcal{A}) = trace(L)$.

Theorem

It is undecidable if the language of a sequential MPA is $\sim\text{-closed}.$

Representations

Let $\theta \in \{k \text{-context}, k \text{-scope}, k \text{-phase}, \text{ordered} \mid k \in \mathbb{N}\}.$

Definition

A set L of θ -nested words is a $\frac{\theta$ -representation if, for all θ -nested words w, w' with $w \sim_0 w'$, we have $w \in L$ iff $w' \in L$.

Representations

Let $\theta \in \{k \text{-context}, k \text{-scope}, k \text{-phase}, \text{ordered} \mid k \in \mathbb{N}\}.$

Definition

A set *L* of θ -nested words is a $\frac{\theta$ -representation if, for all θ -nested words w, w' with $w \sim_0 w'$, we have $w \in L$ iff $w' \in L$.

Representations

Let $\theta \in \{k \text{-context}, k \text{-scope}, k \text{-phase}, \text{ordered} \mid k \in \mathbb{N}\}.$

Definition

A set *L* of θ -nested words is a $\frac{\theta$ -representation if, for all θ -nested words w, w' with $w \sim_0 w'$, we have $w \in L$ iff $w' \in L$.

Theorem (B.-Grindei-Habermehl '09)

Let \mathcal{B} be some sequential MPA such that $L_{\theta}(\mathcal{B})$ is a θ -representation. There is an asynchronous MPA \mathcal{A} such that $L(\mathcal{A}) = trace(L_{\theta}(\mathcal{B}))$.

Theorem

For a sequential MPA \mathcal{B} it is decidable if $L_{\theta}(\mathcal{B})$ is a θ -representation (in elementary time).

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- ▶ $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$
- ▶ $x \curvearrowright_p y$ x and y form a call-return pair of process $p \in Proc$
- ► a(x) event x is labeled with $a \in \Sigma$

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- ▶ $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$
- ▶ $x \curvearrowright_p y$ x and y form a call-return pair of process $p \in Proc$
- a(x) event x is labeled with $a \in \Sigma$

Example

$$\models \exists x \exists y \exists z (x \frown_1 y \land a_2(z) \land x \leq z \leq y)$$

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- ▶ $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$
- ▶ $x \curvearrowright_p y$ x and y form a call-return pair of process $p \in Proc$
- a(x) event x is labeled with $a \in \Sigma$

Example

$$\models \exists x \exists y \exists z (x \frown_1 y \land a_2(z) \land x \leq z \leq y)$$

where $\leq = (\rightarrow_1 \cup \rightarrow_2)^*$

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt. $\theta\text{-nested}$ traces.

Theorem (La Torre-Madhusudan-Parlato '07-'13)

MSO logic and asynchronous MPA are expressively equivalent wrt. $\theta\text{-nested}$ traces.

 \Rightarrow MSO model checking is decidable.

Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces!

Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces! \Rightarrow Look at MSO-definable ones.

Local Temporal Logic

Observation

There are lots of (local) temporal logics for nested words/traces! \Rightarrow Look at MSO-definable ones.

Model Checking ($\theta = "k$ -phase bounded")

Model Checking ($\theta = "k$ -phase bounded")

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME when k is fixed.

Model Checking ($\theta = "k$ -phase bounded")

Theorem (B.-Cyriac-Gastin-Zeitoun '11)

Model checking for any MSO-definable temporal logic is in EXPTIME when k is fixed.

Theorem (B.-Kuske-Mennicke '13)

Model checking for any MSO-definable temporal logic is elementary when k is part of the input.

6. Message-Passing Systems

Message-Passing Systems

Communicating Automata and MSCs $Proc = \{1, 2\}$

Communicating Automaton

$\begin{array}{ll} \mbox{Communicating Automata and MSCs} \\ \mbox{Proc} = \{1,2\} & \Sigma_1 = \{1!2\,,\,1?2\} & \Sigma_2 = \{2!1\,,\,2?1\} \end{array}$

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Communicating Automaton

Message Sequence Chart (MSC) $M = (E, \rightarrow_1, \rightarrow_2, \stackrel{\text{\tiny msg}}{\rightarrow}, \lambda)$

MSC M

MSC M

3-bounded linearization $w \in Lin(M) \subseteq \Sigma^* \quad \rightsquigarrow \quad msc(w) = M$

MSC M

1-bounded linearization $w \in Lin(M) \subseteq \Sigma^* \quad \rightsquigarrow \quad msc(w) = M$

MSC M

1-bounded linearization $w \in Lin(M) \subseteq \Sigma^* \quad \rightsquigarrow \quad msc(w) = M$

Definition

Let $B \in \mathbb{N}$. An MSC is

- $\exists B$ -bounded if some linearization is B-bounded linearization.
- $\forall B$ -bounded if every linearization is *B*-bounded.

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- $\exists B$ -representation if, for all MSCs M, L contains either
 - ▶ all B-bounded linearizations of M, or
 - none of its linearizations.

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- $\exists B$ -representation if, for all MSCs M, L contains either
 - ▶ all *B*-bounded linearizations of *M*, or
 - none of its linearizations.
- \forall -representation if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- $\exists B$ -representation if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.
- \forall -representation if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.

Example

is an $\exists 1$ -representation, but no \forall -representation.

Definition

A set $L \subseteq \Sigma^*$ (of well-formed words) is a

- $\exists B$ -representation if, for all MSCs M, L contains either
 - all B-bounded linearizations of M, or
 - none of its linearizations.
- \forall -representation if, for all MSCs M, L contains either
 - all linearizations of M, or
 - none of its linearizations.

Example

is an $\exists 1$ -representation, but no \forall -representation.

is not an $\exists B$ -representation, for any B.

Theorem (Henriksen et al. '00; Kuske '03)

Let \mathcal{B} be some finite automaton such that $L(\mathcal{B})$ is a \forall -representation. There is a (deterministic) CA \mathcal{A} such that $L(\mathcal{A}) = msc(L(\mathcal{B}))$.

Theorem (Henriksen et al. '00)

For a finite automaton \mathcal{B} it is decidable if $L(\mathcal{B})$ is a \forall -representation.

Theorem (Genest-Kuske-Muscholl '06)

Let \mathcal{B} be some finite automaton such that $L(\mathcal{B})$ is a $\exists B$ -representation. There is a CA \mathcal{A} such that $L(\mathcal{A}) = msc(L(\mathcal{B}))$.

Theorem

For a finite automaton \mathcal{B} it is decidable if $L(\mathcal{B})$ is an $\exists B$ -representation.

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- ► $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$
- $x \xrightarrow{msg} y$ x and y form a message
- ► a(x) event x is labeled with $a \in \Sigma$

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO)

- ▶ $x \rightarrow_p y$ x and y are successive events on process $p \in Proc$
- $x \xrightarrow{msg} y$ x and y form a message
- a(x) event x is labeled with $a \in \Sigma$

Example

 $\models \exists x, y, x', y' (x \xrightarrow{\mathsf{msg}} y \land x' \xrightarrow{\mathsf{msg}} y' \land x \rightarrow_1^* y' \land x' \rightarrow_2^* y)$

Theorem (B.-Leucker '04)

EMSO logic ($\exists X_1 \dots X_n \varphi$ with φ first-order) and communicating automata are expressively equivalent. MSO logic is strictly more expressive.

Theorem (Genest-Kuske-Muscholl '04)

Let *L* be a set of $\exists B$ -bounded MSCs. The following are equivalent:

- There is an MSO sentence φ such that $L = L(\varphi)$.
- There is a CA \mathcal{A} such that $L = L(\mathcal{A})$.

Theorem (Genest-Kuske-Muscholl '04)

Given a CA A and an MSO sentence φ , it is decidable if all $\exists B$ -bounded MSCs from L(A) satisfy φ .

Theorem (B., Kuske, Meinecke 2007; Mennicke 2012) Given a CA A and a PDL formula φ , it is decidable in PSPACE if all $\exists B$ -bounded MSCs from L(A) satisfy φ .

7. Conclusion and Perspectives

Conclusion: Finite-State Shared-Memory Systems

Realizability

Model Checking

Conclusion: Recursive Shared-Memory Systems

Realizability

Model Checking

Conclusion: Message-Passing Systems

Realizability

Model Checking

Perspectives: Dynamic Message-Passing Systems

Realizability

Model Checking

Perspectives: Parameterized Systems

Realizability X Model Checking Reachability

Thank You!