Automatic relations

Appendix

Automatic structures Lecture 1: Motivation, definitions, and basic properties

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

Motivation

Computable structures

Rational graphs Automatic structures

Automatic relations \sim and regular languag

Closure properties of \sim

Computable structures I

Definition

A graph (V; E) is computable if $V \subseteq \mathbb{N}$ and $E \subseteq V \times V \subseteq \mathbb{N}^2$ are decidable, i.e., a computable graph is given by a pair of Turing machines (T_V, T_E) that decide V and E, resp.

Basic problems with this class

- first-order theory undecidable: there exists a computable graph whose first-order theory is Δ^0_{ω} -complete.
- natural problems are highly undecidable:
 - the set of pairs (T_V, T_E) representing some graph G with an infinite clique (with a Hamiltonian path, resp) is Σ¹₁-complete.
 - there exists a graph G such that the set of presentations of graphs isomorphic to G is Σ¹₁-complete.

The arithmetical and the analytical hierarchy – officially

• A set $R \subseteq \mathbb{N}$ is in $\sum_{n=1}^{\infty} \mathbb{N}_{n}$ if there exists a polynomial $p \in \mathbb{N}[x, y_{1}, \dots, y_{n}]$ such that

$$x \in R \iff \exists y_1 \forall y_2 \ldots \exists / \forall y_n : p(x, \overline{y}) = 0.$$

 $\Pi_n^0 = \{\mathbb{N} \setminus R \mid R \in \Sigma_n^0\} \neq 2^{\mathbb{N}} \setminus \Sigma_n^0$

• A set $R \subseteq \mathbb{N}$ is in Δ^0_{ω} if there exists a computable function $f : \mathbb{N} \to \bigcup_{n \ge 0} \mathbb{N}[x, y_1, \dots, y_n]$ such that

$$x \in R \iff \exists y_1 \forall y_2 \dots \exists / \forall y_n : f(x)(x, \overline{y}) = 0.$$

 A set R ⊆ N is in Σ¹₁ if there exists an oracle Turing machine M such that

$$x \in R \iff \exists X \subseteq \mathbb{N} \, \forall y \exists z : M^X \text{ accepts } (x, y, z).$$

Relations between these classes

$$\mathrm{REC}\subsetneq\mathrm{RE}=\Sigma_1^0\subsetneq\Sigma_2^0\subsetneq\Sigma_3^0\subsetneq\cdots\Delta_\omega^0\subsetneq\Sigma_1^1\subsetneq2^\mathbb{N}$$

- universe \mathcal{U} : all finitary objects (e.g. natural numbers, words, automata, finite sets ...)
- relations: all decidable relations on \mathcal{U}
- $$\begin{split} \Sigma_n^0: & \text{ all relations defined by formulas of form} \\ & \exists \overline{x}_1 \forall \overline{x}_2 \ldots \exists / \forall \overline{x}_n : R(\overline{x}, \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n) \end{split}$$
- $\begin{array}{l} \Pi_n^0: \quad \text{all relations defined by formulas of form} \\ \forall \overline{x}_1 \exists \overline{x}_2 \ldots \forall / \exists \overline{x}_n : R(\overline{x}, \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n) \end{array}$
- $\begin{array}{ll} \Delta^0_\omega : & \text{all relations } \{ \overline{x} \in \mathcal{U} \mid \mathcal{U} \models f(\overline{x})(\overline{x}) \} \text{ with } f : \mathbb{N}^k \to \mathrm{FO}[\mathcal{U}] \\ & \text{computable} \end{array}$
- Σ_1^1 : all relations defined by formulas of form $\exists X_1, \ldots, X_m : \varphi$ with φ first-order, X_i relation variable

Computable structures I

Definition

A graph (V; E) is computable if $V \subseteq \mathbb{N}$ and $E \subseteq V \times V \subseteq \mathbb{N}^2$ are decidable, i.e., a computable graph is given by a pair of Turing machines (T_V, T_E) that decide V and E, resp.

Basic problems with this class

- first-order theory undecidable: there exists a computable graph whose first-order theory is Δ^0_{ω} -complete.
- natural problems are highly undecidable:
 - the set of pairs (T_V, T_E) representing some graph G with an infinite clique (with a Hamiltonian path, resp) is Σ¹₁-complete.
 - there exists a graph G such that the set of presentations of graphs isomorphic to G is Σ¹₁-complete.

Computable structures II

Possible solution

restrict class by, e.g., restricing class of admissible presentations – how far?

polynomial time is too powerful

for any computable graph G, there exists an isomorphic one G' = (V'; E') such that V' and E' are both in P (and a presentation of G' can be computed from one of G).

asynchronous multitape automata are too powerful see below

Motivation

Computable structures Rational graphs

Automatic structures

Automatic relations

Closure properties of \sim

Automatic relations

Appendix

Multitape automata

Some properties

- accept relations on Γ*, emptiness decidable
- effective closure under union, projection, cylindrification
- not closed under complementation, intersection; universality undecidable

Rational graphs

A graph (V; E) is rational if $V \subseteq \Sigma^*$ is regular and $E \subseteq V \times V \subseteq \Sigma^* \times \Sigma^*$ is accepted by some multitape automaton.

clear

rational graphs form a (proper) subclass of all computable graphs (up to isomorphism).

Example subword order

 $V = \{a, b\}^*$ all words – clearly regular $E = \{(u, v) \mid u \text{ is subword of } v\}$, e.g., $(abba, abbaa), (abba, ababa) \in E$ – accepted by 2-tape automaton with one state

K'06: Σ_3 -theory of (V; E) is undecidable.

 \Rightarrow restriction of class of computable structures to rational ones does not suffice.

Appendix

Motivation

Computable structures Rational graphs Automatic structures

Automatic relations \sim and regular languages Closure properties of \sim

```
Motivation
○○○○○
○●○○
```

Synchronous multitape automata

relation accepted by M: R(M) $R \subseteq (\Gamma^*)^k$ automatic if it is accepted by some synchronous k-head automaton

Some properties of automatic relations

- emptiness and universality decidable
- effective closure under union, projection, cylindrification, complementation, intersection

Automatic structures

Definition (Khoussainov & Nerode '95)

A relational structure (V, $(R_i)_{1 \le i \le n}$) is

- 1. regular, if $V \subseteq \Gamma^*$ and $R_i \subseteq V^k \subseteq (\Gamma^*)^k$ can be accepted by synchronous k-tape automata M and M_i , resp. (For algorithmic purposes, a regular structure $\mathcal{A}(P)$ is given by a presentation $P = (M, (M_i)_{1 \le i \le n})$)
- 2. automatic, if it is isomorphic to some regular structure.

Examples of automatic structures

- all finite structures
- complete binary tree, length-lexicographic order $\leq_{
 m llex}$
- Presburger arithmetic $(\mathbb{N}, +)$ automaton (Skolem arithmetic (\mathbb{N}, \cdot) is not automatic)
- (\mathbb{Q}, \leq) (K '03: even automatic-homogeneous)

Automatic structures

Definition (Khoussainov & Nerode '95)

A relational structure (V, $(R_i)_{1 \le i \le n}$) is

- regular, if V ⊆ Γ* and R_i ⊆ V^k ⊆ (Γ*)^k can be accepted by synchronous k-tape automata M and M_i, resp. (For algorithmic purposes, a regular structure A(P) is given by a presentation P = (M, (M_i)_{1≤i≤n}))
- 2. automatic, if it is isomorphic to some regular structure.

Examples of automatic structures

- rewrite graph (Σ^*, \rightarrow) of semi-Thue system
- configuration graph of a Turing machine
- configuration graph with reachability $(\mathit{Q}\Gamma^*,\to,\to^*)$ of a pushdown automaton

Automatic relations

Examples

- Cayley-graphs of automatic monoids, in particular of
 - rational monoids (Sakarovitch '87)
 - virtually free f.g., virtually free Abelian f.g., and of hyperbolic groups (Epstein et al. '92)
 - singular Artin monoids of finite type
 - (Corran, Hoffmann, K & Thomas '06)
 - graph products of such monoids (Fohry & K '05)
- ordinal α automatic iff $\alpha < \omega^\omega$

- B = Boolean algebra of (co-)finite subsets of N infinite Boolean algebra automatic iff Bⁿ for some n ∈ N (Khoussainov, Nies, Rubin, Stephan '04)
- field automatic iff finite

(Khoussainov, Nies, Rubin, Stephan '04)

• f.g. group automatic iff virtually Abelian

(Oliver & Thomas '05)

⁽Delhommé, Goranko & Knapik '03)

Computable structures Rational graphs Automatic structures

Automatic relations

 \sim and regular languages Closure properties of \sim

Finite automata

A finite automaton over the alphabet Σ is a tuple M = (Q, I, T, F) such that

- Q is a finite set of "states",
- $I \subseteq Q$ is the set of "initial states",
- $\mathcal{T} \subseteq Q imes \Sigma imes Q$ is the set of "transitions", and
- $F \subseteq Q$ is the set of "accepting" or "final states".

A run of M is a nonempty word

$$r = (p_0, a_1, p_1)(p_1, a_2, p_2) \dots (p_{n-1}, a_n, p_n) \in T^+$$

 p_0 is its initial state, p_n its final one, and $w = a_1 a_2 \dots a_n \in \Sigma^+$ its label. It is accepting if $p_0 \in I$ and $p_n \in F$. The language L(M) of M is the set of labels of accepting runs. A language $L \subseteq \Sigma^+$ is regular if it is the language of some finite automaton.

Automatic relations

Appendix

From tuples of words to words

For a tuple of words $(w_1, w_2, ..., w_n)$ over Σ with $w_i = a_1^i a_2^i \dots a_{k_i}^i$, let the convolution be defined by

$$\otimes(w_1,\ldots,w_n) = \begin{pmatrix} b_1^1\\b_1^2\\\vdots\\b_1^n \end{pmatrix} \begin{pmatrix} b_2^1\\b_2^2\\\vdots\\b_2^n \end{pmatrix} \cdots \begin{pmatrix} b_k^1\\b_k^2\\\vdots\\b_k^n \end{pmatrix} \in ((\Sigma \cup \{\diamond\})^n)^*$$

with $k = \max(k_1, k_2, \ldots, k_n)$ and

$$b_i^j = egin{cases} a_i^j & ext{ if } j \leq k_i \ \diamond & ext{ otherwise} \end{cases}$$

From relations to languages

For a relation $R \subseteq (\Sigma^*)^n$, let the convolution $\otimes R$ be defined by

$$\otimes \mathbb{R} = \{ \otimes (w_1, \ldots, w_n) \mid (w_1, \ldots, w_n) \in \mathbb{R} \} \subseteq ((\Sigma \cup \{\diamond\})^n)^*$$

Fact

A relation R is automatic (i.e., accepted by some synchronous multitape automaton) if and only if its convolution $\otimes R$ is regular.

Automatic relations

Appendix

Motivation

Computable structures Rational graphs Automatic structures

Automatic relations

 \sim and regular languages Closure properties of \sim

Automatic relations

Appendix

Union

Lemma

If $R_1, R_2 \subseteq (\Sigma^+)^n$ are automatic, then $R_1 \cup R_2$ effectively automatic.

Proof

$$\begin{split} M_i &= (Q_i, I_i, T_i, F_i) \text{ finite automaton accepting } \otimes R_i. \\ \text{w.l.o.g. } Q_1 \cap Q_2 &= \emptyset. \\ \text{Then } (Q_1 \cup Q_2, I_1 \cup I_2, T_1 \cup T_2, F_1 \cup F_2) \text{ accepts} \\ (\otimes R_1) \cup (\otimes R_2) &= \otimes (R_1 \cup R_2). \end{split}$$

Automatic relations

Appendix

Complementation

Lemma

If $R \subseteq (\Sigma^+)^n$ is automatic, then its complement $(\Sigma^+)^n \setminus R$ is effectively automatic.

Proof

 $\begin{array}{l} R \text{ automatic} \Rightarrow \otimes R \text{ regular language in } \Gamma^+ \text{ with } \Gamma = (\Sigma \cup \{\diamond\})^n \\ \Rightarrow \Gamma^+ \setminus \otimes R \text{ regular} \end{array}$

The convolution of the complement of R equals

 $\Gamma^+ \setminus \otimes R \cap \otimes (\Sigma^+)^n$

since $(\Sigma^+)^n$ is automatic, this intersection is regular.

Automatic relations

Appendix

Interlude

- 1. there are automatic binary relations R and S s.t. $R \cdot S = \{(uv, u'v') \mid (u, v) \in R, (u', v') \in S\}$ is not automatic
- 2. $(R \cap S) = (R^{co} \cup S^{co})^{co}$, hence intersection of automatic relations is effectively automatic, but automaton is huge!

Automatic relations

Appendix

Intersection

Lemma

If $R_1, R_2 \subseteq (\Sigma^+)^n$ are automatic, then $R_1 \cap R_2$ is effectively automatic.

Proof $M_i = (Q_i, I_i, T_i, F_i)$ finite automaton accepting $\otimes R_i$.

$$egin{aligned} & \mathcal{Q} := \mathcal{Q}_1 imes \mathcal{Q}_2 \ & \mathcal{I} := \mathcal{I}_1 imes \mathcal{I}_2 \ & \mathcal{T} := \{((p,p'), \overline{a}, (q,q')) \mid (p, \overline{a}, q) \in \mathcal{T}_1, (q, \overline{a}, q') \in \mathcal{T}_2\} \ & \mathcal{F} := \mathcal{F}_1 imes \mathcal{F}_2 \end{aligned}$$

Then (Q, I, T, F) accepts $(\otimes R_1) \cap (\otimes R_2) = \otimes (R_1 \cap R_2)$.

Projection

Lemma If $R \subseteq (\Sigma^+)^n$ is automatic, then its projection $\{(w_1, \ldots, w_{n-1}) \mid \exists w_n : (w_1, \ldots, w_n) \in R\}$ is effectively automatic. Proof (for n = 2) M = (Q, I, T, F) finite automaton for $\otimes R$.

 $T' := \{(p, a, q) \in Q \times \Sigma \times Q \mid \exists b \in \Sigma \cup \{\diamond\} : (p, (a, b), q) \in T\}$ $F' := \{p \in Q \mid (Q, \{p\}, T, F) \text{ accepts some word from } (\{\diamond\} \times \Sigma)^+\}$ $\cup F$

Then (Q, I, T', F') accepts $\otimes \{u \mid \exists v : (u, v) \in R\}$.

Cylindrification

Lemma

If $R \subseteq (\Sigma^+)^n$ is automatic, then its cylindrification $\{(w_1, \ldots, w_n, w_{n+1}) \mid (w_1, \ldots, w_n) \in R, w_{n+1} \in \Sigma^+\}$ is effectively automatic.

Proof (for n = 1) M = (Q, I, T, F) finite automaton for $\otimes R$. new set of states: $Q' = Q \times \{0, 1\} \cup \{\top\}$ for $(p, a, q) \in T$ and $b \in \Sigma$, transitions in T': $((p, 0), (a, b), (q, 0)), ((p, 0), (a, \diamond), (q, 1)), \text{ and } ((p, 1), (a, \diamond)(q, 1))$ furthermore, transitions $((f, 0), (\diamond, b), \top)$ for $f \in F$ and $(\top, (\diamond, b), \top)$ $F' = F \times \{0, 1\} \cup \{\top\}.$ Then (Q', I, T', F') accepts $\{(u, v) \mid u \in R\}.$

Automatic relations

Appendix

See you tomorrow!

