Eulerian graphs 00000 000 00

Automatic structures Lecture 4: Some classical graph problems

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

Eulerian graphs 00000 000 000

The problem

typical graph problems φ

- Hamiltonicity
- existence of an Eulerian path
- existence of an infinite clique

Question 1

How difficult is it to tell whether $\mathcal{A}(P)$ has property φ ?

Question 2

Are there "simple" characterizations of the computable and the automatic graphs with property φ ?

Eulerian graphs 00000 000 000

Arithmetic and analytical hierarchy

- universe \mathcal{U} : all finitary objects (e.g. natural numbers, words, automata, finite sets . . .) relations: all decidable relations on \mathcal{U}
- $$\begin{split} \Sigma_n^0: & \text{ all relations defined by formulas of form} \\ & \exists \overline{x}_1 \forall \overline{x}_2 \dots \exists / \forall \overline{x}_n : R(\overline{x}, \overline{x}_1, \overline{x}_2, \dots, \overline{x}_n) \end{split}$$
- $\begin{array}{l} \Pi_n^0: \quad \text{all relations defined by formulas of form} \\ \forall \overline{x}_1 \exists \overline{x}_2 \ldots \forall / \exists \overline{x}_n : R(\overline{x}, \overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n) \end{array}$
- Σ₁¹: all relations defined by formulas of form $\exists X_1, \ldots, X_m : \varphi$ with φ first-order, X_i relation variable

Infinite cliques •OO ·O ·O Eulerian graphs 00000 000 000

Infinite cliques

... in computable graphs

...in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs ...in computable graph ...in automatic graphs Summary

Eulerian graphs 00000 000 000

Computable graphs

C = all pairs (M_1, M_2) of TM that decide nodes and edges of a computable graph with an infinite clique

 $(M_1, M_2) \in C$ iff

$$\begin{aligned} \mathcal{U} &\models \exists X \subseteq \mathbb{N} \exists Y \subset X \exists f \subseteq X \times Y : \\ \forall u \in X : u \in L(M_1) \land \\ \forall u, v \in X : (u, v) \in L(M_2) \lor u = v \land \\ \forall x \in X \exists y \in Y : (x, y) \in f \land \\ \forall x \in X, y_1, y_2 \in Y : (x, y_1), (x, y_2) \in f \rightarrow y_1 = y_2 \end{aligned}$$

 \Rightarrow existence of infinite clique for computable graphs belongs to Σ_1^1

Infinite cliques in computable graphs

Theorem (Kleene '43)

existence of an infinite clique in a computable graph is Σ^1_1 -complete

Question 1

How difficult is it to tell whether the computable graph G has an infinite clique?

Answer

```
It is \Sigma_1^1-complete ("highly undecidable").
```

Question 2

Is there a "simple" characterization of the computable graphs with an infinite clique?

Answer

no since there is no better way of saying "the computable graph G contains an infinite clique" than the obvious one

Infinite cliques

... in computable graphs ... in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs ...in computable graphs ...in automatic graphs Summary

Infinite cliques in automatic graphs

Theorem (Rubin '08)

existence of infinite clique in an automatic graph is decidable.

Proof

 $\exists X \text{ infinite } \forall x, y : (x, y \in X \land x \neq y) \rightarrow (x, y) \in E$

- is formula of FSO,
- expresses "there is an infinite clique",
- and its validity in an automatic graph is decidable

Question 1

How difficult is it to tell whether the automatic graph G has an infinite clique?

Answer

It is decidable.

Infinite cliques

... in computable graphs ... in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs ...in computable graphs ...in automatic graphs Summary

Summary: infinite cliques

Question 1

How difficult is it to tell whether a computable and an automatic graph have an infinite clique?

Answer

highly undecidable vs. decidable

Question 2

Are there "simple" characterizations of the computable and the automatic graphs with infinite cliques?

Answer

no vs. yes

Eulerian graphs

Infinite cliques

. . . in computable graphs . . . in automatic graphs Summary

Eulerian graphs

... in computable graphs

. . . in automatic graphs Summary

Hamiltonian graphs ...in computable graphs ...in automatic graphs Summary

Eulerian graphs

Eulerian paths

Eulerian path: bijection $f : \{n \in \mathbb{N} \mid n < |E|\} \rightarrow E$ such that f(n) and f(n+1) have one node in common and f(n), f(n+1), f(n+2) do not (for all n)

Theorem (Euler 1736)

G = (V, E) finite. Then G has an Eulerian path if and only if

- 1. G has at most one nontrivial connected component
- 2. G has at most two nodes of odd order

Eulerian graphs

Eulerian computable graphs

E = all pairs (M_1, M_2) of TM that decide nodes and edges of an Eulerian graph $(L(M_1), L(M_2))$ $(M_1, M_2) \in E$ iff

$$\begin{aligned} \mathcal{U} \models \exists f : f : \mathbb{N} \to L(M_2) \text{ bijection } \land \\ \forall n \in \mathbb{N} \exists v \in L(M_1) : v \text{ belongs to } f(n) \text{ and to } f(n+1), \\ \text{ but not to } f(n+2) \end{aligned}$$

 \Longrightarrow existence of an Eulerian path in computable graphs belongs to Σ^1_1

Eulerian graphs

Eulerian computable graphs

Erdős, Grünwald & Vazsonyi 1938

G = (V, E) countable. Then G has an Eulerian path if and only if

- 1. *G* has at most one nontrivial connected component: in Π_2^0 $\forall (x, x'), (y, y') \in E \exists$ path from x to y
- 2. *G* has a vertex of odd or infinite order: in Σ_3^0 $\exists x \in V, M \subseteq_{fin} V : \forall y (x E y \leftrightarrow y \in M) \land |M|$ odd $\forall \exists x \in V \forall M \subseteq_{fin} V \exists y : y \notin M \land x E y$
- 3. *G* has at most one vertex of odd order: in Π_3^0 $\forall x, y \in V \forall M, N \subseteq_{fin} V : ... \rightarrow x = y$
- 4. *G* has only one end (i.e., removing finitely many edges leaves only one infinite connected component) *G* has only one end: $\forall M \subseteq_{fin} E \forall x, y \in V :$ \exists path from x to y in $(V, E \setminus M) \lor$ $\exists Z \subseteq_{fin} V : (x \in Z \lor y \in Z) \land$ $\forall (z, z') \in E \setminus M : (z \in Z \leftrightarrow z' \in Z)$

14/41

Eulerian graphs

Eulerian computable graphs

Theorem (K & Lohrey '10)

existence of an Eulerian path in computable graphs is complete for $D_3^0 = \{K \cap L \mid K \in \Sigma_3^0, L \in \Pi_3^0\}.$

Question 1

How difficult is it to tell whether a computable graph is Eulerian?

Answer

It is D_3^0 -complete.

Question 2

Is there a "simple" characterization of the computable Eulerian graphs?

Answer

yes, and the characterization by Erdős, Grünwald & Vazsonyi is optimal.

Eulerian graphs

Infinite cliques

. . . in computable graphs . . . in automatic graphs Summary

Eulerian graphs

... in computable graphs

... in automatic graphs

Summary

Hamiltonian graphs ...in computable graphs ...in automatic graphs Summary

Eulerian graphs

Eulerian automatic graphs

Erdős, Grünwald & Vazsonyi 1938

G = (V, E) countable. Then G has an Eulerian path if and only if

- 1. *G* has at most one nontrivial connected component: in Π_2^0 $\forall (x, x'), (y, y') \in E \exists$ path from x to y
- 2. *G* has a vertex of odd or infinite order: decidable $\exists x \neg \exists^{(2)} y : (x, y) \in E$
- 3. *G* has at most one vertex of odd order: decidable $\exists x \forall y : x \neq y \rightarrow \exists^{(2)}z : (y,z) \in E \lor \exists^{\infty}z : (y,z) \in E$

4. *G* has only one end: in Π_2^0 $\forall M \subseteq_{fin} E \forall x, y \in V :$ \exists path from x to y in $(V, E \setminus M) \lor$ $\exists Z \subseteq_{fin} V : (x \in Z \lor y \in Z) \land$ $\forall (z, z') \in E \setminus M : (z \in Z \Leftrightarrow z' \in Z)$

decidable since (V; E, M, Z) automatic

Eulerian automatic graphs

Theorem (K & Lohrey '10)

existence of an Eulerian path in automatic graphs is Π_2^0 -complete

Question 1

How difficult is it to tell whether an automatic graph is Eulerian?

Answer

It is Π_2^0 -complete.

Question 2

Is there a "simple" characterization of the automatic Eulerian graphs?

Answer

yes, and the characterization by Erdős, Grünwald & Vazsonyi together with decidability of logic FOX leads to optimal characterization

Eulerian graphs

Infinite cliques

...in computable graphs ...in automatic graphs Summary

Eulerian graphs

... in computable graphs ... in automatic graphs Summary

Hamiltonian graphs ...in computable graph: ...in automatic graphs Summary

Summary: Eulerian path

Question 1

How difficult is it to tell whether a computable and an automatic graph have an Eulerian path?

Answer D_3^0 - vs. Π_2^0 -complete

Question 2

Are there "simple" characterizations of the computable and the automatic graphs with an Eulerian path?

Answer

yes in both cases (slightly "simpler" for automatic graphs)

Eulerian graphs 00000 000 000 Hamiltonian graphs • OO · OO · OO · OO

Infinite cliques

...in computable graphs ...in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs ... in computable graphs ... in automatic graphs Summary

Eulerian graphs 00000 000 000

Hamiltonian computable graphs

Hamiltonian path: bijection $f : \{n \in \mathbb{N} \mid n < |V|\} \to V$ such that $(f(n), f(n+1)) \in E$ for all n

H = all pairs (M_1, M_2) of TM that decide nodes and edges of a computable Hamiltonian graph $(L(M_1), L(M_2))$

 $(M_1, M_2) \in H$ iff

$$\mathcal{U} \models \exists f \subseteq \mathbb{N}^2 \ \forall n \in \mathbb{N} \exists v \in L(M_1) : (n, v) \in f \land \\ \forall v \in L(M_1) \exists n \in \mathbb{N} : (n, v) \in f \land \\ \forall n, v_1, v_2 : (n, v_1), (n, v_2) \in f \rightarrow v_1 = v_2 \land \\ \forall n_1, n_2, v : (n_1, v), (n_2, v) \in f \rightarrow n_1 = n_2 \land \\ \forall n \in \mathbb{N} : (f(n), f(n+1)) \in L(M_2)$$

 \implies Hamiltonicity for computable graphs belongs to Σ_1^1

Hamiltonian graphs

Hamiltonian computable graphs

Theorem (Hirst & Harel '96)

Hamiltonicity for computable graphs is Σ_1^1 -complete.

(hardness even for planar graphs and for graphs of bounded degree)

hardness proof

reduction from Kleene's $\Sigma^1_1\text{-}\text{complete}$ problem "computable tree has infinite branch"

Question 1

How difficult is it to tell whether a computable graph is Hamiltonian?

Answer

It is Σ_1^1 -complete.

Question 2

23/41

Eulerian graphs 00000 000 000 Hamiltonian graphs

Infinite cliques

...in computable graphs ...in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs

... in computable graphs ... in automatic graphs Summary

Infinite	cliques
000	
00	
00	

Hamiltonian graphs

Recurring tilings

tiling system: tuple (C, \mathcal{T}, c_0) with $C = \{c_0, c_1, \dots, c_n\}$ finite set of colors, $\mathcal{T} \subseteq C^4$

tile $(t_W, t_N, t_E, t_S) \in C^4$ visualised as:

recurring tiling problem:

all tiling systems that allow tiling of $\mathbb{N}\times\mathbb{N}$ such that color c_0 occurs infinitely often at bottom border

Theorem (Harel '91)

Recurring tiling problem is Σ_1^1 -complete

Eulerian graphs 00000 000 000 Hamiltonian graphs

Hamiltonian automatic graphs

Theorem (K & Lohrey '10)

There is a constant c such that, from a tiling system $\mathcal{T} = (C, \mathcal{T}, c_0)$, one can compute a planar automatic graph $G_{\mathcal{T}}$ of degree c such that the following are equivalent

- ${\mathcal T}$ allows a recurring tiling of ${\mathbb N}^2$
- $G_{\mathcal{T}}$ is Hamiltonian.

Hence: Hamiltonicity of automatic planar graphs of degree c is $\Sigma^1_1\text{-}\mathrm{complete}$

Eulerian graphs

Hamiltonian graphs

1st step: coding of \mathcal{T} in finite graphs (1) define $\mathcal{V} = \{W_i, S_i, \overline{N_i}, \overline{E_i} \mid 0 \le i \le n\}$ Lemma (minor extension of Garey, Johnson & Tarjan '76)

 \exists finite planar graphs G_1, \ldots, G_4 s.t. $\forall t = (c_i, c_j, c_k, c_\ell) \in C^4$: $t \in \mathcal{T}$ iff \exists Hamiltonian path P from u to v s.t.

•
$$W_m \in P \iff m = i, \ S_m \in P \iff m = j$$

•
$$\overline{N}_m \in P \iff m \neq k$$
, and $\overline{E}_m \in P \iff m \neq \ell$

Hamiltonian graphs

2nd step: placing graphs in plane

Let G^1 denote the following infinite graph:

Eulerian graphs 00000 000 000 Hamiltonian graphs

Interim result after 2 steps

u-rooted graph G^1 and correspondence between

- 1. Hamiltonian paths H from u
- 2. mappings $\mathbb{N}^2 \to \mathcal{T}$

next problem: extend G^1 to G^2 s.t. for all $i, j \in \mathbb{N}$ and all Hamiltonian paths H of G^2 : $W_k(i+1,j) \in H$ iff $\overline{E}_k(i,j) \notin H$ $S_k(i,j+1) \in H$ iff $\overline{N}_k(i,j) \notin H$

Eulerian graphs 00000 000 000 Hamiltonian graphs

3rd step: synchronisation of colors (1)

Eulerian graphs 00000 000 000 Hamiltonian graphs

3rd step: synchronisation of colors (2)

Eulerian graphs 00000 000 00 Hamiltonian graphs

Interim result after 3 steps

u-rooted graph G^2 and correspondence between

- 1. Hamiltonian paths H from u
- 2. tilings of \mathbb{N}^2 with tiles from $\mathcal T$

remaining problem: color c₀ shall occur infinitely often on bottom border

Eulerian graphs

Hamiltonian graphs

4st step: recurrence checking (1)

Eulerian graphs

Hamiltonian graphs

4st step: recurrence checking (2)

Eulerian graphs

Hamiltonian graphs

Interim result after 4 steps

u-rooted graph G^3 and correspondence between

- 1. Hamiltonian paths H from u
- 2. tilings of \mathbb{N}^2 with tiles from $\mathcal T$ s.t. color c_0 appears infinitely often at bottom border

last remaining problem: automaticity of G^3 holds since G^3 can be FOX-interpreted in grid $(\mathbb{N} \times \mathbb{N}, \leq)$ hence: Hamiltonicity of automatic planar graphs of degree c is Σ_1^1 -complete

Hamiltonian graphs

Hamiltonian automatic graphs

Theorem (K & Lohrey '10)

Hamiltonicity for automatic planar graphs of bounded degree is $\Sigma^1_1\text{-}\text{complete.}$

Question 1

How difficult is it to tell whether an automatic graph is Hamiltonian?

Answer

```
It is \Sigma_1^1-complete.
```

Question 2

Is there a "simple" characterization of the automatic Hamiltonian graphs?

Answer

no.

Eulerian graphs 00000 000 000 Hamiltonian graphs

Infinite cliques

...in computable graphs ...in automatic graphs Summary

Eulerian graphs

...in computable graphs ...in automatic graphs Summary

Hamiltonian graphs

... in computable graphs ... in automatic graphs Summary

Hamiltonian graphs

Summary: Hamiltonian path

Question 1

How difficult is it to tell whether a computable and an automatic graph have a Hamiltonian path?

$\begin{array}{l} \mbox{Answer} \\ \Sigma_1^1\mbox{-complete in both cases} \end{array}$

Question 2

Are there "simple" characterizations of the computable and the automatic graphs with a Hamiltonian path?

Answer

no in both cases

Eulerian graphs 00000 000 000

Summary

there exist (natural) problems φ s.t.

- 1. $\varphi(\text{automatic})$ decidable, $\varphi(\text{computable}) \Sigma_1^1$ -complete (e.g., infinite clique)
- 2. $\varphi(\text{automatic}) \Pi_2^0$ -complete, $\varphi(\text{computable}) D_3^0$ -complete (e.g., Euler path, 1-endedness)
- 3. $\varphi(\text{automatic})$ and $\varphi(\text{computable}) \Sigma_1^1$ -complete (e.g., Hamiltonicity, existence of infinite path)

open:

- 1. explanation for difference between 1, 2, and 3
- 2. investigation of subclasses of automatic structures

Eulerian graphs 00000 000 000

See you tomorrow!