Quantifier alternation

Bounded degree

Automatic structures Lecture 3: Complexity of first-order logic

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

Bounded degree

The problem

Quantifier alternation

Bounded degree

Bounded degree

The problem

SA ... all automatic presentations

For
$$C \subseteq SA$$
 and $L \subseteq FO$:

 $\operatorname{MC}(\mathsf{C}, L) = \{(P, \varphi) \mid P \in \mathsf{C}, \varphi \in L \text{ sentence}, \mathcal{A}(P) \models \varphi\}$

is the model checking problem for L and C.

Theorem MC(SA, FO) is decidable.

Question

But what is the complexity of this decision problem, what are the difficult and easy instances?

Disappointing example

The first-order theory of the complete binary tree (with prefix relation) is non-elementary, hence MC(SA, FO) is non-elementary.

Quantifier alternation •0000

Bounded degree

The problem

Quantifier alternation

Bounded degree

What makes our decision procedure slow?

Lemma

From synchronous *n*-tape automata M_1 and M_k , one can compute synchronous *n*-tape automata

- for $R(M_i) \cup R(M_2)$ in polynomial time,
- for $R(M_i) \cap R(M_2)$ in polynomial time,
- for the projection of $R(M_1)$ in polynomial time,
- for the cylindrification of $R(M_1)$ in polynomial time,
- for the complement of $R(M_1)$ in exponential time.

Lemma

Emptyness of an automatic relation can be decided using nondeterministic logarithmic space.

Answer

The maximal number of nested negations in the formula.

Bounded degree

Some more notation

Convention

In the rest of this section, we allow conjunction \wedge in FO-formulas.

Definition

 $\Sigma_0 \subseteq FO$ is the set of quantifier-free formulas $B\Sigma_n \subseteq FO$ is the set of Boolean combinations of formulas from Σ_n $\Sigma_{n+1} \subseteq FO$ is the closure of the set $B\Sigma_n$ by existential quantification, \lor , and \land

Observation

Using de Morgan's laws, any formula from Σ_{n+1} can be written with at most n+1 nested negations and without increasing the size of the formula.

1

Quantifier alternation

Bounded degree

A first "simple" case

$$\exp_0(n) = n$$
 and $\exp_{k+1}(n) = 2^{\exp_k(n)}$

kEXSPACE is the set of problems that can be solved in space $\exp_k(n^{O(1)})$ (with *k*EXSPACE = PSPACE) $\bigcup_{k\geq 0} k$ EXSPACE is the set of elementary problems

Lemma

$$MC(SA, \Sigma_{n+1}) \in nEXSPACE \text{ for all } n \geq 0.$$

Proof

 $\varphi \in \Sigma_{n+1}$ with at most n+1 nested negations and P automatic presentation of $\mathcal A$

build M s.t. $R(M) = \varphi^{\mathcal{A}}$ of (n + 1)-fold exponential size decide emptyness of R(M) in space logarithmic in |M| since final decision can be done "on-the-fly", we need not store the huge automaton M.

Bounded degree

Can we do any better?

Lemma (K '09)

- Data complexity: For n ≥ 0, there exists a sentence φ_n ∈ Σ_{n+1} s.t. MC(SA, {φ_n}) is nEXSPACE-hard.
- Expression complexity: There exists an automatic presentation P s.t. MC({P}, Σ_{n+1}) is nEXSPACE-hard for all n ≥ 0 (for n ≥ 2, this follows from Streid '90).

Theorem (K '09) $MC(SA, \Sigma_{n+1})$ is *n*EXSPACE-complete.

Quantifier alternation

Bounded degree

The problem

Quantifier alternation

Bounded degree

Bounded degree

Some model theory

Definition

 $\mathcal{A} = (V; (R_i)_{1 \leq i \leq n} \text{ some (fixed) relational structure.}$

- $E = \{(u, v) \in V^2 \mid \exists \overline{w} \in \bigcup_{1 \le i \le n} R_i : u, v \text{ appear in tuple } w\}$ $G(\mathcal{A}) = (V, E)$ is the Gaifman graph of \mathcal{A} .
- for $u, v \in V$: d(u, v) is minimal length of path from u to v in $G(\mathcal{A})$ (possibly ∞)
- for $u \in V$, $r \in \mathbb{N}$: $S(r, u) = \{v \in V \mid d(u, v) \leq r\}$
- $\varphi \in \mathrm{FO:} \ \mathbf{qr}(\varphi)$ is nesting depth of quantifiers in φ

Bounded degree

Gaifman's locality principle

Theorem (Gaifman '82, Keisler & Lotfallah '05) \mathcal{A} relational structure, $u_i, v_i \in \mathcal{A}$ for $1 \le i \le k$, $\varphi(x_1, \ldots, x_k) \in \text{FO}$ with $qr(\varphi) \le r$,

$$(\mathcal{A} \upharpoonright (\bigcup_{i=1}^k S(2^{r+k-i}, u_i)), \overline{u}) \cong (\mathcal{A} \upharpoonright (\bigcup_{i=1}^k S(2^{r+k-i}, v_i)), \overline{v}).$$

Then

$$(\mathcal{A},\overline{u})\models\varphi\iff (\mathcal{A},\overline{v})\models\varphi\,.$$

Bounded degree

Potential spheres

A potential (r, k)-sphere is a tuple $(\mathcal{B}, b_1, \ldots, b_k)$ s.t.

- \mathcal{B} is a structure with $b_1, \ldots, b_k \in \mathcal{B}$.
- For all $b \in \mathcal{B}$ there exists $1 \le i \le k$ such that $d(b_i, b) \le 2^{r-i}$.

The potential (r, k)-sphere $(\mathcal{B}, b_1, \ldots, b_k)$ is realizable in the structure \mathcal{A} if there are $a_1, \ldots, a_k \in \mathcal{A}$ s.t.

$$(\mathcal{A}|(\bigcup_{i=1}^k S(2^{r-i},a_i)),a_1,\ldots,a_k)\cong (\mathcal{B},b_1,\ldots,b_k).$$

Formulas and spheres

 $\varphi(y_1, \ldots, y_k) \in FO$ with $qr(\varphi) \leq r$ and $\sigma = (\mathcal{B}, b_1, \ldots, b_k)$ a potential (r + k, k)-sphere. Define $\varphi_{\sigma} \in \{0, 1\}$ inductively:

• If $\varphi(y_1,\ldots,y_k)$ is an atomic formula, then

$$arphi_{\sigma} = egin{cases} 1 & ext{if } \mathcal{B} \models \psi(b_1, \dots, b_k) \ 0 & ext{if } \mathcal{B}
ot eq \psi(b_1, \dots, b_k) \ . \end{cases}$$

• If
$$\varphi = \neg \alpha$$
, then $\varphi_{\sigma} = 1 - \alpha_{\sigma}$.

- If $\varphi = \alpha \lor \beta$, then $\varphi_{\sigma} = \max(\alpha_{\sigma}, \beta_{\sigma})$.
- If $\varphi(y_1,\ldots,y_k) = \exists y_{k+1} : \alpha(y_1,\ldots,y_k,y_{k+1})$ then

$$\varphi_{\sigma} = \max \left\{ \alpha_{\sigma'} \middle| \begin{array}{c} \sigma' \text{ is a potential } (r+k, k+1) \text{-sphere} \\ \text{realizable in } \mathcal{A} \text{ and extending } \sigma \end{array} \right.$$

Bounded degree

"Non-standard" evaluation of formulas

Theorem

 \mathcal{A} a structure with $a_1, \ldots, a_k \in \mathcal{A}$, $\varphi(y_1, \ldots, y_k) \in FO$ with $qr(\varphi) \leq r$, and σ a potential (r + k, k)-sphere with

$$(\mathcal{A} \upharpoonright (\bigcup_{i=1}^k S(2^{r+k-i}, a_i)), a_1, \ldots, a_k) \cong \sigma.$$

Then $\mathcal{A} \models \varphi(a_1, \ldots, a_k) \iff \varphi_{\sigma} = 1.$

Corollary

 \mathcal{A} a structure, $\varphi \in FO$ a sentence with $qr(\varphi) \leq r$, and \emptyset the potential (r, 0)-sphere.

Then $\mathcal{A} \models \varphi \iff \varphi_{\emptyset} = 1.$

Problems for computing φ_{\emptyset} for \mathcal{A} automatic

 $\varphi(y_1, \ldots, y_k) \in FO$ with $qr(\varphi) \leq r$ and $\sigma = (\mathcal{B}, b_1, \ldots, b_k)$ a potential (r + k, k)-sphere. Define $\varphi_{\sigma} \in \{0, 1\}$ inductively:

• If $\varphi(y_1,\ldots,y_k)$ is an atomic formula, then

$$\varphi_{\sigma} = \begin{cases} 1 & \text{if } \mathcal{B} \models \psi(b_1, \dots, b_k) \\ 0 & \text{otherwise.} \end{cases}$$

• If $\varphi = \neg \alpha$, then $\varphi_{\sigma} = 1 - \alpha_{\sigma}$.

- If $\varphi = \alpha \lor \beta$, then $\varphi_{\sigma} = \max(\alpha_{\sigma}, \beta_{\sigma})$.
- If $\varphi(y_1,\ldots,y_k) = \exists y_{k+1} : \alpha(y_1,\ldots,y_k,y_{k+1})$ then

 $\varphi_{\sigma} = \max \left\{ \alpha_{\sigma'} \left| \begin{array}{c} \sigma' \text{ is a potential } (r+k,k+1)\text{-sphere} \\ \text{realizable in } \mathcal{A} \text{ and extending } \sigma \end{array} \right\} \right.$

Bounded degree

Structures of bounded degree

Definition

- A graph G = (V, E) has bounded degree if there exists d ∈ N such that any node has at most d neighbours, the minimal such d is the degree of G.
- A relational structure has bounded degree (degree *d*, resp.) if its Gaifman graph has bounded degree (degree *d*, resp.).
- $SAb \subset SA$ is the set of automatic presentations of bounded degree.

Crucial property

If \mathcal{A} is a structure of degree d, then it realizes at most $\exp_3((k + \log d + r)^{O(1)})$ potential (r, k)-spheres (of size $\exp_2((k + \log d + r)^{O(1)}))$.

Bounded degree

The class SAb

Lemma

Given $P \in SA$, one can decide in polynomial time whether $P \in SAb$ and if so, the degree of $\mathcal{A}(P)$ is at most $\exp_1(|P|^{O(1)})$.

Proof

let $\mathcal{A} = \mathcal{A}(P)$.

E is definable in \mathcal{A} by a positive Σ_1 -formula

hence E can be accepted by a synchronous 2-tape automaton of polynomial size

boundedness of automatic relations is decidable in polynomial size (Weber '90) and the degree is at most exponential

Hence

If $P \in SAb$, then $\mathcal{A}(P)$ realizes at most $\exp_3((k + |P| + r)^{O(1)})$ potential (r, k)-spheres (of size $\exp_2((k + |P| + r)^{O(1)})$) and this set is "efficiently" decidable.

Former problems for computing φ_{\emptyset} for \mathcal{A} automatic

 $\varphi(y_1, \ldots, y_k) \in FO$ with $qr(\varphi) \leq r$ and $\sigma = (\mathcal{B}, b_1, \ldots, b_k)$ a potential (r + k, k)-sphere. Define $\varphi_{\sigma} \in \{0, 1\}$ inductively:

• If $\varphi(y_1,\ldots,y_k)$ is an atomic formula, then

$$\varphi_{\sigma} = \begin{cases} 1 & \text{if } \mathcal{B} \models \psi(b_1, \dots, b_k) \\ 0 & \text{otherwise.} \end{cases}$$

• If $\varphi = \neg \alpha$, then $\varphi_{\sigma} = 1 - \alpha_{\sigma}$.

- If $\varphi = \alpha \lor \beta$, then $\varphi_{\sigma} = \max(\alpha_{\sigma}, \beta_{\sigma})$.
- If $\varphi(y_1,\ldots,y_k) = \exists y_{k+1} : \alpha(y_1,\ldots,y_k,y_{k+1})$ then

 $\varphi_{\sigma} = \max \left\{ \alpha_{\sigma'} \left| \begin{array}{c} \sigma' \text{ is a potential } (r+k,k+1)\text{-sphere} \\ \text{realizable in } \mathcal{A} \text{ and extending } \sigma \end{array} \right\} \right.$

Quantifier alternation

Bounded degree

Harvest

Lemma

From $P \in SAb$ and $\varphi \in FO$ sentence, one can compute φ_{\emptyset} in doubly exponential space.

Theorem (K, Lohrey '09)

- $MC(SAb, FO) \in 2EXSPACE$
- there exists $P \in SAb$ such that $MC(\{P\}, FO)$ is 2EXSPACE-hard.
- If P ∈ SAb s.t. the number of realizable spheres grows polynomial with the radius, then MC({P}, FO) ∈ EXSPACE.
- there exists P ∈ SAb s.t. the number of realizable spheres grows polynomial with the radius and MC({P}, FO) is EXSPACE-hard.

```
The problem 00
```

Bounded degree

Combination of "quantifier alternation" and "bounded degree"

Recall

- $MC(SA, \Sigma_{n+1}) \in nEXSPACE$ for all $n \ge 0$
- $MC(SAb, FO) \in 2EXSPACE$

Conjecture $MC(SAb, \Sigma_n) \in EXSPACE \text{ for all } n \geq 0.$

Quantifier alternation

Bounded degree

See you tomorrow!