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Definition

A graph (V; E) is computable if V C Nand E C V x V C N? are
decidable, i.e., a computable graph is given by a pair of Turing
machines ( Ty, Tg) that decide V and E, resp.

Basic problems with this class

e first-order theory undecidable: there exists a computable
graph whose first-order theory is A2 -complete.
e natural problems are highly undecidable:

e the set of pairs (Ty, Tg) representing some graph G with an
infinite clique (with a Hamiltonian path, resp) is £1-complete.

e there exists a graph G such that the set of presentations of
graphs isomorphic to G is Y1i-complete.
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The arithmetical and the analytical hierarchy — officially

e Aset RC Nisin XY if there exists a polynomial
p € N[x,y1,...,yn] such that

Xx€R <= InVyr...3/Vyn: p(x,¥) =0.
My ={N\R|Rex}} #2"\ 2]
e Aset RC Nisin AL if there exists a computable function
f:N—= U,>0N[x, y1,...,yn] such that

x€R < Iy Vyo...3/Vn: f(x)(x,¥) =0.

e Aset RC Nisin X1 if there exists an oracle Turing
machine M such that

x € R <= 3X C NVy3z: MX accepts (x,y,2).

Relations between these classes

RECCRE=30c¥icyic...A2 c¥icoN
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The arithmetical and the analytical hierarchy — inofficially

universe U all finitary objects (e.g. natural numbers, words,

automata, finite sets . ..)

relations: all decidable relations on U/

30 all relations defined by formulas of form
IX1VXz ... 3/VXn  R(X,X1,X2,...,Xn)

M9 all relations defined by formulas of form
Vx13Xz ... V/3xp 0 R(X,X1,X2,...,Xn)

A%: all relations {x € U | U = f(X)(X)} with f : N¥ — FO[U]
computable

¥1: all relations defined by formulas of form 3Xi,..., Xy, : ¢

with ¢ first-order, X; relation variable
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Possible solution
restrict class by, e.g., restricing class of admissible presentations —
how far?

polynomial time is too powerful

for any computable graph G, there exists an isomorphic one
G’ = (V’; E') such that V'’ and E’ are both in P (and a
presentation of G’ can be computed from one of G).

asynchronous multitape automata are too powerful
see below
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Multitape automata

[20f]]fas]ae] s][ae] 7] ¢

T | adcepting?

[ecfo[odo Jex]o]

Some properties

accept relations on '™, emptiness decidable
effective closure under union, projection, cylindrification

not closed under complementation, intersection; universality
undecidable
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Rational graphs

A graph (V; E) is rational if V C ¥* is regular and

ECV XV CXY*xX*is accepted by some multitape automaton.

clear
rational graphs form a (proper) subclass of all computable graphs
(up to isomorphism).

Example subword order

V = {a, b}* all words — clearly regular

E ={(u,v) | uis subword of v}, e.g.,

(abba, abbaa), (abba, ababa) € E — accepted by 2-tape automaton

with one state

K'06: X3-theory of (V; E) is undecidable.

= restriction of class of computable structures to rational ones
does not suffice.
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Synchronous multitape automata

[20]ax]a2]zs[adfas]fac] a]las]

gs | adeepting?

BARERERaE

relation accepted by M: R(M)

R C (M)k automatic if it is
accepted by some synchronous
k-head automaton

Some properties of automatic relations

e emptiness and universality decidable

o effective closure under union, projection, cylindrification,
complementation, intersection
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Automatic structures
Definition (Khoussainov & Nerode '95)

A relational structure (V, (Ri)i<i<n) is

1. regular, if V CT* and R; C VK C ()X can be accepted by
synchronous k-tape automata M and M;, resp.
(For algorithmic purposes, a regular structure A(P) is given
by a presentation P = (M, (M;)1<i<n))

2. automatic, if it is isomorphic to some regular structure.
Examples of automatic structures

all finite structures

complete binary tree, length-lexicographic order <jjex

Presburger arithmetic (N, +) (Skolem arithmetic
(N, ) is not automatic)

(Q, <) (K '03: even automatic-homogeneous)

Appendix
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Automatic structures

Definition (Khoussainov & Nerode '95)
A relational structure (V, (Ri)i<i<n) is
1. regular, if V CT* and R; C VK C ()X can be accepted by
synchronous k-tape automata M and M;, resp.
(For algorithmic purposes, a regular structure A(P) is given
by a presentation P = (M, (M;)1<i<n))

2. automatic, if it is isomorphic to some regular structure.

Examples of automatic structures

e rewrite graph (X*, —) of semi-Thue system

e configuration graph of a Turing machine

e configuration graph with reachability (QI'*, —, —*) of a
pushdown automaton

Appendix
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Examples
e Cayley-graphs of automatic monoids, in particular of
e rational monoids (Sakarovitch '87)
e virtually free f.g., virtually free Abelian f.g., and of hyperbolic
groups (Epstein et al. '92)

e singular Artin monoids of finite type
(Corran, Hoffmann, K & Thomas '06)
e graph products of such monoids (Fohry & K '05)

ordinal v automatic iff o < w?
(Delhommé, Goranko & Knapik '03)

e B = Boolean algebra of (co-)finite subsets of N
infinite Boolean algebra automatic iff B” for some n € N

(Khoussainov, Nies, Rubin, Stephan '04)
field automatic iff finite

(Khoussainov, Nies, Rubin, Stephan '04)
e f.g. group automatic iff virtually Abelian
(Oliver & Thomas '05)
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Finite automata
A finite automaton over the alphabet ¥ is a tuple
M= (Q,!l, T,F) such that

Q is a finite set of “states”,

e | C @ is the set of “initial states”,

e T C QR xX xQ is the set of “transitions’, and

e F C @ is the set of "accepting” or “final states”.

A run of M is a nonempty word

r = (P07 a1, Pl)(Pla an, P2) CIEaE (Pn—la dn, Pn) S T+ )

po is its initial state, p, its final one, and w = aja>...a, € L7 its
label. It is accepting if pg € | and p, € F.

The language L(M) of M is the set of labels of accepting runs.

A language L C X7 is regular if it is the language of some finite

automaton.
16 /27
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From tuples of words to words

For a tuple of words (wy, wa, ..., w,) over X with
wj = aja, ... a;., let the convolution be defined by

ANCANE
ANCIE: :

) = | ] e @ ugen
o) \og)  \pp

with k = max(kq, k2, ..., k,) and

bj:{af if j < ki

! o otherwise

Appendix
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From relations to languages
For a relation R C (X*)", let the convolution @R be defined by

DR = {®(wi,...,wa) | (wi,...,wn) € R} C ((ZU{o})")*

Fact
A relation R is automatic (i.e., accepted by some synchronous

multitape automaton) if and only if its convolution ®R is regular.

EEEFEEEEE || [
bg|b1|ba|b3|bg|bs|bg|[©||[©

(

qs | Adcepting?

|bo]lox bz\I\b3\|\b4\|\b5\|\b6\|\<>\|\<> |
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Automatic relations

Closure properties of ~
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Lemma
If Ry, R, C (X1)" are automatic, then Ry U R, effectively

automatic.

Proof

M; = (Qi, I, Ti, F;) finite automaton accepting ®R;.

w.log QN Q=0.

Then (Q1U Q2,h Uk, T1 U Ty, F1 U Fy) accepts

(®R1) U (®R2) = ®(R1 U RQ). L]
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Complementation

Lemma
If R C (X1)" is automatic, then its complement (X1)"\ R is
effectively automatic.

Proof
R automatic = ®R regular language in '™ with [ = (X U {¢})"
= "\ ®R regular

The convolution of the complement of R equals
rM\eRNe(xh)"

since (X1)" is automatic, this intersection is regular. O

21/27
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Interlude

1. there are automatic binary relations R and S s.t.
R-S={(uv,uV) | (u,v) € R,(U,Vv') € S} is not automatic

2. (RNS) = (R US)%, hence intersection of automatic
relations is effectively automatic, but automaton is huge!

22/27
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Intersection

Lemma
If Ry, Ry C (X1)" are automatic, then Ry N Ry is effectively

automatic.

Proof
M; = (Q;, I, T;, F;) finite automaton accepting ®R;.

Q=01 x Q
| = Il X I2
T:={((p,p').3.(q,9)) | (p.3,q) € T1.(q.3,4¢") € T2}
F = F1 X F2
Then (Q,/, T, F) accepts (®R1) N (®R2) = @(R1 N Ry). O
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Projection
Lemma
If R C (X)" is automatic, then its projection
{(wa,...,wWp—1) | 3wy : (w1,...,w,) € R} is effectively automatic.

Proof (for n = 2)
M= (Q,!, T,F) finite automaton for ®R.

T :={(p,a,9) e Qx L x Q|IbexzU{o}:(p,(a,b),q) e T}
F'={pe@|(Q,{p}, T,F) accepts some word from ({0} x £)*}
UF

Then (Q, 1, T',F') accepts @{u | v : (u,v) € R}. O
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Cylindrification

Lemma

If R C (X1)" is automatic, then its cylindrification

{(wa, ..oy Wo, Wop1) | (wa,...,wp) € R,wpiq € X7} is effectively
automatic.

Proof (for n =1)
M= (Q,!, T,F) finite automaton for ®R.

new set of states: Q@' = Q x {0,1}U{T}

for (p,a,q) € T and b € X, transitions in T":

((p,0), (a, b),(g,0)). ((p,0),(a,0),(g,1)), and ((p, 1), (a,0)(q,1))
furthermore, transitions ((f,0), (¢, b), T) for f € F and

(T, (o, b), T)

F'=Fx{0,1} U{T}.

Then (Q', 1, T',F") accepts {(u,v) | u € R}. O
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See you tomorrow!
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