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The problem

SA ...all automatic presentations

For C C SA and L C FO:
MC(C, L) ={(P,p) | P € C,p € L sentence, A(P) = p}

is the model checking problem for L and C.

Theorem
MC(SA, FO) is decidable.

Question
But what is the complexity of this decision problem, what are the
difficult and easy instances?

Disappointing example
The first-order theory of the complete binary tree (with prefix

relation) is non-elementary, hence MC(SA, FO) is non-elementary.
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What makes our decision procedure slow?

Lemma
From synchronous n-tape automata M; and My, one can compute
synchronous n-tape automata

for R(M;) U R(My) in polynomial time,
for R(M;) N R(My) in polynomial time,
for the projection of R(Mj) in polynomial time,

for the cylindrification of R(M;) in polynomial time,

for the complement of R(M;) in exponential time.

Lemma
Emptyness of an automatic relation can be decided using
nondeterministic logarithmic space.

Answer
The maximal number of nested negations in the formula.
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Some more notation

Convention
In the rest of this section, we allow conjunction A in FO-formulas.

Definition

>0 C FO is the set of quantifier-free formulas

B3, C FO is the set of Boolean combinations of formulas from ¥,

> h+1 € FO is the closure of the set BY, by existential
quantification, V, and A

Observation

Using de Morgan’s laws, any formula from ¥ ,,1 can be written
with at most n+ 1 nested negations and without increasing the
size of the formula.
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A first “simple” case

expo(") = n and expk+1(n) — pexpy(n)

kEXSPACE is the set of problems that can be solved in space
expy (n°M) (with kEXSPACE = PSPACE)
Ukso KEXSPACE s the set of elementary problems

Lemma
MC(SA, £ ,+1) € nEXSPACE for all n > 0.

Proof

© € X411 with at most n+ 1 nested negations and P automatic
presentation of A

build M s.t. R(M) = ¢* of (n+ 1)-fold exponential size

decide emptyness of R(M) in space logarithmic in |M]|

since final decision can be done “on-the-fly”, we need not store the
huge automaton M. [
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Can we do any better?

Lemma (K '09)
e Data complexity: For n > 0, there exists a sentence
©n € Lpt1 s.t. MC(SA, {¢n}) is nEXSPACE-hard.

e Expression complexity: There exists an automatic
presentation P s.t. MC({P}, X +1) is nEXSPACE-hard for all
n >0 (for n > 2, this follows from Streid '90).

Theorem (K '09)
MC(SA, X,+1) is nEXSPACE-complete.
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Some model theory

Definition
A = (V;(Ri)i<i<n some (fixed) relational structure.
e E={(u,v)eV?|TIwe Ui<i<n Ri : u, v appear in tuple w}
G(A) = (V,E) is the Gaifman graph of A.
e for u,v € V: d(u,v) is minimal length of path from v to v in
G(A) (possibly co)
o foruecV,reN: S(ryu)={veV]|duv)<r}
e ¢ € FO: qr(yp) is nesting depth of quantifiers in ¢
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Gaifman’s locality principle

Theorem (Gaifman '82, Keisler & Lotfallah '05)

A relational structure, u;,v; € A for 1 </ <k,
©o(x1,...,xk) € FO with qr(y) < r,

k k

(AN @, u)), @) = (AN S w).0).

i=1 i=1

Then
AT Ee = (AV)Ep.
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Potential spheres

A potential (r, k)-sphere is a tuple (B, by, ..., by) s.t.
e [3is a structure with by,..., by € B.
e For all b € B there exists 1 < i < k such that d(b;, b) < 27"

The potential (r, k)-sphere (B, b, ..., by) is realizable in the
structure A if there are a1, ..., ax € A s.t.

k
(AN S@ ", a)),a1,...,ak) = (B, by, ..., by).

i=1
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Formulas and spheres

o(y1, .-, ¥k) € FO with qr(p) < rand o = (B, by,..., bk) a
potential (r + k, k)-sphere.
Define ¢, € {0,1} inductively:

o If (yi,...,yk) is an atomic formula, then

1 #BE(by,.. . b
777 0 B (b, by) .

o If o = —q, then p, =1 — a,.
e If o =aVpj, then v, = max(ag, Bs).
o If oy, -, ¥k) = i1 sy, -, Vi Yit1) then

= max< a : : .
Yo { 7" | realizable in A and extending o

o’ is a potential (r + k, k + 1)-sphere }
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“Non-standard” evaluation of formulas

Theorem
A a structure with a1, ...,ax € A, p()1,...,yk) € FO with
qr(p) < r, and o a potential (r + k, k)-sphere with

k
(AN 5@ a)), a1, a0 2o

i=1
Then A = ¢(a1,...,ak) <= ¢, =1.

Corollary

A a structure, p € FO a sentence with qr(¢) < r, and 0 the
potential (r,0)-sphere.
Then A= <= ¢y =1.
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Problems for computing ¢y for A automatic

o(y1, ..., ¥k) € FO with qr(¢) < rand o = (B, by,..., bx) a
potential (r + k, k)-sphere.
Define ¢, € {0,1} inductively:

o If o(yi,...,yx) is an atomic formula, then

Po = 0 otherwise.

o If o =aq, then p, =1 — .
o If p=aV g, then ¢, = max(ay, B5).
o If oy, -, ¥k) = kst (y1, -, Yk, Yiy1) then

= max{ « . : :
Yo { 7" | realizable in A and extending o

o’ is a potential (r + k, k + 1)-sphere }
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Structures of bounded degree

Definition

e A graph G = (V, E) has bounded degree if there exists d € N
such that any node has at most d neigbhours, the minimal
such d is the degree of G.

e A relational structure has bounded degree (degree d, resp.) if
its Gaifman graph has bounded degree (degree d, resp.).

e SAb C SA is the set of automatic presentations of bounded
degree.

Crucial property

If A is a structure of degree d, then it realizes at most
exp3((k + log d + r)9()) potential (r, k)-spheres (of size
expy((k + log d + r)°M)).
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The class SAb

Lemma
Given P € SA, one can decide in polynomial time whether
P € SAb and if so, the degree of A(P) is at most exp, (|P|°M).

Proof

let A= A(P).

E is definable in A by a positive X1-formula

hence E can be accepted by a synchronous 2-tape automaton of
polynomial size

boundedness of automatic relations is decidable in polynomial size
(Weber '90) and the degree is at most exponential O

Hence

If P € SAb, then A(P) realizes at most exps((k + |P| + r)°()
potential (r, k)-spheres (of size exp,((k + |P| 4+ r)°™1)) and this
set is “efficiently” decidable.
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Former problems for computing ¢y for A automatic

o(y1, ..., ¥k) € FO with qr(¢) < rand o = (B, by,..., bx) a
potential (r + k, k)-sphere.
Define ¢, € {0,1} inductively:

o If o(yi,...,yx) is an atomic formula, then

Po = 0 otherwise.

o If o =aq, then p, =1 — .
o If p=aV g, then ¢, = max(ay, B5).
o If oy, -, ¥k) = kst (y1, -, Yk, Yiy1) then

= max{ « . : :
Yo { 7" | realizable in A and extending o

o’ is a potential (r + k, k + 1)-sphere }
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Harvest

Lemma
From P € SAb and ¢ € FO sentence, one can compute ¢y in
doubly exponential space.

Theorem (K, Lohrey '09)

 MC(SAb, FO) € 2EXSPACE

e there exists P € SAb such that MC({P},FO) is
2EXSPACE-hard.

o If P € SAb s.t. the number of realizable spheres grows

polynomial with the radius, then MC({P},FO) € EXSPACE.

e there exists P € SAb s.t. the number of realizable spheres
grows polynomial with the radius and MC({P},FO) is
EXSPACE-hard.
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Combination of “quantifier alternation” and “bounded
degree”

Recall

e MC(SA, ¥,41) € nEXSPACE for all n > 0
« MC(SAb, FO) € 2EXSPACE

Conjecture
MC(SAb, ¥ ) € EXSPACE for all n > 0.
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See you tomorrow!
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