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First-order logic
oe

Definitions
Let A = (V,(Ri)1<i<n) be a relational structure with R; C V5.

Syntax of FO:

e if1<i<nandx,...,x are first-order variables, then
Ri(x1,...,Xk) is a formula of FO

e if x and y are first-order variables, then x = y is a formula
e if & and 3 are formulas, then so are a VvV 8 and —a.

e if v is a formula and x a first-order variable, then Ix : o is a
formula.

free variables:

var(Ri(x1, ..., Xk,)) = {X1, .-, Xk, }
var(x = y) = {x,y}
var(a V ) = var(a) U var(f5)

var(—=a) = var( o)
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First-order logic

Definable relations and quotients
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FO-definable relations are effectively automatic

Main theorem for FO

From a presentation P = (M, (M;)1<i<n) of a regular structure A
and a first-order formula o, one can compute a synchronous
multitape-automaton M® such that R(M®) = o

Proof
Fix a list of variables x containing all variables that appear in «
and interprete A4 wrt. this list.

Proof

Fix a list of variables X containing all variables that appear in «
and interprete A4 wrt. this list.

By induction on construction of « using closure properties of
automatic relations:

Ri(yi, ... ,yk,.)A is cylindrification of R; = R(M;)

A A A A L A
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Quotients

Let A = (V;(Ri)1<i<n) be a relational structure and ~ C V2 an
equivalence relation.

~ is a congruence if (uy,..., uy) € Rj and uj ~ v; imply
(Vl, ceey Vk,') € R;.

R/~ = ([l (] | (ts - ) € Ri)
A/~ = (V] ~;(Ri/~)1<i<n) is the quotient of A wrt. ~

26
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Quotients are automatic

Theorem

From a presentation P of a regular structure A and an automatic
congruence ~, one can compute a presentation of (a regular
structure isomorphic to) the quotient A/~.

Proof
The structure B = (A, <jiex, ~) is effectively regular.
Theset {fuc A|VWweAd:u~v— u<pe v}

e is first-order definable in B and hence (effectively) regular

e contains precisely one element from every equivalence class
of ~.
Hence the restriction of A to this set is isomorphic to A/~. O
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First-order interpretations

An n-dimensional first-order interpretation consists of

e a structure A,

e a formula v with n free variables,

e a formula n with 2n free variables,

e and formulas p; with k; - n free variables
such that 4 is a congruence of (v*; (pi)1<i<m)-
The structure

™ (o )1<izm) ™

is said to be interpreted in A via (v, 7, (pi)i<i<m)-
Examples

quotients, direct powers, expansion by definable relations,. ..
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First-order interpretations

Corollary

From a presentation P of a regular structure A and a first-order
interpretation / in A, one can compute a presentation of (a regular
structure isomorphic to) the structure interpreted in A via /.

Proof
clear by previous theorems (effective closure under definable
expansions and quotients) L]

Theorem (Blumensath '99)
A structure is automatic if and only if it can be interpreted in

({a, 63", {(uv, uv) [ u,v € {a,b}"}, {(u, v) | [u] = |v[}) -
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Infinity quantifier
Let A = (V,(Ri)1<i<n) be a relational structure with R; C V4.

Syntax of FO®°:

e if1<i<nandx,...,x are first-order variables, then
Ri(x1,...,Xk) is a formula of FO

e if x and y are first-order variables, then x = y is a formula
e if & and 3 are formulas, then so are a VvV 8 and —a.

e if o is a formula and x a first-order variable, then 3x : & and
J%°x : « are formulas.

free variables:

var(Ri(x1, ..., Xk,)) = {X1, .-, Xk, }
var(x = y) = {x,y}
var(a V ) = var(a) U var(3)

var(—=a) = var(o)
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FO>-definable relations are effectively automatic

Main theorem for FO> (Blumensath '99)

From a presentation P = (M, (M;)1<i<n) of a regular structure A
and a FO*°-formula «, one can compute a synchronous
multitape-automaton M® such that R(M®) = o

Proof
(A, <pex) is effectively automatic and

AE Iy :aly) <= (A <pex) EVxTIy : (x <piex ¥ A a(y))
hence result follows from Main Theorem for FO O

Consequences

The FO°-theory of every automatic structure is decidable,
automatic structures are closed under FO*-interpretations.

13/26



[ele]o)

First-order logic
Definable relations and quotients
Interpretations

The infinity quantifier 3°°

modulo-quantifiers 3(p)

Second-order quantifiers

14 /26



First-order logic The infinity quantifier 3 modulo-quantifiers 3(p) Second-order quantifiers

(e]e}
0000
(e]e]e}

(e]e]e} 0@000 00000000

modulo-quantifiers

Let A = (V,(Ri)1<i<n) be a relational structure with R; C V4.

Syntax of FOX:
e formation rules for FO>®

e if v is a formula, x a first-order variable, and 1 < p, then
J(P)x : o is a formula.

free variables:

var(3P)x : o) = var(a) \ {x}

semantics of FOX: let var(a) C {x1,...,%n} and u1,...,u, € V.

(A, (u1,...,un—1)) = 3P)x: aif and only if
H{veV]|(A, (u,... us—1,v)) = a} is finite and divisible by p.
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FOX-definable relations are effectively automatic

Main theorem for FOX (Khoussainov, Rubin, Stephan '04)

From a presentation P = (M, (M;)1<i<n) of a regular structure A
and a FOX-formula «, one can compute a synchronous
multitape-automaton M? such that R(M®) = o

Lemma
If R C (X*)" is automatic and p > 1, then the set of tuples
T € (%)™ ! satisfying

{v e X*|(g,v) € R} is finite and divisible by p

is effectively automatic.

Proof of Main Theorem for FOX

equals proof for FO O]
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Proof of Lemma for n = 2
(X*, R) is automatic
= R ={(u,v) | 3°w : (u,w) € R} effectively automatic
let M =(Q,{c}, T,F) be deterministic finite automaton
accepting @R’

e @={0,1,....p—1}°
1 forp=.
[ ) /,/ g
(p) {0 otherwise
o (f,a,g) e Tiff

g(a) = pe f(P) - {b € | (. (a,b),q) € T} mod p for
alge Q

o fEFiffY cof(p)=0modp

Then (Q',{//}, T', F") accepts “something like" the set
required.
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FOX-definable relations are effectively automatic

Main theorem for FOX (Khoussainov, Rubin, Stephan '04)

From a presentation P = (M, (M;)1<i<n) of a regular structure A
and a FOX-formula «, one can compute a synchronous
multitape-automaton M® such that R(M®) = o

Consequences

The FOX-theory of every automatic structure is decidable,
automatic structures are closed under FOX-interpretations.
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Second-order logic

For a change
(N x N, <) is automatic and its second-order theory is undecidable.

Let A = (V,(Ri)i<i<n) be a relational structure with R; C vk,

Syntax of our fragment FSO of second-order logic:
e formation rules for FOX

e if X is an n-ary relation variable and xi, ..., x, are first-order
variables, then X(x,...,xp) is a formula.

e if X is a relation variable and a a formula s.t.
VY,Z:a(YUZ)— a(Y) is a tautology, then
3X infinite : a(X) is a formula

free variables:

...... 20/26
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Effectiveness results for FSO
Theorem (K, Lohrey '10)

(1) The set of pairs (P, «) with P a presentation of some regular
structure A and a some sentence from FSO s.t. A =« is
decidable.

(2) From a presentation P of some regular structure A and a
sentence 3X infinite : « valid in A, one can compute a
synchronous multitape automaton M such that R(M) is
infinite and (A, R(M)) E «a.

Proof strategy for (1)

e second-order quantifications can be restricted to “combs”
e A together with all “combs” is an “w-automatic structure”

e these w-automatic structures share all the nice properties of
automatic structures that we learnt to love 21/26
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Combs

comb: set {upuiuz ... up—1vy | n € N} C T with |v| < |uj| fa.
ieN

Lemma
X C Tt infinite, ¥ finite = 3C C X comb

Proof

22/26
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2nd order quantification over combs

Consequence

2nd-order quantification in FSO-sentences can be restricted to
combs.

Proof

let 3X infinite : @ be formula from FSO

then VC,R: C C RA a(R) — a(C) is a tautology

hence: A = 3X infinite : «

<= there is an infinite set R s.t. (4, R) = «

<= there is an infinite comb C s.t. (4, C) E « O

Interim result
from a € FSO, we can construct @ € FOX s.t. A |= « if and only
if @ holds in

A — (V 1] cet of combs  all relations of 4 23/26
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Combs as w-words

coding of comb C = {ujup...up—1v, | n € N}: w-word ¢ over
(Z U {#})? of form

WH...H | vt | vH. . H | BH.H | . FH

ug up uo us3 Ug

hence A is “w-automatic” and validity of @ is decidable by
Blumensath '99 and Barany, Kaiser, Rubin '08 L]
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Summary

Theorem (K, Lohrey '10)

(1) The set of pairs (P, ) with P a presentation of some regular
structure A and a some sentence from FSO s.t. A =« is
decidable.

(2) From a presentation P of some regular structure 4 and a
sentence 3X infinite : « valid in P, one can compute a
synchronous multitape automaton M such that R(M) is
infinite and (A, R(M)) = «.

(3) The class of automatic structures is closed under
FSO-interpretations.
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See you tomorrow!
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