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Origin – decidability of theories

First-order theory of (N,+, ·) is undecidable.

Goal: Identify decidable theories

Examples:

• FO(N,+) (Presburger arithmetic)

• FO(N, ·) (Skolem arithmetic)
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Weak monadic second-order logic

Theorem (Büchi’60, Elgot’61, Trakhtenbrot’62). The weak monadic
second-order theory WMSO(N,+1) is decidable.

WMSO: First-order logic plus quantification over finite sets.
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Weak monadic second-order logic

Theorem (Büchi’60, Elgot’61, Trakhtenbrot’62). The weak monadic
second-order theory WMSO(N,+1) is decidable.

WMSO: First-order logic plus quantification over finite sets.

Proof strategy: Encode finite subsets of N by finite words over
{0, 1} and translate formula ϕ into finite automaton Aϕ

• disjunction ↔ union

• negation ↔ complement

• existential quantification ↔ projection

Then: ϕ(X1, . . . , Xn) satisfiable iff L(Aϕ) ⊆ ({0, 1}n)∗ is
non-empty
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Complexity

Alternation of projection and complementation require an
exponential step in the automaton construction.
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22...2|ϕ|
}

k
for a fixed k.

Constructions and Algorithms for ω-Automata · Theorietag 2013 6



Complexity

Alternation of projection and complementation require an
exponential step in the automaton construction.

Theorem (Meyer, Stockmeyer’71) There is no translation of MSO
formulas into automata such that the size of the resulting
automaton can be bounded by a function of the form

22...2|ϕ|
}

k
for a fixed k.

Empirical observations (Tool MONA by Basin, Klarlund):

By minimizing the intermediate DFAs obtained during the
translation, it is possible to translate long formulas into automata.
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Complex MONA example

Hyman’s mutual exclusion algorithm (two processes i = 0, 1):

while true do begin

0. noncritical section

1. bi := true

2. while ( k , i ) do begin

3. while ( b1−i ) do skip

4. k := i

5. critical section

6. bi := false

end
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Idea for MONA model

The word models represent executions of the protocol.

We use sets to model the variables bi, k, and a binary encoding for
the program counter.

var2 PC1’, PC1’’, PC1’’’, PC2’, PC2’’, PC2’’’, b1, b2, K, max;

pred p1_at_line_1(var1 t)

= t notin PC1’ & t notin PC1’’ & t notin PC1’’’;

pred p1_at_line_2(var1 t)

= t notin PC1’ & t notin PC1’’ & t in PC1’’’;

...

pred p1_proc_step(var1 t)

= (p1_at_line_1(t) => p1_at_line_2(t+1) & unchanged_vars(t))

& (p1_at_line_2(t) => ...

...

#Mutual exclusion

Valid => all1 p: (p<=max => ˜(p1_at_line_6(p) & p2_at_line_6(p)));
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Counter example computed by MONA

ANALYSIS

A counter-example of least length (10) is:

PC1’ X 0000011101

PC1’’ X 0001100010

PC1’’’ X 0010100001

PC2’ X 0000000111

PC2’’ X 0000001000

PC2’’’ X 0111110111

b1 X 0001111111

b2 X 0000001111

K X 0000000011
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Full monadic second-order logic

Theorem. (Büchi’62) The monadic second-order theory
MSO(N,+1) is decidable.

Proof strategy:

• Inductive translation into automata as for WMSO.

• Use automata over infinite words.
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Büchi automata

Büchi automaton:

• same syntax as nondeterministic finite automata (NFAs)

• accepts all infinite words that admit a run visiting infinitely often
a final state

Examples:

q0 q1

a
b

b

a

p0 p1

a, b

a, b

b
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Büchi automata

Büchi automaton:

• same syntax as nondeterministic finite automata (NFAs)

• accepts all infinite words that admit a run visiting infinitely often
a final state

Examples:

q0 q1

a
b

b

a

p0 p1

a, b

a, b

b

Handling negation in the logic requires complementation of Büchi
automata (union and projection are easy).
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Classical subset construction fails

q0 q1

a, b

a, b

a

aaaaaa · · · and abababab · · · induce the same sequence of sets:

{q0}
a
−→
a

{q0, q1}
a
−→
b

{q0, q1}
a
−→
a

{q0, q1}
a
−→
b

{q0, q1} · · ·

{ sequence of reachable state sets does not contain enough
information.
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Büchi’s proof

Starting point: NBA A to be complemented

1. Assign a type (or color) to each finite word.

2. The type of a word u carries enough information about the
behavior of A on u.
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Büchi’s proof

Starting point: NBA A to be complemented

1. Assign a type (or color) to each finite word.

2. The type of a word u carries enough information about the
behavior of A on u.

3. The sequence of types is enough to decide whether the word
is in L(A) or not for an arbitrary factorization of the word
(because of 2.).

4. Every infinite word can be factorized such that the resulting
type sequence is very simple: type1(type2)ω.

5. For each type the set of words with this type is a regular
language{ representation of the complement as

⋃

Ui · Vω
i
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Transition profiles as types

q0 q1 q2
a

a, b
b

c

c
c

For u ∈ Σ
∗, the transition profile τ(u) contains for each state q

• which states are reachable from q by reading u,

• which states are reachable from q via a final state by reading u.
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Transition profiles as types

q0 q1 q2
a

a, b
b

c

c
c

For u ∈ Σ
∗, the transition profile τ(u) contains for each state q

• which states are reachable from q by reading u,

• which states are reachable from q via a final state by reading u.

τ(a):
q0

q1

q2

q0

q1

q2

◦

τ(c):
q0

q1

q2

q0

q1

q2

◦

τ(ca):
q0

q1

q2

q0

q1

q2

◦
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Transition monoid automaton

Deterministic finite automaton with transition profiles as states

τ(ǫ)

t1 t2

t3
t4

. . .

a

b

a, b

ab

• Size: there are 3n2
transition profiles.

• equipped with singleton acceptance set {t},
it recognizes all words u with τ(u) = t
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Sequences of transition profiles

Consider an infinite word α.

• For any factorization of α, the corresponding sequence of
transition profiles contains enough information to decide
whether α ∈ L.

α
t0 t1 t0 t2 t2

· · ·
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Sequences of transition profiles

Consider an infinite word α.

• For any factorization of α, the corresponding sequence of
transition profiles contains enough information to decide
whether α ∈ L.

α
t0 t1 t0 t2 t2

· · ·

• Application of Ramsey’s theorem yields a simple (periodic)
factorization

α
t0 t1 t1 t1 t1

· · ·
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Sequences of transition profiles

Consider an infinite word α.

• For any factorization of α, the corresponding sequence of
transition profiles contains enough information to decide
whether α ∈ L.

α
t0 t1 t0 t2 t2

· · ·

• Application of Ramsey’s theorem yields a simple (periodic)
factorization

α
t0 t1 t1 t1 t1

· · ·

• Σ
ω \ L(A) is of the form

⋃

t0,t1
Ut0Uω

t1

for those transition profiles t0, t1 for which t0tω
1 contains no

accepting run.
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Structure of the complement automaton

τ(ǫ)

t1 t2

t3
t4

. . .

a

b

a, b

ab

τ(ǫ)

t1 t2

t3
t4

. . .

a

b

a, b

ab

ǫ

τ(ǫ)

t1 t2

t3
t4

. . .

a

b

a, b

ab

ǫ

τ(ǫ)

t1 t2

t3
t4

. . .

a

b

a, b

ab

ǫ

ǫ

ǫ

ǫ

...

Number of states at most 3n2
· 3n2

∈ 2O(n2)
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Improvements, variations and lower bounds

Lower bounds:

• Michel’88: n! states are required

• Yan’06: (0.76n)n
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Improvements, variations and lower bounds

Lower bounds:

• Michel’88: n! states are required

• Yan’06: (0.76n)n

Improved constructions:

• Safra’88: determinization in 2O(n log n)

• Klarlund’91 / Kupferman,Friedgut,Vardi’06 / Schewe’09: best
known worst case upper bound (progress measures/ranks)

• Kähler, Wilke’08: Unified data structure for complementation,
disambiguation, and determinization in 2O(n log n)

• Breuers, L., Olschewski’12: improvement of Büchi’s original
construction to 2O(n log n)

Experimental comparison (Tsai, Fogarty, Vardi, Tsay’10):
determinization approach best
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Problems in practice

• Complementation constructions are still too complex

• Minimization of deterministic ω-automata is not yet
well-understood and more difficult:

Theorem (Schewe’10). The problem

“Given a deterministic Büchi automaton A and a number k, is there
a k-state deterministic Büchi automaton equivalent to A?”

is NP-complete.
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Presburger arithmetic and automata

Presburger arithmetic: FO(N,+,<)

Translation to automata:

• Encode numbers in binary as words.

• There is an automaton over the alphabet {0, 1}3 checking for
three numbers x, y, z whether x + y = z (similarly for <)

x 1 0 0 1 1 0
y 0 0 1 0 1 1
z 1 1 0 0 0 1

• as before: disjunction{ union, negation{ complement,
existential quantification{ projection
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Complexity

As for WMSO, each alternation of projection and complementation
leads to an exponential step in the inductive translation

{ unbounded tower of exponentials
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Complexity

As for WMSO, each alternation of projection and complementation
leads to an exponential step in the inductive translation

{ unbounded tower of exponentials

But:

Theorem (Klaedtke’04).: There is a triply exponential upper bound
on the size of the DFAs produced from formulas of Presburger
arithmetic.

Can be achieved by systematically minimizing the intermediate
DFAs.
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Real numbers

Now consider FO(R,<,+, Z) (linear real arithmetic)

• Choose the binary representation of real numbers{ ω-word.

• Code the dot by ⋆.

• Codings of 3.5:

(0+11 ⋆ 10ω) and (0+11 ⋆ 01ω)

• Vectors of real numbers are coded over the alphabet {0, 1, ⋆}n

such that ⋆ is at the same position in all components.
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Real numbers

Now consider FO(R,<,+, Z) (linear real arithmetic)

• Choose the binary representation of real numbers{ ω-word.

• Code the dot by ⋆.

• Codings of 3.5:

(0+11 ⋆ 10ω) and (0+11 ⋆ 01ω)

• Vectors of real numbers are coded over the alphabet {0, 1, ⋆}n

such that ⋆ is at the same position in all components.

• For a formula ϕ(x1, . . . , xn) of FO(R,+,<, Z) let L(ϕ) be the
set of all codings of vectors (r1, . . . , rn) that make ϕ true.
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Translation to automata

Theorem (Büchi’62). Every formula of FO(R,<,+, Z) can be
translated into an equivalent MSO formula and thus also into an
equivalent Büchi automaton.

Problem: Although only a fragment of MSO is used, the translation
into Büchi automata has to deal with the same difficulties as for full
MSO.

In particular, minimization of intermediate automata is difficult.
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Deterministic weak automata

Deterministic Büchi automata with the following property:

Each SCC is either completely accepting or completely rejecting

q0 q1

q2

q3

q4

q5a

b

c

b

a,c

c

a,b

a

b

c

a,b

c

a,b,c

weak

q0 q1

a
b

b

a
not weak
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Minimization

Theorem (Boigelot,Jodogne,Wolper’01). Let ϕ be a formula of
FO(R,+,<, Z). Then L(ϕ) is recognizable by a deterministic
weak Büchi automaton.

The proof uses topological arguments.
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Reduction to Minimization of DFAs

Theorem (Staiger’83). Weak deterministic automata have canonical
minimal automata, which can be defined in terms of the adaption of
the Myhill/Nerode equivalence to infinite words.
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Reduction to Minimization of DFAs

Theorem (Staiger’83). Weak deterministic automata have canonical
minimal automata, which can be defined in terms of the adaption of
the Myhill/Nerode equivalence to infinite words.

Theorem (L.’01). The minimization of deterministic weak Büchi
automata can be reduced in linear time to the minimization of DFAs.

Some remarks on the proof:

• The algorithm computes from a weak Büchi automaton A a
weak Büchi automaton A′ that can be minimized as DFA and
results in a minimal weak Büchi automaton.

• A′ only differs from A on the set of accepting states. This set
is recomputed on states that are not on a loop.
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Illustration

q0 q1

q2

q3

q4

q5a

b

c

b

a,c

c

a,b

a,c

b

a,b

c

a,b,c
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q0 q1

q2

q3

q4

q5a

b

c

b

a,c

c

a,b

a,c

b

a,b

c

a,b,c

1. Adapt acceptance status
of non-looping states:

q0 q1

q2

q3

q4

q5a

b

c

b

a,c

c

a,b

a,c

b

a,b

c

a,b,c
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q0 q1

q2

q3

q4

q5a

b

c
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a,c

c

a,b
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a,b
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a,b,c

1. Adapt acceptance status
of non-looping states:

q0 q1

q2

q3

q4

q5a

b

c

b

a,c

c

a,b

a,c

b

a,b

c

a,b,c

2. Minimize as DFA:

q0 q1,3

q2,4

q5a

b

c

a,c

b

a,b

c

a,b,c
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Implementation

• There is a similar triply exponential upper bound on the
automata size as for finite words (Eisinger’08)

• Has been implemented in the LASH Toolset (Boigelot, Latour,
Legay) and in LIRA (Becker, Dax, Eisinger, Klaedtke’07).

• Used, for example, to represent reachability sets of hybrid
automata.
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Summary

ω-automata as a useful tool for decision procedures:

• Monadic second-order logic

• Linear arithmetic over the reals

Problems:

• Constructions are more complex

• Minimization is difficult

Deterministic weak automata form a robust fragment with good
algorithmic properties.
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Some current topics

Towards practical algorithms

• Evaluate and improve existing constructions
(complementation, determinization)

• Find more efficient algorithms for subclasses of
logics/automata (for example unambiguous automata or
fragments of temporal logics)

Stronger decidability results

• Extensions of logic/automata to express boundedness
properties.
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