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The problem
SA . . . all automatic presentations

For C ⊆ SA and L ⊆ FO:

MC(C, L) = {(P , ϕ) | P ∈ C, ϕ ∈ L sentence,A(P) |= ϕ}

is the model checking problem for L and C.

Theorem
MC(SA,FO) is decidable.

Question
But what is the complexity of this decision problem, what are the
difficult and easy instances?

Disappointing example

The first-order theory of the complete binary tree (with prefix
relation) is non-elementary, hence MC(SA,FO) is non-elementary.
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What makes our decision procedure slow?

Lemma
From synchronous n-tape automata M1 and Mk , one can compute
synchronous n-tape automata

• for R(Mi ) ∪ R(M2) in polynomial time,

• for R(Mi ) ∩ R(M2) in polynomial time,

• for the projection of R(M1) in polynomial time,

• for the cylindrification of R(M1) in polynomial time,

• for the complement of R(M1) in exponential time.

Lemma
Emptyness of an automatic relation can be decided using
nondeterministic logarithmic space.

Answer
The maximal number of nested negations in the formula.
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Some more notation

Convention
In the rest of this section, we allow conjunction ∧ in FO-formulas.

Definition
Σ0 ⊆ FO is the set of quantifier-free formulas
BΣn ⊆ FO is the set of Boolean combinations of formulas from Σn

Σn+1 ⊆ FO is the closure of the set BΣn by existential
quantification, ∨, and ∧

Observation
Using de Morgan’s laws, any formula from Σn+1 can be written
with at most n + 1 nested negations and without increasing the
size of the formula.
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A first “simple” case

exp0(n) = n and expk+1(n) = 2expk (n)

kEXSPACE is the set of problems that can be solved in space
expk(n

O(1)) (with kEXSPACE = PSPACE)
⋃

k≥0 kEXSPACE is the set of elementary problems

Lemma
MC(SA,Σn+1) ∈ nEXSPACE for all n ≥ 0.

Proof
ϕ ∈ Σn+1 with at most n + 1 nested negations and P automatic
presentation of A
build M s.t. R(M) = ϕA of (n + 1)-fold exponential size
decide emptyness of R(M) in space logarithmic in |M|
since final decision can be done “on-the-fly”, we need not store the
huge automaton M.
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Can we do any better?

Lemma (K ’09)

• Data complexity: For n ≥ 0, there exists a sentence
ϕn ∈ Σn+1 s.t. MC(SA, {ϕn}) is nEXSPACE-hard.

• Expression complexity: There exists an automatic
presentation P s.t. MC({P},Σn+1) is nEXSPACE-hard for all
n ≥ 0 (for n ≥ 2, this follows from Streid ’90).

Theorem (K ’09)

MC(SA,Σn+1) is nEXSPACE-complete.

8 / 21



The problem Quantifier alternation Bounded degree

The problem

Quantifier alternation

Bounded degree

9 / 21



The problem Quantifier alternation Bounded degree

Some model theory

Definition
A = (V ; (Ri )1≤i≤n some (fixed) relational structure.

• E = {(u, v) ∈ V 2 | ∃w ∈
⋃

1≤i≤n
Ri : u, v appear in tuple w}

G (A) = (V ,E ) is the Gaifman graph of A.

• for u, v ∈ V : d(u, v) is minimal length of path from u to v in
G (A) (possibly ∞)

• for u ∈ V , r ∈ N: S(r , u) = {v ∈ V | d(u, v) ≤ r}

• ϕ ∈ FO: qr(ϕ) is nesting depth of quantifiers in ϕ
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Gaifman’s locality principle

Theorem (Gaifman ’82, Keisler & Lotfallah ’05)

A relational structure, ui , vi ∈ A for 1 ≤ i ≤ k ,
ϕ(x1, . . . , xk) ∈ FO with qr(ϕ) ≤ r ,

(A↾(
k
⋃

i=1

S(2r+k−i , ui )), u) ∼= (A↾(
k
⋃

i=1

S(2r+k−i , vi )), v) .

Then
(A, u) |= ϕ ⇐⇒ (A, v) |= ϕ .
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Potential spheres

A potential (r , k)-sphere is a tuple (B, b1, . . . , bk) s.t.

• B is a structure with b1, . . . , bk ∈ B.

• For all b ∈ B there exists 1 ≤ i ≤ k such that d(bi , b) ≤ 2r−i .

The potential (r , k)-sphere (B, b1, . . . , bk) is realizable in the
structure A if there are a1, . . . , ak ∈ A s.t.

(A↾(
k
⋃

i=1

S(2r−i , ai )), a1, . . . , ak) ∼= (B, b1, . . . , bk) .
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Formulas and spheres
ϕ(y1, . . . , yk) ∈ FO with qr(ϕ) ≤ r and σ = (B, b1, . . . , bk) a
potential (r + k , k)-sphere.
Define ϕσ ∈ {0, 1} inductively:

• If ϕ(y1, . . . , yk) is an atomic formula, then

ϕσ =

{

1 if B |= ψ(b1, . . . , bk)

0 if B 6|= ψ(b1, . . . , bk) .

• If ϕ = ¬α, then ϕσ = 1− ασ.

• If ϕ = α ∨ β, then ϕσ = max(ασ, βσ).

• If ϕ(y1, . . . , yk) = ∃yk+1 : α(y1, . . . , yk , yk+1) then

ϕσ = max

{

α
σ
′

∣

∣

∣

∣

σ′ is a potential (r + k , k + 1)-sphere
realizable in A and extending σ

}

.
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“Non-standard” evaluation of formulas

Theorem
A a structure with a1, . . . , ak ∈ A, ϕ(y1, . . . , yk) ∈ FO with
qr(ϕ) ≤ r , and σ a potential (r + k , k)-sphere with

(A↾(
k
⋃

i=1

S(2r+k−i , ai )), a1, . . . , ak) ∼= σ .

Then A |= ϕ(a1, . . . , ak) ⇐⇒ ϕσ = 1.

Corollary

A a structure, ϕ ∈ FO a sentence with qr(ϕ) ≤ r , and ∅ the
potential (r , 0)-sphere.
Then A |= ϕ ⇐⇒ ϕ∅ = 1.
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Problems for computing ϕ∅ for A automatic

ϕ(y1, . . . , yk) ∈ FO with qr(ϕ) ≤ r and σ = (B, b1, . . . , bk) a
potential (r + k , k)-sphere.
Define ϕσ ∈ {0, 1} inductively:

• If ϕ(y1, . . . , yk) is an atomic formula, then

ϕσ =

{

1 if B |= ψ(b1, . . . , bk)

0 otherwise.

• If ϕ = ¬α, then ϕσ = 1− ασ.

• If ϕ = α ∨ β, then ϕσ = max(ασ, βσ).

• If ϕ(y1, . . . , yk) = ∃yk+1 : α(y1, . . . , yk , yk+1) then

ϕσ = max

{

α
σ
′

∣

∣

∣

∣

σ′ is a potential (r + k , k + 1)-sphere
realizable in A and extending σ

}

.
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Structures of bounded degree

Definition

• A graph G = (V ,E ) has bounded degree if there exists d ∈ N

such that any node has at most d neigbhours, the minimal
such d is the degree of G .

• A relational structure has bounded degree (degree d , resp.) if
its Gaifman graph has bounded degree (degree d , resp.).

• SAb ⊂ SA is the set of automatic presentations of bounded
degree.

Crucial property

If A is a structure of degree d , then it realizes at most
exp3((k + log d + r)O(1)) potential (r , k)-spheres (of size
exp2((k + log d + r)O(1))).
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The class SAb

Lemma
Given P ∈ SA, one can decide in polynomial time whether
P ∈ SAb and if so, the degree of A(P) is at most exp1(|P |

O(1)).

Proof
let A = A(P).
E is definable in A by a positive Σ1-formula
hence E can be accepted by a synchronous 2-tape automaton of
polynomial size
boundedness of automatic relations is decidable in polynomial size
(Weber ’90) and the degree is at most exponential

Hence
If P ∈ SAb, then A(P) realizes at most exp3((k + |P |+ r)O(1))
potential (r , k)-spheres (of size exp2((k + |P |+ r)O(1))) and this
set is “efficiently” decidable.
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Former problems for computing ϕ∅ for A automatic

ϕ(y1, . . . , yk) ∈ FO with qr(ϕ) ≤ r and σ = (B, b1, . . . , bk) a
potential (r + k , k)-sphere.
Define ϕσ ∈ {0, 1} inductively:

• If ϕ(y1, . . . , yk) is an atomic formula, then

ϕσ =

{

1 if B |= ψ(b1, . . . , bk)

0 otherwise.

• If ϕ = ¬α, then ϕσ = 1− ασ.

• If ϕ = α ∨ β, then ϕσ = max(ασ, βσ).

• If ϕ(y1, . . . , yk) = ∃yk+1 : α(y1, . . . , yk , yk+1) then

ϕσ = max

{

α
σ
′

∣

∣

∣

∣

σ′ is a potential (r + k , k + 1)-sphere
realizable in A and extending σ

}

.
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Harvest

Lemma
From P ∈ SAb and ϕ ∈ FO sentence, one can compute ϕ∅ in
doubly exponential space.

Theorem (K, Lohrey ’09)

• MC(SAb,FO) ∈ 2EXSPACE

• there exists P ∈ SAb such that MC({P},FO) is
2EXSPACE-hard.

• If P ∈ SAb s.t. the number of realizable spheres grows
polynomial with the radius, then MC({P},FO) ∈ EXSPACE.

• there exists P ∈ SAb s.t. the number of realizable spheres
grows polynomial with the radius and MC({P},FO) is
EXSPACE-hard.
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Combination of “quantifier alternation” and “bounded
degree”

Recall

• MC(SA,Σn+1) ∈ nEXSPACE for all n ≥ 0

• MC(SAb,FO) ∈ 2EXSPACE

Conjecture

MC(SAb,Σn) ∈ EXSPACE for all n ≥ 0.
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See you tomorrow!
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