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Computable structures I

Definition
A graph (V ;E ) is computable if V ⊆ N and E ⊆ V × V ⊆ N2 are
decidable, i.e., a computable graph is given by a pair of Turing
machines (TV ,TE ) that decide V and E , resp.

Basic problems with this class

• first-order theory undecidable: there exists a computable
graph whose first-order theory is ∆0

ω
-complete.

• natural problems are highly undecidable:
• the set of pairs (TV ,TE ) representing some graph G with an

infinite clique (with a Hamiltonian path, resp) is Σ1
1-complete.

• there exists a graph G such that the set of presentations of
graphs isomorphic to G is Σ1

1-complete.
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The arithmetical and the analytical hierarchy – officially
• A set R ⊆ N is in Σ0

n if there exists a polynomial
p ∈ N[x , y1, . . . , yn] such that

x ∈ R ⇐⇒ ∃y1 ∀y2 . . . ∃/∀yn : p(x , y) = 0.

Π0
n = {N \ R | R ∈ Σ0

n} 6= 2N \ Σ0
n

• A set R ⊆ N is in ∆0
ω
if there exists a computable function

f : N →
⋃

n≥0N[x , y1, . . . , yn] such that

x ∈ R ⇐⇒ ∃y1 ∀y2 . . . ∃/∀yn : f (x)(x , y) = 0.

• A set R ⊆ N is in Σ1
1 if there exists an oracle Turing

machine M such that

x ∈ R ⇐⇒ ∃X ⊆ N ∀y∃z : MX accepts (x , y , z).

Relations between these classes

REC ( RE = Σ0
1 ( Σ0

2 ( Σ0
3 ( · · ·∆0

ω
( Σ1

1 ( 2N
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The arithmetical and the analytical hierarchy – inofficially

universe U : all finitary objects (e.g. natural numbers, words,
automata, finite sets . . . )

relations: all decidable relations on U

Σ0
n: all relations defined by formulas of form

∃x1∀x2 . . . ∃/∀xn : R(x , x1, x2, . . . , xn)

Π0
n: all relations defined by formulas of form

∀x1∃x2 . . . ∀/∃xn : R(x , x1, x2, . . . , xn)

∆0
ω
: all relations {x ∈ U | U |= f (x)(x)} with f : Nk → FO[U ]

computable

Σ1
1: all relations defined by formulas of form ∃X1, . . . ,Xm : ϕ

with ϕ first-order, Xi relation variable
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Computable structures I

Definition
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decidable, i.e., a computable graph is given by a pair of Turing
machines (TV ,TE ) that decide V and E , resp.

Basic problems with this class

• first-order theory undecidable: there exists a computable
graph whose first-order theory is ∆0

ω
-complete.

• natural problems are highly undecidable:
• the set of pairs (TV ,TE ) representing some graph G with an

infinite clique (with a Hamiltonian path, resp) is Σ1
1-complete.

• there exists a graph G such that the set of presentations of
graphs isomorphic to G is Σ1

1-complete.

6 / 27



Motivation Automatic relations Appendix

Computable structures II

Possible solution
restrict class by, e.g., restricing class of admissible presentations –
how far?

polynomial time is too powerful

for any computable graph G , there exists an isomorphic one
G ′ = (V ′;E ′) such that V ′ and E ′ are both in P (and a
presentation of G ′ can be computed from one of G ).

asynchronous multitape automata are too powerful

see below
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Multitape automata

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 b1 b2 b3 b4 b5 b6

q0 initialq1q2q3q4q5q6q7q8q9q10q11 accepting?

Some properties

• accept relations on Γ∗, emptiness decidable

• effective closure under union, projection, cylindrification

• not closed under complementation, intersection; universality
undecidable
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Rational graphs

A graph (V ;E ) is rational if V ⊆ Σ∗ is regular and
E ⊆ V × V ⊆ Σ∗ × Σ∗ is accepted by some multitape automaton.

clear
rational graphs form a (proper) subclass of all computable graphs
(up to isomorphism).

Example subword order

V = {a, b}∗ all words – clearly regular
E = {(u, v) | u is subword of v}, e.g.,
(abba, abbaa), (abba, ababa) ∈ E – accepted by 2-tape automaton
with one state
K’06: Σ3-theory of (V ;E ) is undecidable.
⇒ restriction of class of computable structures to rational ones

does not suffice.
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Synchronous multitape automata

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 b1 b2 b3 b4 b5 b6

q0 initialq1q2q3q4q5q6

⋄ ⋄

q7q8 accepting?

relation accepted by M: R(M)

R ⊆ (Γ∗)k automatic if it is
accepted by some synchronous
k-head automaton

Some properties of automatic relations

• emptiness and universality decidable

• effective closure under union, projection, cylindrification,
complementation, intersection
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Automatic structures

Definition (Khoussainov & Nerode ’95)

A relational structure (V , (Ri )1≤i≤n) is

1. regular, if V ⊆ Γ∗ and Ri ⊆ V k ⊆ (Γ∗)k can be accepted by
synchronous k-tape automata M and Mi , resp.
(For algorithmic purposes, a regular structure A(P) is given
by a presentation P = (M, (Mi )1≤i≤n))

2. automatic, if it is isomorphic to some regular structure.

Examples of automatic structures

• all finite structures

• complete binary tree, length-lexicographic order ≤llex

• Presburger arithmetic (N,+) automaton (Skolem arithmetic
(N, ·) is not automatic)

• (Q,≤) (K ’03: even automatic-homogeneous) 13 / 27
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Automatic structures

Definition (Khoussainov & Nerode ’95)

A relational structure (V , (Ri )1≤i≤n) is

1. regular, if V ⊆ Γ∗ and Ri ⊆ V k ⊆ (Γ∗)k can be accepted by
synchronous k-tape automata M and Mi , resp.
(For algorithmic purposes, a regular structure A(P) is given
by a presentation P = (M, (Mi )1≤i≤n))

2. automatic, if it is isomorphic to some regular structure.

Examples of automatic structures

• rewrite graph (Σ∗,→) of semi-Thue system

• configuration graph of a Turing machine

• configuration graph with reachability (QΓ∗,→,→∗) of a
pushdown automaton
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Examples
• Cayley-graphs of automatic monoids, in particular of

• rational monoids (Sakarovitch ’87)
• virtually free f.g., virtually free Abelian f.g., and of hyperbolic

groups (Epstein et al. ’92)
• singular Artin monoids of finite type

(Corran, Hoffmann, K & Thomas ’06)
• graph products of such monoids (Fohry & K ’05)

• ordinal α automatic iff α < ωω

(Delhommé, Goranko & Knapik ’03)
• B = Boolean algebra of (co-)finite subsets of N
infinite Boolean algebra automatic iff Bn for some n ∈ N

(Khoussainov, Nies, Rubin, Stephan ’04)
• field automatic iff finite

(Khoussainov, Nies, Rubin, Stephan ’04)
• f.g. group automatic iff virtually Abelian

(Oliver & Thomas ’05)
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Finite automata
A finite automaton over the alphabet Σ is a tuple
M = (Q, I ,T ,F ) such that

• Q is a finite set of “states”,

• I ⊆ Q is the set of “initial states”,

• T ⊆ Q × Σ× Q is the set of “transitions”, and

• F ⊆ Q is the set of “accepting” or “final states”.

A run of M is a nonempty word

r = (p0, a1, p1)(p1, a2, p2) . . . (pn−1, an, pn) ∈ T+ ,

p0 is its initial state, pn its final one, and w = a1a2 . . . an ∈ Σ+ its
label. It is accepting if p0 ∈ I and pn ∈ F .
The language L(M) of M is the set of labels of accepting runs.
A language L ⊆ Σ+ is regular if it is the language of some finite
automaton.
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From tuples of words to words

For a tuple of words (w1,w2, . . . ,wn) over Σ with
wi = ai1a

i
2 . . . a

i
ki
, let the convolution be defined by

⊗(w1, . . . ,wn) =











b11
b21
...
bn1





















b12
b22
...
bn2











· · ·











b1k
b2k
...
bnk











∈ ((Σ ∪ {⋄})n)∗

with k = max(k1, k2, . . . , kn) and

b
j
i =

{

a
j
i if j ≤ ki

⋄ otherwise
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From relations to languages
For a relation R ⊆ (Σ∗)n, let the convolution ⊗R be defined by

⊗R = {⊗(w1, . . . ,wn) | (w1, . . . ,wn) ∈ R} ⊆ ((Σ ∪ {⋄})n)∗

Fact
A relation R is automatic (i.e., accepted by some synchronous
multitape automaton) if and only if its convolution ⊗R is regular.

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 b1 b2 b3 b4 b5 b6

q0 initialq1q2q3q4q5q6

⋄ ⋄

q7q8 accepting?

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 b1 b2 b3 b4 b5 b6 ⋄ ⋄

q0 initialq1q2q3q4q5q6q7q8 accepting?
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Union

Lemma
If R1,R2 ⊆ (Σ+)n are automatic, then R1 ∪ R2 effectively
automatic.

Proof
Mi = (Qi , Ii ,Ti ,Fi ) finite automaton accepting ⊗Ri .
w.l.o.g. Q1 ∩ Q2 = ∅.
Then (Q1 ∪ Q2, I1 ∪ I2,T1 ∪ T2,F1 ∪ F2) accepts
(⊗R1) ∪ (⊗R2) = ⊗(R1 ∪ R2).
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Complementation

Lemma
If R ⊆ (Σ+)n is automatic, then its complement (Σ+)n \ R is
effectively automatic.

Proof
R automatic ⇒ ⊗R regular language in Γ+ with Γ = (Σ ∪ {⋄})n

⇒ Γ+ \ ⊗R regular

The convolution of the complement of R equals

Γ+ \ ⊗R ∩ ⊗(Σ+)n

since (Σ+)n is automatic, this intersection is regular.
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Interlude

1. there are automatic binary relations R and S s.t.
R · S = {(uv , u′v ′) | (u, v) ∈ R , (u′, v ′) ∈ S} is not automatic

2. (R ∩ S) = (Rco ∪ Sco)co , hence intersection of automatic
relations is effectively automatic, but automaton is huge!
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Intersection

Lemma
If R1,R2 ⊆ (Σ+)n are automatic, then R1 ∩ R2 is effectively
automatic.

Proof
Mi = (Qi , Ii ,Ti ,Fi ) finite automaton accepting ⊗Ri .

Q := Q1 × Q2

I := I1 × I2

T := {((p, p′), a, (q, q′)) | (p, a, q) ∈ T1, (q, a, q
′) ∈ T2}

F := F1 × F2

Then (Q, I ,T ,F ) accepts (⊗R1) ∩ (⊗R2) = ⊗(R1 ∩ R2).
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Projection

Lemma
If R ⊆ (Σ+)n is automatic, then its projection
{(w1, . . . ,wn−1) | ∃wn : (w1, . . . ,wn) ∈ R} is effectively automatic.

Proof (for n = 2)

M = (Q, I ,T ,F ) finite automaton for ⊗R .

T ′ := {(p, a, q) ∈ Q × Σ× Q | ∃b ∈ Σ ∪ {⋄} : (p, (a, b), q) ∈ T}

F ′ := {p ∈ Q | (Q, {p},T ,F ) accepts some word from ({⋄} × Σ)+}

∪ F

Then (Q, I ,T ′,F ′) accepts ⊗{u | ∃v : (u, v) ∈ R}.
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Cylindrification

Lemma
If R ⊆ (Σ+)n is automatic, then its cylindrification
{(w1, . . . ,wn,wn+1) | (w1, . . . ,wn) ∈ R ,wn+1 ∈ Σ+} is effectively
automatic.

Proof (for n = 1)

M = (Q, I ,T ,F ) finite automaton for ⊗R .

new set of states: Q ′ = Q × {0, 1} ∪ {⊤}
for (p, a, q) ∈ T and b ∈ Σ, transitions in T ′:
((p, 0), (a, b), (q, 0)), ((p, 0), (a, ⋄), (q, 1)), and ((p, 1), (a, ⋄)(q, 1))
furthermore, transitions ((f , 0), (⋄, b),⊤) for f ∈ F and
(⊤, (⋄, b),⊤)
F ′ = F × {0, 1} ∪ {⊤}.
Then (Q ′, I ,T ′,F ′) accepts {(u, v) | u ∈ R}.
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See you tomorrow!
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111, 100, 010

000, 011, 101 0 ⋄ 0, 1 ⋄ 1

⋄01

0 ⋄ 0, 1 ⋄ 1
001

110

110

111, 100

⋄010 ⋄ 1

1 ⋄ 1

1 ⋄ 0

⋄ ⋄ 1

111, 010

011

⋄11

⋄11

1 ⋄ 0

return
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