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How Good is Multi-Pivot Quicksort?
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Multi-Pivot Quicksort refers to variants of classical quicksort where in the partitioning step k pivots are used

to split the input into k + 1 segments. For many years, multi-pivot quicksort was regarded as impractical,

but in 2010 a 2-pivot approach due to Yaroslavskiy was chosen as the standard sorting algorithm in Oracle's

Java. In 2014 at ALENEX, Kushagra et al. introduced an even faster algorithm that uses 3 pivots. This

paper studies what possible advantages multi-pivot quicksort might o�er in general. The contributions are

as follows: Natural comparison-optimal algorithms for multi-pivot quicksort are devised and analyzed. The

analysis shows that the bene�ts of using multiple pivots with respect to the average comparison count

are marginal and these strategies are inferior to simpler strategies such as the well known median-of-k
approach. A substantial part of the partitioning cost is caused by rearranging elements. A rigorous analysis

of an algorithm for rearranging elements in the partitioning step is carried out, observing mainly how often

array cells are accessed during partitioning. The algorithm behaves best if 3 or 5 pivots are used. Experiments

show that this translates into good cache behavior and is closest to predicting observed running times of

multi-pivot quicksort algorithms. Finally, it is studied how choosing pivots from a sample a�ects sorting

cost.
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1. INTRODUCTIONsec:introduction

Quicksort [Hoare 1962] is an efficient standard sorting algorithm with implementations
in practically all algorithm libraries. Following the divide-and-conquer paradigm, on
an input consisting of n elements quicksort uses a pivot element to partition its input
elements into two parts, the elements in one part being smaller than or equal to the
pivot, the elements in the other part being larger than or equal to the pivot, and then
uses recursion to sort these parts.

In k-pivot quicksort, k elements of the input are picked and sorted to get the pivots
p1 ≤ · · · ≤ pk. Then the task is to partition the remaining input according to the k + 1
segments or groups defined by the pivots. We say that an element x belongs to group
Ai, 0 ≤ i ≤ k, if pi < x < pi+1, see Fig. 1. (For ease of discussion, we set p0 = 0 and

Author’s addresses: M. Aumüller; M. Dietzfelbinger, Fakultät für Informatik und Automatisierung, Techni-
sche Universität Ilmenau, 98683 Ilmenau, Germany; e-mail: {martin.aumueller,martin.dietzfelbinger}@tu-
ilmenau.de; P. Klaue, 3DInteractive GmbH, 98693 Ilmenau, Germany; email: pklaue@3dinteractive.de. Part
of the work was done while the third author was a Master’s student at Technische Universität Ilmenau.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1549-6325/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Dra
ft

. . . ≤ p1 p1 p1 ≤ . . . ≤ p2 p2 p2 ≤ . . . ≤ p3 · · ·p3 pk ≤ . . .pk

A0 A1 A2 Ak

Fig. 1. Result of the partition step in k-pivot quicksort using pivots p1, . . . , pk. fig:partition

pk+1 = n + 1.) These segments are then sorted recursively. As we will explore in this
paper, using more than one pivot allows to choose from a variety of different partitioning
strategies. This paper will provide the theoretical foundations to analyze these methods.

1.1. History and Related Work
Variants of classical quicksort were the topic of extensive studies, such as sampling vari-
ants [Sedgewick 1975; Martínez and Roura 2001], variants for equal keys [Sedgewick
1977], or variants for sorting strings [Bentley and Sedgewick 1997]. On the other hand,
very little work has been done on quicksort variants that use more than one pivot. This
is because multi-pivot quicksort was judged impractical in two independent PhD theses:
In [Sedgewick 1975] Sedgewick had proposed and analyzed a dual-pivot approach that
was inferior to classical quicksort in terms of the average swap count. Later, Hen-
nequin [Hennequin 1991] studied the general approach of using k ≥ 1 pivot elements.
According to [Wild and Nebel 2012], he found only slight improvements with respect
to the average comparison count that would not compensate for the more involved
partitioning procedure.

Everything changed in 2009 when a 2-pivot quicksort algorithm due to Yaroslavskiy
was introduced in Oracle’s Java 7. Wild and Nebel (joined by Neininger in the full
version) [2012; 2015] analyzed this algorithm and showed that it uses 1.9n lnn+O(n)
comparisons and 0.6n lnn + O(n) swaps on average to sort a random input if two
arbitrary elements are chosen as the pivots. Thus, this 2-pivot approach turned out to
improve on classical quicksort—which makes 2n lnn+O(n) comparisons and 0.33..n lnn+
O(n) swaps on average—w. r. t. the average comparison count. However, the swap count
was negatively affected by using two pivots, which had also been observed for another
dual-pivot quicksort algorithm in [Sedgewick 1975]. Aumüller and Dietzfelbinger [2013;
2015] showed a lower bound of 1.8n lnn + O(n) comparisons on average for 2-pivot
quicksort algorithms. They devised natural 2-pivot algorithms that achieved this lower
bound. The key to understanding what is going on here is to note that one can improve
the comparison count by deciding in a clever way with which one of the two pivots a
new element should be compared first. While optimal algorithms with respect to the
average comparison count are simple to implement, they must either count frequencies
or need to sample a small part of the input, which renders them not competitive
with Yaroslavskiy’s algorithm with respect to running time when key comparisons
are cheap. Moreover, Aumüller and Dietzfelbinger [2015] proposed a 2-pivot algorithm
which makes 2n lnn + O(n) comparisons and 0.6n lnn + O(n) swaps on average—no
improvement over classical quicksort in both cost measures—, but behaves very good in
practice. Hence, the running time improvement of a 2-pivot quicksort approach could
not be explained conclusively in these works.

Very recently, Kushagra et al. [2014] proposed a novel 3-pivot quicksort approach.
Their algorithm compares a new element with the middle pivot first, and then with one
of the two others. While the general idea of this algorithm had been known before (see,
e. g., [Hennequin 1991; Tan 1993]), they provided a smart way of exchanging elements.
Building on the work of LaMarca and Ladner [1999], they showed theoretically that
their algorithm is more cache efficient than classical quicksort and Yaroslavskiy’s algo-
rithm. They reported on experiments that gave reason to believe that the improvements

2



Dra
ft

of multi-pivot quicksort algorithms with respect to running times are due to their better
cache behavior. They also reported from experiments with a seven-pivot algorithm,
which ran more slowly than their three-pivot algorithm. We will describe how their
(theoretical) arguments generalize to quicksort algorithms that use more than three
pivots. In connection with the running time experiments from Section 9, this allows us
to make more accurate predictions than [Kushagra et al. 2014] about the influence of
cache behavior to running time. One result of this study will be that it is not surprising
that their seven-pivot approach is slower, because it has worse cache behavior than
three- or five-pivot quicksort algorithms using a specific partitioning strategy.

In implementations of quicksort and dual-pivot quicksort, pivots are usually taken
from a small sample of elements. For example, the median in a sample of size 2k + 1 is
the standard way to choose the pivot in classical quicksort. Often this sample contains
only a few elements, say 3 or 5. The first theoretical analysis of this strategy is due to
van Emden [1970]. Martínez and Roura [2001] settled the exact analysis of the leading
term of this strategy in 2001. In practice, other pivot sampling strategies were applied
successfully as well, such as the “ninther” variant from [Bentley and McIlroy 1993].
In the implementation of Yaroslavskiy’s algorithm in Oracle’s Java 7, the second- and
fourth-largest element in a sample of size five are chosen as pivots. The exact analysis of
(optimal) sampling strategies for Yaroslavskiy’s algorithm is due to Nebel et al. [2015].
Interestingly, for Yaroslavskiy’s algorithm it is not optimal to choose as pivots the
tertiles of the sample; indeed, asymmetric choices are superior from a theoretical point
of view. Moreover, it is shown there that—in contrast to classical quicksort with the
median of 2k + 1 strategy—it is impossible to achieve the lower bound for comparison-
based sorting algorithms using Yaroslavskiy’s algorithm. Aumüller and Dietzfelbinger
[2015] showed later that this is not an inherent drawback of dual-pivot quicksort. Other
strategies, such as always comparing with the larger pivot first, make it again possible
to achieve this lower bound. For more than two pivots, Hennequin [1991] was again
the first to study how pivot sampling affects the average comparison count when a
“most-balanced” comparison tree is used in each classification, see [Hennequin 1991,
Tableau D.3].

1.2. Contributions
The main contributions of the present paper are as follows: (i) In the style of [Aumüller
and Dietzfelbinger 2013], we study how the average comparison count of an arbitrary
k-pivot quicksort algorithm can be calculated. Moreover, we show a lower bound for
k-pivot quicksort and devise natural algorithms that achieve this lower bound. It
will turn out that the partitioning procedures become complicated and the benefits
obtained by minimizing the average comparison count are only minor. In brief, optimal
k-pivot quicksort cannot improve on simple and well-studied strategies such as classical
quicksort using the median-of-k strategy. Compared with the study of 2-pivot algorithms
in [Aumüller and Dietzfelbinger 2013], the results generally carry over to the case of
using k ≥ 3 pivots. However, the analysis becomes more involved, and we were not
able to prove tight asymptotic bounds as in the 2-pivot case. The interested reader
is invited to read [Aumüller and Dietzfelbinger 2015] to get acquainted with the
ideas underlying the general analysis. (ii) Leaving key comparisons aside, we study the
problem of rearranging the elements to actually partition the input. We devise a natural
generalization of the partitioning algorithms used in classical quicksort, Yaroslavskiy’s
algorithm, and the three-pivot algorithm of [Kushagra et al. 2014] to solve this problem.
The basic idea is that as in classical quicksort there exist two pointers which scan
the array from left to right and right to left, respectively, and the partitioning process
stops when the two pointers meet. Misplaced elements are moved with the help of k − 1
additional pointers that store starting points of special array segments. We study this
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algorithm with regard to the average number of scanned elements (see Section 7 or
[Nebel et al. 2015] for the definition),the average number of writes into array cells, andChecken:

Gut so?
Checken:
Gut so?

the average number of assignments necessary to rearrange the elements. Interestingly,
while moving elements around becomes more complicated during partitioning, this
algorithm scans fewer array cells than classical quicksort for certain (small) pivot
numbers. We will see that 3- and 5-pivot quicksort algorithms visit the fewest array
cells, and that this translates directly into good cache behavior and corresponds to
differences in running time in practice. In brief, we provide strong evidence that the
running time improvements of multi-pivot quicksort are largely due to its better cache
behavior (as conjectured by Kushagra et al. [2014]), and that no benefits are to be
expected from using more than 5 pivots. In the same flavor we give an analysis for two
algorithms from the literature and show that they benefit from an increasing number
of pivots. However, they have to store the result of a first classification step and thus
require additional space. (iii) We analyze sampling strategies for multi-pivot quicksort
algorithms with respect to comparisons and scanned elements. We will show that for
each fixed order in which elements are compared to pivots there exist pivot choices
which yield a comparison-optimal multi-pivot quicksort algorithm. When considering
scanned elements there is one optimal pivot choice. Combining comparisons and scanned
elements, the analysis provides a candidate for the order in which elements should be
compared to pivots that has not been studied in previous attempts like [Hennequin
1991; Iliopoulos 2014]. We will now discuss the approach taken in the present paper in
more detail.

1.3. Outline
In the analysis of quicksort, the analysis of one particular partitioning step with respect
to a specific cost measure, e. g., the number of comparisons (or assignments, or array
accesses), makes it possible to precisely analyze the cost over the whole recursion. In
Hennequin’s thesis [1991] the connection between partitioning cost and overall cost for
quicksort variants with more than one pivot has been analyzed in detail. The result
relevant for us is that if k pivots are used and the (average) partitioning cost for n
elements is a · n+O(1), for a constant a, then the average cost for sorting n elements is

1

Hk+1 − 1
· a · n lnn+O(n), (1) eq:1

where Hk+1 denotes the (k + 1)st harmonic number. In Section 2, we will use the
continuous Master theorem from [Roura 2001] to prove a more general result for
partitioning cost a · n + O(n1−ε). Throughout the present paper all that interests us
is the constant factor with the leading term. (Of course, for real-life n the lower order
term can have a big influence on the cost measure.)

For the purpose of the analysis, we will consider the input to be a random permutation
of the integers {1, . . . , n}. Recall that an element x belongs to group Ai, 0 ≤ i ≤ k, if
pi < x < pi+1 (see Fig. 1), where we set p0 = 0 and pk+1 = n + 1. When focusing on a
specific cost measure we can often leave aside certain aspects of the partitioning process.
For example, in the study of the average comparison count of an arbitrary k-pivot
quicksort algorithm, we will only focus on classifiying the elements into their respective
groups A0, . . . ,Ak, and omit rearranging these elements to produce the actual partition.
When focusing on the average swap count (or the average number of assignments
necessary to move elements around), we might just assume that the input is already
classified and that the problem is just to rearrange the elements to obtain the actual
partition.

In terms of classifying the elements into groups A0, . . . ,Ak, the most basic operation
is the classification of a single element. This is done by comparing the element against
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Fig. 2. A comparison tree for 5 pivots. fig:comparison:tree

the pivots in some order. This order is best visualized using a comparison tree, which is
a binary search tree with k + 1 leaves labeled A0, . . . ,Ak from left to right and k inner
nodes labeled p1, . . . ,pk according to inorder traversal. (Such a tree for k = 5 is depicted
in Figure 2.) Assume a comparison tree λ is given, and pivots p1, . . . , pk have been
chosen. Then a given non-pivot element determines a search path in λ in the usual way;
its classification can be read off from the leaf at the end of the path. If the input contains
ah elements of group Ah, for 0 ≤ h ≤ k, the cost costλ(a0, . . . , ak) of a comparison tree λ
is the sum over all j of the depth of the leaf labeled Aj multiplied with aj , i. e., the total
number of comparisons made when classifying the whole input using λ. A classification
algorithm then just defines which comparison tree is to be used for the classification of
an element based on the outcome of the previous classifications. The first main result
of our paper—presented in Section 3—is that in order to (approximately) determine
the average comparison count for partitioning given p1, . . . , pk we only have to find out
how many times on average each comparison tree is used by the specific algorithm. The
average cost of the tree is then this average number multiplied with the cost of the tree
for the pivot choice. Summing this cost over all trees gives us the average comparison
count for this particular pivot choice up to lower order terms. Averaging over all pivot Besser?Besser?

choices then gives the average comparison count for the classification. Section 4 applies
this result by discussing different classification strategies for 3-pivot quicksort.

In Section 5, we will show that there exist two very natural comparison-optimal
strategies. The first strategy counts the number of elements a′0, . . . , a′k classified to
groups A0, . . . ,Ak, respectively, after the first i classifications. The comparison tree used
in the (i+ 1)st classification is then just a comparison tree with minimum cost w. r. t.
(a′0, . . . , a

′
k). The second strategy uses an arbitrary comparison tree for the first n3/4

classifications, then computes a cost-minimal comparison tree for the group sizes seen
in that sample, and uses this tree in each of the remaining classifications.

A full analysis of optimal versions of k-pivot quicksort does not seem possible at
present for k ≥ 4. In Section 6, we resort to estimates for the cost of partitioning based
on experiments to estimate coefficients for average comparison counts for larger k. The
results show that the improvements given by comparison-optimal k-pivot quicksort
can be achieved in much simpler ways, e. g., by combining classical quicksort with the
median-of-k pivot sampling technique. Moreover, while choosing an optimal comparison
tree for fixed segment sizes is a simple application of dynamic programming, for large
k the time needed for the computation renders optimal k-pivot quicksort useless with
respect to running time.

Beginning with Section 7, we will follow a different approach, which we hope helps
in understanding factors different from comparison counts that determine the run-
ning time of multi-pivot quicksort algorithms. We restrict ourselves to use some fixed
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comparison tree for each classification, and think only about moving elements around
in a swap-efficient or cache-efficient way. At the first glance, it is not clear why more
pivots should help. Intuitively, the more segments we have, the more work we have to
do to move elements to the segments, because we are much more restrictive on where
an element should be placed. However, we save work in the recursive calls, since the
denominator in (1) gets larger as we use more pivots. (Intuitively, the depth of the recur-
sion tree decreases.) So, while the partitioning cost increases, the total sorting cost could
actually decrease. We will devise an algorithm that builds upon the “crossing pointer
technique” of classical quicksort. In brief, two pointers move towards each other as in
classical quicksort. Misplaced elements are directly moved to some temporary array
segment which holds elements of that group. This is done with the help of additional
pointers. Moving misplaced elements is in general not done using swaps, but rather by
moving elements in a cyclic fashion. Our cost measure for this algorithm is the number
of scanned elements, i. e., the sum over all array cells of how many pointers accessed
this array cell during partitioning and sorting. For the average number of scanned
elements, it turns out that there is an interesting balance between partitioning cost and
total sorting cost. In fact, in this cost measure, the average cost drastically decreases
from using one pivot to using three pivots, there is almost no difference between 3-
and 5-pivot quicksort, and for larger pivot numbers the average cost increases again.
Interestingly, with respect to two other cost measures that look quite similar we get
higher cost as the number of pivots increases. At the end of Section 7 we study two
algorithms from the literature [McIlroy et al. 1993; Sanders and Winkel 2004] that
can be used to rearrange elements. Both algorithms work in a two-pass fashion: in a
first pass, they find out the sizes of the element groups in the input; in a second pass
they use this information to make an in-place permutation of the input or allocate a
new array to rearrange the input. Both of these algorithms have decreasing cost as the
number of pivots increases and we discuss some natural limitations of the architecture,
e. g., the size of caches, that put an upper bound on what pivot numbers still allow for
efficient algorithms.

In Section 8 we turn our attention to the effect of choosing pivots from a (small)
sample of elements. Building on the theoretical results regarding comparisons and
scanned elements from before, it is rather easy to develop formulae to calculate the
average number of comparisons and the average number of scanned elements when
pivots are chosen from a small sample. Example calculations demonstrate that the
cost in both measures can be decreased by choosing pivots from a small (fixed-sized)
sample. Interestingly, the best pivot choices do not balance subproblem sizes but tend
to make the middle groups, i. e., groups Ap with p close to k/2, larger. To get an idea
what optimal sampling strategies should look like, we consider the setting that we can
choose pivots of a given rank for free, and we are interested in the ranks that minimize
the specific cost measure. Our first result in this setting shows that for every fixed
comparison tree it is possible to choose the pivots in such a way that on average we
need at most 1.4426..n lnn+O(n) comparisons to sort the input, which is optimal. As a
second result, we identify a particular pivot choice that minimizes the average number
of scanned elements. In contrast to the results of the previous section we show that
with these pivot choices, the average number of scanned elements decreases with a
growing number of pivots.Abschnitt 8

anpassen?
Abschnitt 8
anpassen?

At the end of this paper, we report on experiments carried out to find if the theoretical
cost measures are correlated to observed running times in practice. To this end, we
implemented k-pivot quicksort variants for many different pivot numbers and compared
them with respect to their running times. In brief, these experiments will confirm what
has been conjectured in [Kushagra et al. 2014]: running times of quicksort algorithms
are best predicted using a cost measure related to cache misses in the CPU.

6



Dra
ft

2. SETUP AND GROUNDWORKsec:setup

We assume that the input is a random permutation (e1, . . . , en) of {1, . . . , n}. If n ≤ k,
sort the input directly. For n > k, sort the first k elements such that e1 < e2 < . . . < ek
and set p1 = e1, . . . , pk = ek. In the partition step, the remaining n− k elements are split
into k + 1 groups A0, . . . ,Ak, where an element x belongs to group Ah if ph < x < ph+1.
(For the ease of discussion, we set p0 = 0 and pk+1 = n+ 1.) The groups A0, . . . ,Ak are
then sorted recursively. We never compare two non-pivot elements against each other.
This preserves the randomness in the groups A0, . . . ,Ak. In the remainder of this paper,
we identify group sizes by ai := |Ai| = pi+1−pi−1 for i ∈ {0, . . . , k}. In the first sections,
we focus on analyzing the average comparison count. Let k ≥ 1 be fixed. Let Cn denote
the random variable which counts the comparisons being made when sorting an input
of length n, and let Pn be the random variable which counts the comparisons made in
the first partitioning step. The average comparison count of k-pivot quicksort clearly
obeys the following recurrence, for n ≥ k:

E(Cn) = E(Pn) +
1(
n
k

) ∑
a0+···+ak=n−k

(E(Ca0) + · · ·+ E(Cak)).

For n < k we assume cost 0. We now collect terms with a common factor E(C`), for
0 ≤ ` ≤ n − k. To this end, fix j ∈ {0, . . . , k} and ` ∈ {0, . . . , n − k} and assume that
aj = `. By a standard argument, there are exactly

(
n−`−1
k−1

)
ways to choose the other

segment sizes ai, i 6= j, such that a0 + · · ·+ ak = n− k. (Note the equivalence between
segment sizes and binary strings of length n− `− 1 with exactly k − 1 ones.) Thus, we
conclude that

E(Cn) = E(Pn) +
k + 1(
n
k

) n−k∑
`=0

(
n− `− 1

k − 1

)
E(C`), (2) eq:k:pivot:recurrence

which was also observed in [Iliopoulos 2014]. (This generalizes the well known formula
E(Cn) = n− 1 + 2/n ·

∑
0≤`≤n−1 E(C`) for classical quicksort and the formulas for k = 2

from, e. g., [Aumüller and Dietzfelbinger 2013; Wild and Nebel 2012] and k = 3 from
[Kushagra et al. 2014].) For partitioning cost of a ·n+O(n1−ε), for constants a and ε > 0,
this recurrence has the following solution.

THEOREM 2.1. Let A be a k-pivot quicksort algorithm that for each subarray of
length n has partitioning cost E(Pn) = a · n+O(n1−ε) for a constant ε > 0. Then

E(Cn) =
1

Hk+1 − 1
· an lnn+O(n), (3) eq:k:pivot:recurrence:solution

where Hk+1 =
∑k+1
i=1 (1/i) is the (k + 1)st harmonic number.thm:k:pivot:recurrence:solution

PROOF. By linearity of expectation we may solve the recurrence for partitioning cost
E(P1,n) = a · n + O(1) and E(P2,n) = O(n1−ε) separately. To solve for cost E(P1,n) we
may apply (1). The influence of partitioning cost E(P2,n) over the whole recursion can be
analyzed using the continuous Master theorem from [Roura 2001]. These calculations
can be found in Appendix A.

When focusing only on the average comparison count, it suffices to study the classifica-
tion problem: Given a random permutation (e1, . . . , en) of {1, . . . , n}, choose the pivots
p1, . . . , pk and classify each of the remaining n− k elements as belonging to one of the
groups A0, . . . ,Ak.
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Algorithmically, the classification of a single element x with respect to the pivots
p1, . . . , pk is done by using a comparison tree λ. A comparison tree is a binary search tree,
where the leaf nodes are labeled A0, . . . ,Ak from left to right and the inner nodes are
labeled p1, . . . ,pk in inorder. Figure 2 depicts a comparison tree for 5 pivots. Classifying
an element then means searching for this element in the search tree. The classification
of the element is the label of the leaf reached in that way. If x belongs to group Ah, the
depth depthλ(Ah) of the label Ah in λ is the number of comparisons made.Satz

checken.
Satz
checken.

A classification strategy is formally described as a classification tree as follows. A
classification tree is a (k + 1)-way tree with a root and n − k levels of inner nodes as
well as one leaf level. Each inner node v has two labels: an index i(v) ∈ {k + 1, . . . , n},
and a comparison tree λ(v). The element ei(v) is classified using the comparison tree
λ(v). The k + 1 edges out of a node are labeled 0, . . . , k, resp., representing the outcome
of the classification as belonging to group A0, . . . ,Ak, respectively. On each of the
(k+ 1)n−k paths each index from {k+ 1, . . . , n} occurs exactly once. An input (e1, . . . , en)
determines a path in the classification tree in the obvious way: sort the pivots, then
use the classification tree to classify ek+1, . . . , en. The classification of the input can
then be read off from the nodes and edges along the path from the root to a leaf in the
classification tree.

To fix some more notation, for each node v, and for h ∈ {0, . . . , k}, we let avh be the
number of edges labeled “h” on the path from the root to v. Furthermore, let Ch,i denote
the random variable which counts the number of elements classified as belonging to
group Ah, for h ∈ {0, . . . k}, in the first i levels, for i ∈ {0, . . . , n − k}, i. e., Ch,i = avh
when v is the node on level i of the classification tree reached for an input. In many
proofs, we will need that Ch,i is not far away from its expectation ah/(n− k − i). This
would be a trivial consequence of the Chernoff bound if the classification of elements
were independent. However, the probabilities of classifying elements to a specific group
change according to classifications made before. We will use the method of averaged
bounded differences to show concentration despite dependencies between tests.

LEMMA 2.2. Let the pivots p1, . . . , pk be fixed. Let Ch,i be defined as above. Then for
each h with h ∈ {0, . . . , k} and for each i with 1 ≤ i ≤ n− k we have that

Pr
(
|Ch,i − E(Ch,i)| > n2/3

)
≤ 2exp

(
−n1/3/2

)
.

lem:sample:concentration:k:pivots

PROOF. Fix an arbitrary h ∈ {0, . . . , k}. Define the indicator random variable

Xj = [the element classified in level j belongs to group Ah].

Of course, Ch,i =
∑

1≤j≤iXj . We let

cj := |E(Ch,i | X1, . . . , Xj)− E(Ch,i | X1, . . . , Xj−1)|.

Using linearity of expectation we may calculateRechnung
anpassen.
Rechnung
anpassen.
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cj =
∣∣E(Ch,i | X1, . . . , Xj)− E(Ch,i | X1, . . . , Xj−1)

∣∣
=

∣∣∣∣∣∣Xj − E(Xj | X1, . . . , Xj−1) +

i∑
`=j+1

(E(X` | X1, . . . , Xj)− E(X` | X1, . . . , Xj−1))

∣∣∣∣∣∣
=

∣∣∣∣Xj −
ah − Ch,j−1

n− j − 1
+ (i− j)

(
ah − Ch,j
n− j − 2

− ah − Ch,j +Xj

n− j − 1

)∣∣∣∣
=

∣∣∣∣Xj

(
1− i− j

n− j − 1

)
− ah − Ch,j−1

n− j − 1
+

(i− j)(ah − Ch,j)
(n− j − 2)(n− j − 1)

∣∣∣∣
≤
∣∣∣∣Xj

(
1− i− j

n− j − 1

)
− ah − Ch,j +Xj

n− j − 1
+
ah − Ch,j
n− j − 1

∣∣∣∣
=

∣∣∣∣Xj

(
1− i− j − 1

n− j − 1

)∣∣∣∣ ≤ 1.

We use the following bound known as the method of averaged bounded differences (see
[Dubhashi and Panconesi 2009, Theorem 5.3]):

Pr(|Ch,i − E(Ch,i)| > t) ≤ 2 exp

(
− t2

2
∑
j≤i c

2
j

)
.

This yields

Pr
(
|Ch,i − E(Ch,i)| > n2/3

)
≤ 2 exp

(
−n4/3

2i

)
,

which is not larger than 2 exp(−n1/3/2).

3. THE AVERAGE COMPARISON COUNT FOR PARTITIONINGsec:act

In this section, we will obtain a formula for the average comparison count of an arbi-
trary classification strategy. We make the following observations for all classification
strategies: We need k log k = O(1) comparisons to sort e1, . . . , ek, i. e., to determine the
k pivots p1, . . . , pk in order. If an element x belongs to group Ai, it must be compared
to pi and pi+1. (Of course, no real comparison takes place against p0 and pk+1.) On
average, this leads to 2(1 − 1/(k + 1))(n − k) + O(1) comparisons—regardless of the
actual classification strategy.

For the following paragraphs, we fix a classification strategy, i. e., a classification tree
T . Furthermore, we let v be an arbitrary inner node of T .

If ei(v) belongs to group Ah then exactly depthλ(v)(Ah) comparisons are made to
classify this element. We let CTv denote the number of comparisons that take place in
node v during classification. Let PTn be the random variable that counts the number of
comparisons being made when classifying an input sequence (e1, . . . , en) using T , i. e.,
PTn =

∑
v∈T C

T
v . For the average classification cost E(PTn ) we get: Use p

and a
instead of
a0, . . . , ak?

Use p
and a
instead of
a0, . . . , ak?

E(PTn ) =
1(
n
k

) ∑
1≤p1<p2<···<pk≤n

E(PTn | p1, . . . , pk).

9
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We define pvp1,...,pk as the probability that node v is reached if the pivots are p1, . . . , pk.
We may write:

E(PTn | p1, . . . , pk) =
∑
v∈T

E(CTv | p1, . . . , pk)

=
∑
v∈T

pvp1,...,pk · E(CTv | p1, . . . , pk, v reached). (4) eq:51000

For a comparison tree λ and group sizes a′0, . . . , a′k, we define the cost of λ on these group
sizes as the number of comparisons it makes for classifying an input with these group
sizes, i. e.,

costλ(a′0, . . . , a
′
k) =

∑
0≤i≤k

depthλ(Ai) · a′i.

Furthermore, we define its average cost cλavg(a′0, . . . , a
′
k) as follows:

cλavg(a′0, . . . , a
′
k) :=

costλ(a′0, . . . , a
′
k)∑

0≤i≤k a
′
i

. (5) eq:30014

Under the assumption that node v is reached and that the pivots are p1, . . . , pk, the
probability that the element ei(v) belongs to group Ah is exactly (ah−avh)/(n−k−level(v)),
for each h ∈ {0, . . . , k}. (Note that this means that the order in which elements are
classified is arbitrary, so that we could actually use some fixed ordering.) Summing over
all groups, we get

E(CTv | p1, . . . , pk, v reached) = c
λ(v)
avg (a0 − av0, . . . , ak − avk).

Plugging this into (4) gives

E(PTn | p1, . . . , pk) =
∑
v∈T

pvp1,...,pk · c
λ(v)
avg (a0 − av0, . . . , ak − avk). (6) eq:50000

Let Λk be the set of all possible comparison trees. For each λ ∈ Λk, we define the random
variable Fλ that counts the number of times λ is used during classification. For given
p1, . . . , pk, and for each λ ∈ Λk, we let

fλp1,...,pk := E(Fλ | p1, . . . , pk) =
∑
v∈T

λ(v)=λ

pvp1,...,pk

denote the average number of times comparison tree λ is used in T under the condition
that the pivots are p1, . . . , pk.

Now, if it was decided in each step by independent random experiments with the
correct expectation ah/(n− k), for 0 ≤ h ≤ k, whether an element belongs to group Ah,
it would be clear that for each λ ∈ Λk the contribution of λ to the average classification
cost is fλp1,...,pk · c

λ
avg(a0, . . . , ak). This intuition can be proven to hold for all classification

trees, except that one gets an additional O(n1−ε) term due to dependencies between
classifications.

LEMMA 3.1. Let the pivots p1, . . . , pk be fixed. Let T be a classification tree. Then
there exists a constant ε > 0 such that

E(PTn ) =
1(
n
k

) ∑
1≤p1<p2<···<pk≤n

∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +O(n1−ε).

lem:k:pivot:average:partition:cost

10
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PROOF. Fix the set of pivots p1, . . . , pk. The calculations start from re-writing (6) in
the following form:

E(PTn | p1, . . . , pk) =
∑
v∈T

pvp1,...,pk · c
λ(v)
avg (a0 − av0, . . . , ak − avk)

=
∑
v∈T

pvp1,...,pk · c
λ(v)
avg (a0, . . . , ak)−

∑
v∈T

pvp1,...,pk

(
c
λ(v)
avg (a0, . . . , ak)− cλ(v)

avg (a0−av0, . . . , ak−avk)
)

=
∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak)−

∑
v∈T

pvp1,...,pk

(
c
λ(v)
avg (a0, . . . , ak)− cλ(v)

avg (a0−av0, . . . , ak−avk)
)
.

(7) eq:50002

For each node v in the classification tree, we say that v is on track (to the expected
values) if ∣∣cλ(v)

avg (a0, . . . , ak)− cλ(v)
avg (a0 − av0, . . . , ak − avk)

∣∣ ≤ k2

n1/12
.

Otherwise, v is called off track.
By considering on-track and off-track nodes in (7) separately, we may calculate

E(PTn | p1, . . . , pk) ≤
∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +

∑
v∈T

v is on track

pvp1,...,pk
k2

n1/12
+

∑
v∈T

v is off track

pvp1,...,pk

(
c
λ(v)
avg (a0, . . . , ak)− cλ(v)

avg (a0−av0, . . . , ak−avk)
)

≤
∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak) + k ·

∑
v∈T

v is off track

pvp1,...,pk +O(n11/12)

=
∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +

k ·
n−k∑
i=1

Pr(an off track node is reached on level i) +O(n11/12).

(8) eq:50001

It remains to bound the second summand of (8). First, we obtain the general bound:∣∣cλ(v)
avg (a0, . . . , ak)− cλ(v)

avg (a0 − av0, . . . , ak − avk)
∣∣

≤ (k − 1) ·
k∑
j=0

∣∣∣∣ aj
n− k

−
aj − avj

n− k − level(v)

∣∣∣∣
≤ (k − 1) · (k + 1) · max

0≤j≤k

{∣∣∣∣ aj
n− k

−
aj − avj

n− k − level(v)

∣∣∣∣}.
11
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Thus, by definition, whenever v is an off track node, there exists j ∈ {0, . . . , k} such that∣∣∣∣ aj
n− k

−
aj − avj

n− k − level(v)

∣∣∣∣ > 1

n1/12
.

Now consider the case that the random variables Ch,i that counts the number of
Ah-elements in the first i classifications are concentrated around their expectation,
as in the statement of Lemma 2.2. This happens with very high probability, so the
contributions of the other case to the average comparison count can be neglected. For
each h ∈ {0, . . . , k}, and each level i ∈ {1, . . . , n− k} we calculate∣∣∣∣ ah

n− k
− ah − Ch,i
n− k − i

∣∣∣∣ ≤ ∣∣∣∣ ah
n− k

− ah(1− i/(n− k))

n− k − i

∣∣∣∣+

∣∣∣∣ n2/3

n− k − i

∣∣∣∣ =
n2/3

n− k − i
.

So, for the first i ≤ n − n3/4 levels, we are with very high probability in an on track
node on level i, because the deviation of the ideal probability ah/(n − k) of seeing an
element which belongs to group Ah and the actual probability in the node reached on
level i of seeing such an element is at most 1/n1/12. Thus, for the first n− n3/4 levels
the contribution of the sums of the probabilities of off track nodes is not more than
O(n11/12) to the first summand in (8). For the last n3/4 levels of the tree, we use that
the contribution of the probabilities that we reach an off track node on level i is at most
1 for a fixed level.

This shows that the second summand in (8) is O(n11/12). The lemma now follows from
averaging over all possible pivot choices.

4. EXAMPLE: 3-PIVOT QUICKSORTsec:3:pivot:quicksort

Here we study variants of 3-pivot quicksort algorithms in the light of Lemma 3.1.
This paradigm got recent attention by the work of Kushagra et al. [2014], who pro-
vided evidence that—in practice—a 3-pivot quicksort algorithm might be faster than
Yaroslavskiy’s dual-pivot quicksort.

In 3-pivot quicksort, we might choose from five different comparison trees. These trees,
together with their comparison cost, are depicted in Figure 3. We will study the average
comparison count of three different strategies in an artificial setting: We assume, as in
the analysis, that our input is a permutation of {1, . . . , n}. So, after choosing the pivots
the algorithm knows the exact group sizes in advance. Transforming this strategy into
a realistic one is a topic of the next section.

All considered strategies will follow the same idea: After choosing the pivots, it is
checked which comparison tree has the smallest average cost for the group sizes found
in the input. Then this tree is used for all classifications. Our strategies differ in respect
to the set of comparison trees they can use. In the next section we will explain why
deviating from such a strategy, i. e., using different trees during the classification for
fixed group sizes, does not help for minimizing the average comparison count.

The symmetric strategy. In the algorithm of [Kushagra et al. 2014], the balanced
comparison tree λ2 is used for each classification. Using Lemma 3.1, we get1

E(Pn) =
1(
n
3

) ∑
a0+a1+a2+a3=n−3

(2a0 + 2a1 + 2a2 + 2a3) +O(n1−ε)

= 2n+O(n1−ε).

Using Theorem 2.1, we conclude that

1Of course, E(Pn) = 2(n− 3), since each classification makes exactly two comparisons.
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p1

A0 p2

A1 p3

A2 A3

p1

A0 p3

p2

A1 A2

A3

p2

p1

A0 A1

p3

A2 A3

p3

p1

A0 p2

A1 A2

A3

p3

p2

p1

A0 A1

A2

A3

λ0 : λ1 : λ2 :

λ3 : λ4 :

a0 + 2a1 + 3a2 + 3a3 a0 + 3a1 + 3a2 + 2a3 2a0 + 2a1 + 2a2 + 2a3

2a0 + 3a1 + 3a2 + a3 3a0 + 3a1 + 2a2 + a3

Fig. 3. The different comparison trees for 3-pivot quicksort with their comparison cost (dotted boxes, only
displaying the numerator). fig:3:pivot:comparison:trees

E(Cn) = 24/13n lnn+O(n) ≈ 1.846n lnn+O(n),

as known from [Kushagra et al. 2014]. This improves on classical quicksort (2n lnn+O(n)
comparisons on average), but is worse than optimal dual-pivot quicksort (1.8n lnn+O(n)
comparisons on average [Aumüller and Dietzfelbinger 2013]) or median-of-3 quicksort
(1.714n lnn+O(n) comparisons on average [van Emden 1970]).

Using three trees. Here we restrict our algorithm to choose only among the com-
parison trees {λ1, λ2, λ3}. The computation of a cost-minimal comparison tree is then
simple: Suppose that the segment sizes are a0, . . . , a3. If a0 > a3 and a0 > a1 + a2 then
comparison tree λ1 has minimum cost. If a3 ≥ a0 and a3 > a1 + a2 then comparison tree
λ3 has minimum cost. Otherwise λ2 has minimum cost.

Using Lemma 3.1, the average partition cost with respect to this set of comparison
trees can be calculated (using Maple R©) as follows:

E(Pn) =
1(
n
3

) ∑
a0+a1+a2+a3=n−3

min
{
a0+3a1+3a2+2a3,2a0+2a1+2a2+2a3,

2a0+3a1+3a2+1a3

}
+O(n1−ε)

=
17

9
n+O(n1−ε).

This yields the following average comparison cost:

E(Cn) =
68

39
n lnn+O(n) ≈ 1.744n lnn+O(n).

Using all trees. Now we let our strategies choose among all five trees. Using
Lemma 3.1 and the average cost for all trees from Figure 3, we calculate (using Maple R©)

13
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E(Pn) =
1(
n
3

) ∑
a0+a1+a2+a3=n−3

min
{a0+2a1+3a2+3a3,a0+3a1+3a2+2a3,

2a0+2a1+2a2+2a3,2a0+3a1+3a2+a3
3a0+3a1+2a2+a3

}
+O(n1−ε)

=
133

72
n+O(n1−ε).

This yields the following average comparison cost:

E(Cn) =
133

78
n lnn+O(n) ≈ 1.705n lnn+O(n),

which is—as will be explained in the next section—the lowest possible average compar-
ison count one can achieve by picking three pivots directly from the input. So, using
three pivots gives a slightly lower average comparison count than quicksort using the
median of three elements as the pivot.

5. (ASYMPTOTICALLY) OPTIMAL CLASSIFICATION STRATEGIES
sec:optimal:strategies

In this section we will discuss four different strategies, which will all achieve the mini-
mal average comparison count (up to lower order terms). Two of these four strategies
will be optimal but unrealistic, since they assume that after the pivots are fixed the
algorithm knows the sizes of the k + 1 different groups. The strategies work as follows:
One strategy maintains the group sizes of the unclassified part of the input and chooses
the comparison tree with minimum cost with respect to these group sizes. This will turn
out to be the optimal classification strategy for k-pivot quicksort. To turn this strategy
into an actual algorithm, we will use the group sizes of the already classified part of
the input as a basis for choosing the comparison tree for the next classification. The
second unrealistic strategy works like the algorithms for 3-pivot quicksort. It will use
the comparison tree with minimum cost with respect to the group sizes of the input in
each classification. To get an actual algorithm, we estimate these group sizes in a small
sampling step. Note that these strategies are the obvious generalization of the optimal
strategies for dual-pivot quicksort from [Aumüller and Dietzfelbinger 2013].

Since all these strategies need to compute cost-minimal comparison trees, this section
starts with a short discussion of algorithms for this problem. Then we discuss the four
different strategies.

5.1. Choosing an Optimal Comparison Tree
sec:optimal:comparison:tree

For optimal k-pivot quicksort algorithms it is of course necessary to devise an algorithm
that can compute an optimal comparison tree for partition sizes a0, . . . , ak, i. e., a
comparison tree that minimizes (5). It is well known that the number of binary search
trees with k inner nodes equals the k-th Catalan number, which is approximately
4k/((k + 1)

√
πk). Choosing an optimal comparison tree is a standard application of

dynamic programming, and is known from textbooks as “choosing an optimum binary
search tree”, see, e. g., [Knuth 1973]. The algorithm runs in time and space O(k2).Das kann

man
wohl in
O(k log k)
lösen.
Check Link
in Texfile.

Das kann
man
wohl in
O(k log k)
lösen.
Check Link
in Texfile.

5.2. The Optimal Classification Strategy and its Algorithmic Variant
Here, we consider the following strategy2 Ok: Given a0, . . . , ak, the comparison tree λ(v)
is one that minimizes costλ(a0 − av0, . . . , ak − avk) over all comparison trees λ.

2For all strategies we just say which comparison tree is used in a given node of the classification tree. Recall
that the classification order is arbitrary.
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Although being unrealistic, since the exact partition sizes a0, . . . , ak are in general
unknown to the algorithm, strategy Ok is the optimal classification strategy, i. e., it
minimizes the average comparison count.

THEOREM 5.1. Strategy Ok is optimal for each k.thm:o:k:optimal

PROOF. Strategy Ok chooses for each node v in the classification tree the comparison
tree that minimizes the average cost in (6). So, it minimizes each term of the sum and
thus minimizes the whole sum in (6).

There exist other strategies whose average comparison count differs by at most O(n1−ε)
from the average comparison count of Ok. We call such strategies asymptotically opti-
mal.

Strategy Ck is an algorithmic variant of Ok. It works as follows: The comparison tree
λ(v) is one that minimizes costλ(av0, . . . , a

v
k) over all comparison trees λ.

THEOREM 5.2. Strategy Ck is asymptotically optimal for each k.thm:l:k:optimal

PROOF. Since the average comparison count is independent of the actual order in
which elements are classified, assume that strategy Ok classifies elements in the order
ek+1, . . . , en, while strategy Ck classifies them in reversed order, i. e., en, . . . , ek+1. Then
the comparison tree that is used by Ck for element ei is the one that Ok is using for
element ei+1 because both strategies use the group sizes in (ei+1, . . . , en). Let Pi and
P ′i denote the number of comparisons for the classification of the element ek+i using
strategy Ok and Ck, respectively.

Fix some integer i ∈ {1, . . . , n− k}. Suppose that the input has group sizes a0, . . . , ak.
Assume that the sequence (ek+1, . . . , ei) contains a′h elements of group Ah for h ∈
{0, . . . , k}, where |a′h− i ·ah/(n−k)| ≤ n2/3 for each h ∈ {0, . . . , k}. Let λ be a comparison
tree with minimal cost w. r. t. (a0 − a′0, . . . , ak − a′k). For a random input having group Rechnung

anpassen.
Rechnung
anpassen.

sizes from above we calculate:∣∣∣E(Pi+1)− E(P ′i )
∣∣∣

=
∣∣∣cλavg(a0 − a′0, . . . , ak − a′k)− cλavg(a′0, . . . , a

′
k)
∣∣∣

=

∣∣∣∣∣
∑k
h=0 depthλ(Ah) · (ah − a′h)

n− k − i
−
∑k
h=0 depthλ(Ah) · a′h

i

∣∣∣∣∣
≤

∣∣∣∣∣
∑k
h=0 depthλ(Ah) · (ah − (i · ah

n−k − n
2/3))

n− k − i
−

∑k
h=0 depthλ(Ah) ·

(
i · ah

n−k − n
2/3
)

i

∣∣∣∣∣
≤

∣∣∣∣∣k2 · n2/3 +
∑k
h=0 depthλ(Ah)(ah − ah·i

n−k ))

n− k − i
−

∑k
h=0 depthλ(Ah)

(
i · ah

n−k

)
− k2 · n2/3

i

∣∣∣∣∣
=

∣∣∣∣∣ k2 · n2/3

n− k − i
+
k2 · n2/3

i

∣∣∣∣∣.
Assume that the concentration argument of Lemma 2.2 holds. Then the difference
between the average comparison count for element ei+1 (for Ok) and ei (for Ck) is at
most ∣∣∣ k2 · n2/3

n− k − i
+
k2 · n2/3

i

∣∣∣.
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The difference of the average comparison count over all elements ei, . . . , ej , i ≥ n3/4, j ≤
n− n3/4, is then at most O(n11/12). For elements that reside outside of this range, the
difference in the average comparison count is at most 2n3/4 ·k. Furthermore, error terms
for cases where the concentration argument does not hold can be neglected because
they occur with exponentially low probability. So, the total difference of the average
comparison count between strategy Ok and strategy Ck is at most O(n11/12).

This shows that the optimal strategy Ok can be approximated by an actual algorithm
that makes an error of up to O(n11/12), which sums up to an error term of O(n) over
the whole recursion by Theorem 2.1. In the case of dual-pivot quicksort, the difference
between O2 and C2 is O(log n), which also sums up to a difference of O(n) over the whole
recursion [Aumüller and Dietzfelbinger 2015]. It remains an open question to prove
tighter bounds than O(n11/12) in the general case.

5.3. A Fixed Strategy and its Algorithmic Variant
Now we turn to strategy Nk: Given a0, . . . , ak, the comparison tree λ(v) used at node v is
one that minimizes costλ(a0, . . . , ak) over all comparison trees λ.

Strategy Nk uses a fixed comparison tree for all classifications for given partition
sizes, but it has to know these sizes in advance.

THEOREM 5.3. Strategy Nk is asymptotically optimal for each k.thm:n:k:optimal

PROOF. According to Lemma 3.1 the average comparison count is determined up to
lower order terms by the parameters fλp1,...,pk , for each λ ∈ Λk. For each p1, . . . , pk, strat-
egy Nk chooses the comparison tree which minimizes the average cost. By Lemma 3.1,
this is optimal up to an O(n1−ε) term.

We will now describe how to implement strategy Nk by using sampling. Strategy
SPk works as follows: Let λ0 ∈ Λk be an arbitrary comparison tree. After the pivots are
chosen, inspect the first n3/4 elements and classify them using λ0. Let a′0, . . . , a′k denote
the number of elements that belonged to A0, . . . ,Ak, respectively. Let λ be a comparison
tree with minimal cost for a′0, . . . , a′k. Then classify each of the remaining elements by
using λ.

THEOREM 5.4. Strategy SPk is asymptotically optimal for each k.thm:s:k:optimal

PROOF. Fix the k pivots p1, . . . , pk and thus a0, . . . , ak. According to Lemma 3.1, the
average comparison count E(PSPkn | p1, . . . , pk) can be calculated as follows:

E(PSPkn | p1, . . . , pk) =
∑
λ∈Λk

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +O(n1−ε).

Let λ∗ be a comparison tree with minimal cost w. r. t. a0, . . . , ak. Let a′0, . . . , a′k be the
partition sizes after inspecting n3/4 elements. Let λ be a comparison tree with minimal
cost w. r. t. a′0, . . . , a′k. We call λ good if

cλavg(a0, . . . , ak)− cλ
∗

avg(a0, . . . , ak) ≤ 2k

n1/12
, or equivalently

costλ(a0, . . . , ak)− costλ
∗
(a0, . . . , ak) ≤ 2kn11/12, (9) eq:sp:k:2

otherwise we call λ bad. We define goodλ and badλ as the events that the sample yields
a good and bad comparison tree, respectively.
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We calculate:

E(PSPkn | p1, . . . , pk) =
∑
λ∈Λk
λ good

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +

∑
λ∈Λk
λ bad

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +O(n1−ε)

≤ n · cλ
∗

avg(a0, . . . , ak) +
∑
λ∈Λk
λ bad

fλp1,...,pk · c
λ
avg(a0, . . . , ak) +O(n1−ε)

≤ n · cλ
∗

avg(a0, . . . , ak) + k ·
∑
λ∈Λk
λ bad

fλp1,...,pk +O(n1−ε). (10) eq:sp:k:1

Now we derive an upper bound for the second summand of (10). After the first n3/4

classifications the algorithm will either use a good comparison tree or a bad comparison
tree for the remaining classifications. The probability Pr(badλ | p1, . . . , pk) is the ratio
of nodes on each level from n3/4 to n− k of the classification tree of nodes labeled with
bad trees (in the sense of (9)). Summing over all levels, the second summand of (10) is
thus at most k · n · Pr(badλ | p1, . . . , pk) + O(n3/4), where the latter summand collects
error terms for the first n3/4 steps.

LEMMA 5.5. Conditioned on p1, . . . , pk, goodλ occurs with very high probability.

PROOF. For each i ∈ {0, . . . , k}, let a′i be the random variable that counts the number
of elements from the sample that belong to group Ai. According to Lemma 2.2, with
very high probability we have that |a′i − E(a′i)| ≤ n2/3, for each i with 0 ≤ i ≤ k. By the
union bound, with very high probability there is no a′i that deviates by more than n2/3

from its expectation n−1/4 · ai. We will now show that if this happens then the event
goodλ occurs. We obtain the following upper bound for an arbitrary comparison tree
λ′ ∈ Λk:

costλ
′
(a′0, . . . , a

′
k) =

∑
0≤i≤k

depthλ′(Ai) · a′i

≤
∑

0≤i≤k

depthλ′(Ai) · n2/3 + n−1/4 · costλ
′
(a0, . . . , ak)

≤ k2n2/3 + n−1/4 · costλ
′
(a0, . . . , ak).

Similarly, we get a corresponding lower bound. Thus, for each comparison tree λ′ ∈ Λk
it holds that

costλ
′
(a0, . . . , ak)

n1/4
− k2n2/3 ≤ costλ

′
(a′0, . . . , a

′
k) ≤ costλ

′
(a0, . . . , ak)

n1/4
+ k2n2/3,

and we get the following bound:

costλ(a0, . . . , ak)− costλ
∗
(a0, . . . , ak)

≤ n1/4
(
costλ(a′0, . . . , a

′
k)− costλ

∗
(a′0, . . . , a

′
k)
)

+ 2n1/4 · k2 · n2/3

≤ 2k2 · n11/12.

(The last inequality follows because λ has minimal cost w. r. t. a′0, . . . , a′k.) Hence, λ is
good.
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Thus, the average comparison count of SPk is at most a summand of O(n1−ε) larger
than the average comparison count of Nk. This implies that SPk is asymptotically
optimal as well.

Since the number of comparison trees in Λk is exponentially large in k, one might want
to restrict the set of used comparison trees to some subset Λ′k ⊆ Λk. We remark here
that our strategies are optimal w. r. t. any chosen subset of comparison trees as well.

6. THE OPTIMAL AVERAGE COMPARISON COUNT OF k-PIVOT QUICKSORTsec:comparison:median:of:k

In this section we use the theory developed so far to discuss the optimal average
comparison count of k-pivot quicksort. We compare the result to the well known median-
of-k strategy of classical quicksort [van Emden 1970].

By Lemma 3.1 and Theorem 5.3, the minimal partitioning cost for k-pivot quicksort
(up to lower order terms) is

1(
n
k

) ∑
a0+···+ak=n−k

min
{

costλ(a0, . . . , ak) | λ ∈ Λk

}
+O(n1−ε). (11) eq:optimal:cost:formula

Then applying Theorem 2.1 gives the minimal average comparison count for k-pivot
quicksort.

Unfortunately, we were not able to solve (11) for k ≥ 4. (Already the solution for k = 3
as stated in Section 4 required a lot of manual tweaking before using Maple R©.) This
remains an open question. We resorted to experiments. As noticed in [Aumüller and
Dietzfelbinger 2013], estimating the total average comparison count by sorting inputs
does not allow us to estimate the leading term of the average comparison count correctly,
because the O(n) term in (1) has a big influence on the average comparison count for
real-world input lengths. We used the following approach instead: For n = 50 · 106,
we generated 10 000 random permutations of {1, . . . , n} and ran strategy Ok for each
input, i. e., only classified the input.3 For the average partitioning cost measured in
these experiments, we then applied (1) to derive the leading factor of the total average
comparison count. Table I shows the results from these experiments for k ∈ {2, . . . , 9}.
Note that the results for k ∈ {2, 3} are almost identical to the exact theoretical results.
Additionally, the table shows the theoretical results known for classical quicksort using
the median-of-k strategy [van Emden 1970; Hennequin 1991]. Interestingly, from Table I
we see that—based on our experimental data for k-pivot quicksort—the median-of-k
strategy has—starting from k = 7—a slightly lower average comparison count than the
(rather complicated) optimal partitioning methods for k-pivot quicksort.

We close our study of comparison-optimal k-pivot quicksort with one remark about
the practical influence of optimal k-pivot partitioning. For k ≥ 2, neither strategy Ck
nor SPk can compete in running time even with classical quicksort when the optimal
comparison tree is computed by the dynamic programming algorithm referenced in
Section 5.1. For k = 2, experiments in [Aumüller and Dietzfelbinger 2013] showed that
these approaches cannot compete with Yaroslavskiy’s dual-pivot algorithm, either, even
when we bypass the dynamic programming algorithm. (For k = 2 there exist only two
comparisons trees.)

7. REARRANGING ELEMENTSsec:assignments

With this section, we change our viewpoint on multi-pivot quicksort in two respects:
we consider cost measures different than comparisons and focus on one particularly
interesting algorithm for the “rearrangement problem”. The goal now is to find other

3Experiments with other input sizes gave exactly the same results.
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Table I. Optimal average comparison count for k-pivot
quicksort for k ∈ {2, . . . , 9}. Note that the values for
k ≥ 4 are based on experiments. For odd k, we also
include the average comparison count of quicksort with
the median-of-k strategy. (The numbers for the median-
of-k variant can be found in [van Emden 1970] or [Hen-
nequin 1991].)tab:optimal:cost:k:pivot:quicksort

Pivot Number k opt. k-pivot median-of-k
2 1.800n lnn —
3 1.705n lnn 1.714n lnn

4 1.650n lnn —
5 1.610n lnn 1.622n lnn

6 1.590n lnn —
7 1.577n lnn 1.576n lnn

8 1.564n lnn —
9 1.555n lnn 1.549n lnn

cost measures which show differences in multi-pivot quicksort algorithms with respect
to running time in practice.

7.1. Which Factors are Relevant for Running Time?
Let us first reflect on the influence of key comparisons to running time. From a running
time perspective it seems unintuitive that comparisons are the crucial factor with regard
to running time, especially when key comparisons are cheap, e. g., when comparing 32-
bit integers. However, while a comparison is often cheap, mispredicting the destination
that a branch takes, i. e., the outcome of the comparison, may incur a significant penalty
in running time, because the CPU wasted work on executing instructions on the wrongly
predicted branch. One famous example for the effect of branch prediction is [Kaligosi
and Sanders 2006] in which quicksort is made faster by choosing a skewed pivot due
to pipelining effects on a certain CPU. In very recent work, Martínez et al. [2015]
considered differences in branch misses between classical quicksort and Yaroslavskiy’s
algorithm, but found no crucial differences. They concluded that the advantages in
running time of the dual-pivot approach are not due to differences in branch prediction.

Traditionally, the cost of moving elements around is also considered as a cost measure
of sorting algorithms. This cost is usually expressed as the number of swap operations
or the number of assignments needed to sort the input. [Kushagra et al. 2014] take
a different approach and concentrate on the I/O performance of quicksort variants
with respect to their cache behavior. The I/O performance is often a bottleneck of an
algorithm because an access to main memory in modern computers can be slower than
executing a few hundred simple CPU instructions. Caches speed these accesses up, but
their influence seems difficult to analyze. Let us exemplify the influence of caches on
running time. First, the cache structure of modern CPU’s is usually hierarchical. For
example, the Intel i7 that we used in our experiments has three data caches: There is a
very small L1 cache (32KB of data) and a slightly larger L2 cache (256KB of data) very
close to the processor. Each CPU core has its own L1 and L2 cache. They are both 8-way
associative, i. e., a memory segment can be stored at eight different cache lines. Shared
among cores is a rather big L3 cache that can hold 8MB of data and is 16-way associative.
Caches greatly influence running time. While a lookup in main memory costs many
CPU cycles (≈ 140 cycles on the Intel i7 used in our experiments), a cache access is very
cheap and costs about 4, 11, and 25 cycles for a hit in L1, L2, and L3 cache, respectively
[Levinthal 2009]. Also, modern CPU’s use prefetching to load memory segments into
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cache before they are accessed. Usually, there exist different prefetchers for different
caches, and there exist different strategies to prefetch data, e. g., “load two adjacent
cache lines”, or “load memory segments based on predictions by monitoring data flow”.

From a theoretical point of view, much research has been conducted to study algo-
rithms with respect to their cache behavior, see, e. g., the survey paper of Rahman
[2002]. (We recommend this paper as an excellent introduction to the topic of caches.)

In [Kushagra et al. 2014] a fast three-pivot algorithm was described. They analyzed
its cache behavior and compared it to classical quicksort and Yaroslavsiky’s dual-pivot
quicksort algorithm using the approach of [LaMarca and Ladner 1999]. Their results
gave reason to believe that the improvements of multi-pivot quicksort algorithms with
respect to running times result from their better cache behavior. They also reported
from experiments with a seven-pivot algorithm, which ran more slowly than their
three-pivot algorithm. Very recently, [Nebel et al. 2015] gave a more detailed analysis
of the cache behavior of Yaroslavskiy’s algorithm also with respect to different sampling
strategies. An important contribution of [Nebel et al. 2015] is the distinction of a
theoretical measure scanned elements (basically the number of times a memory cell is
inspected during sorting) and the usage of this cost measures to predict cache behavior.

In this section we discuss how the considerations of [Kushagra et al. 2014; Nebel
et al. 2015] generalize to the case of using more than three pivots. In connection with
the running time experiments from Section 9, this allows us to make more accurate
predictions than [Kushagra et al. 2014] about the influence of cache behavior on running
time. One result of this study will be that it is not surprising that their seven-pivot
approach is slower, because it has worse cache behavior than three- or five-pivot
quicksort algorithms using a specific partitioning strategy.

We will start by specifying the problem setting, and subsequently introduce a gen-
eralized partitioning algorithm for k pivots. This algorithm is the generalization of
the partitioning methods used in classical quicksort, Yaroslavskiy’s algorithm, and the
three-pivot quicksort algorithm of [Kushagra et al. 2014]. This strategy will be evalu-
ated for different values of k with respect to different memory-related cost measures
which will be introduced later. It will turn out that these theoretical cost measures
allow us to give detailed recommendations under which circumstances a multi-pivot
quicksort approach has advantages over classical quicksort. At the end of this section,
we will compare this algorithm to other algorithms from the literature that can be used
as partitioning algorithms.

7.2. The Rearrangement Problem
sec:additional:cost:measures:problem

With regard to counting key comparisons we defined the classification problem to
abstract from the situation that a multi-pivot quicksort algorithm has to move elements
around to produce the partition. Here, we assume that for each element its groups is
known and we are only interested in moving elements around to produce the partition.
This motivates us to consider the rearrangement problem for k pivots: Given a sequence
of length n− k with entries having labels from the set {A0, . . . ,Ak} of group names, the
task is to rearrange the entries with respect to their labels into ascending order, where
Ai < Ai+1 for i ∈ {0, . . . , k − 1}. Note that any classification strategy can be used to find
out element groups. We assume that the input resides in an array A[1..n] where the
k first cells hold the pivots.4 For k = 2, this problem is known under the name Dutch
national flag problem, proposed by Dijkstra [Dijkstra 1976]. For k > 2, the problem
was considered in the paper of McIlroy et al. [1993], who devised an algorithm called

4We shall disregard the pivots in the description of the problem. In a final step the k pivots have to be moved
into the correct positions between group segments. This is possible by moving not more than k2 elements
around using k rotate operations, as introduced below.
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“American flag sort” to solve the rearrangement problem for k > 2. We will discuss
the applicability of these algorithms at the end of this section. Our goal is to analyze
algorithms for this problem with respect to different cost measures, e. g., the number of
array cells that are inspected during rearranging the input, or the number of times the
algorithm writes to array cells in the process. We start by introducing an algorithm for
the rearrangement problem that generalizes the algorithmic ideas behind rearranging
elements in classical quicksort, Yaroslavskiy’s dual-pivot quicksort [Nebel et al. 2015],
and the three-pivot algorithm of [Kushagra et al. 2014].

7.3. The Algorithm
sec:additional:cost:measures:algorithms

To capture the cost of rearranging the elements, in the analysis of sorting algorithms
one traditionally uses the “swap”-operation, which exchanges two elements. The cost of
rearranging is then just the number of swap operations performed during the sorting
process. In the case that one uses two or more pivots, we we will see that it is beneficial
to generalize this operation. We define the operation rotate(i1, . . . , i`) as follows:

tmp← A[i1];A[i1]← A[i2];A[i2]← A[i3]; . . . ;A[i`−1]← A[i`];A[i`]← tmp.

The operation rotate performs a cyclic shift of the elements by one position. A
swap(A[i1], A[i2]) is a rotate(i1, i2). A rotate(i1, . . . , i`) operation makes exactly ` + 1
assignments and inspects and writes into ` array cells.

For each k ≥ 1 we consider an algorithm Exchangek. Pseudocode of this algorithm is
given in Algorithm 1. The basic idea is similar to classical quicksort: Two pointers5 scan
the array. One pointer scans the array from left to right; another pointer scans the array
from right to left, exchanging misplaced elements on the way. Formally, the algorithm
uses two pointers i and j. At the beginning, i points to the element in A[k + 1] and j

points to the element in A[n]. We set m = dk+1
2 e. The algorithm makes sure that all

elements to the left of pointer i belong to groups A0, . . . ,Am−1 (and are arranged in this
order), i. e., m is the number of groups left of pointer i. Also, all elements to the right
of pointer j belong to groups Am, . . . ,Ak, arranged in this order. To do so, Algorithm 1
uses k − 1 additional “border pointers” b1, . . . , bk−1. For i < m, the algorithm makes
sure that at each point in time, pointer bi points to the leftmost element to the left of
pointer i which belongs to group Ai′ , where i′ ≥ i. Analogously, for j ≥ m, the algorithm
makes sure that pointer bj points to the rightmost element to the right of pointer j
which belongs to group Aj′ with j′ ≤ j, see Figure 4. As long as pointers i and j have
not crossed yet, the algorithm increments pointer i until i points to an element that
belongs to a group Ap with p ≥ m. For each element x along the way that belongs to a
group Ap′ with p′ < m− 1, it moves x to the place to which bp′+1 points, using a rotate
operation to make space to accommodate the element, see Figure 5 and Lines 7–11
in Algorithm 1. Pointers bp′+1, . . . , bm−1 are incremented afterwards. Similarly, the
algorithm decrements pointer j until it points to an element that belongs to a group
Aq with q < m, moving elements from Am+1, . . . ,Ak along the way in a similar fashion,
see Figure 6 and Line 12–16 in Algorithm 1. If now i < j, a single rotate operation
suffices to move the elements referenced by i and j to a (temporarily) correct position,
see Figure 7 and Line 17–20 in Algorithm 1. Note that any classification strategy can be
used in an “online fashion” to find out element groups in Algorithm 1.

Figure 4 shows the idea of the algorithm for k = 6; Figures 5–7 show the different
rotations being made by Algorithm 1 in lines 9, 14, and 18.

5Note that our pointers are actually variables that hold an array index.
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Algorithm 1 Move elements by rotations to produce a partition
algo:exchange:k

procedure Exchangek(A[1..n])
1: i← k + 1; j← n;
2: m← dk+1

2 e;
3: b1, . . . , bm−1 ← i;
4: bm, . . . , bk−1 ← j;
5: p, q← −1; . p and q hold the group indices of the elements indexed by i and j.
6: while i < j do
7: while A[i] belongs to group Ap with p < m do
8: if p < m− 1 then
9: rotate(i,bm−1, . . . , bp+1);

10: bp+1++; . . . ; bm−1++;

11: i++;

12: while A[j] belongs to group Aq with q ≥ m do
13: if q ≥ m+ 1 then
14: rotate(j,bm, . . . , bq−1);
15: bq−1--; . . . ; bm--;

16: j--;
17: if i < j then
18: rotate(i, bm−1, . . . , bq+1, j, bm, . . . , bp−1);
19: i++; bq+1++; . . . ; bm−1++;
20: j--; bm--; . . . ; bp−1--;

7.4. Cost Measures and Assumptions of the Analysis
In the following we consider three cost measures as cost for rearranging the input
using Algorithm 1. The first two cost measures aim to describe the memory behavior
of Algorithm 1. The first measure counts how often each array cell is accessed during
rearranging the input, which in practice gives a good approximation on the time the
CPU has to wait for memory, even when the data is in cache. We will show later that
this theoretical cost measures allows us to describe practical cost measures like the
average number of cache misses accurately. The second cost measure counts how often
the algorithm writes into an array cell. The last cost measure is more classical and
counts how many assignments the algorithm makes. It will be interesting to see that
while these cost measures appear to be similar, only the first one will correctly reflect
advantages of a multi-pivot quicksort approach in empirical running time. The first
cost measure was also considered for Yaroslavskiy’s algorithm in Nebel et al. [2015].Keine Em-

pirical Run-
ning Time
Betrachtun-
gen dort.

Keine Em-
pirical Run-
ning Time
Betrachtun-
gen dort.

Scanned Elements. Assume that a pointer l is initialized with value ls. Let le be
the value in l after the algorithm finished rearranging the input. Then we define
cost(l) = |ls − le|, i. e., the number of array cells inspected by pointer l. (Note that a cell
is accessed only once per pointer, all pointers move by increments or decrements of 1,
and A[le] is not inspected.) Let the variable Pse be the number of scanned elements of
Algorithm 1. It is the sum of the costs of pointers i, j, b1, . . . , bk−1. From an empirical
point of view this cost measure gives a lower bound on the number of clock cycles the
CPU spends waiting for memory. It can also be used to predict the cache behavior of
Algorithm 1. We will see that it gives good estimates for the cache misses in L1 cache
which we observed in our experiments. This has also been observed in the special case
of Yaroslavskiy’s algorithm in [Nebel et al. 2015].
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A0 A1 A2 A3 A4 A5 A6? ?

b1 b2 b3 i j b4 b5

Fig. 4. General memory layout of Algorithm 1 for k = 6. Two pointers i and j are used to scan the array
from left to right and right to left, respectively. Pointers b1, . . . , bk−1 are used to point to the start (resp. end)
of segments. fig:partition:k

A0 A1 A2 A3 A4 A5 A6A1 ?

b1 b2 b3 i j b4 b5

Fig. 5. The rotate operation in Line 9 of Algorithm 1. An element that belongs to group A1 is moved into its
respective segment. Pointers i, b2, b3 are increased by 1 afterwards. fig:partition:k:rotate1

A0 A1 A2 A3 A4 A5 A6A5 A6

b1 b2 b3 i j b4 b5

Fig. 6. The rotate operation in Line 14 of Algorithm 1. An element that belongs to group A6 is moved into
its respective segment. Pointers j, b4, b5 are decreased by 1 afterwards. fig:partition:k:rotate2

A0 A1 A2 A3 A4 A5 A6A5 A1

b1 b2 b3 i j b4 b5

Fig. 7. Example for the rotate operation in Line 18 of Algorithm 1. The element found at i is moved into its
specific segment. Subsequently, the element found at j is moved into its specific segment. fig:partition:k:rotate3

Write Accesses. Each rotate operation of ` elements of Algorithm 1 writes into exactly
` array cells. When we assign a value to an array, we call the access to this array cell
a write access. Let the variable Pwa be the number of write accesses (over all rotate
operations) of write accesses into array cells.

Assignments. Each rotate operation of ` elements of Algorithm 1 makes exactly
` + 1 assignments. Let the variable Pas be the number of assignments over all rotate
operations. Since each swap operation consists of three assignments, this is the most
classical cost measure with respect to the three cost measures introduced above for the
analysis of quicksort.

Setup of the Analysis. In the following we want to obtain the leading term for the
average number of scannend elements, write accesses, and assignments, both for
partitioning and over the whole sorting process. The input is again assumed to be
a random permutation of the set {1, . . . , n} which resides in an array A[1..n]. Fix an
integer k ≥ 1. The first k elements are chosen as pivots. Then we can think of the input
consisting of n− k elements having labels from A0, . . . ,Ak, and our goal is to rearrange
the input. (In terms of multi-pivot quicksort, our goal is to obtain a partition of the
input, as depicted in Figure 1 on Page 2. However, here determining to which of the
groups A0, . . . ,Ak element A[i] belongs is for free.) We are interested in the cost of the
rearrangement process and the total sorting cost in the cost measures introduced above.

23



Dra
ft

From Partitioning Cost to Sorting Cost. Let Pn denote the partitioning cost that the
algorithm incurs in the first partitioning/rearrangement step. Let the random variable
Cn count the sorting cost (over the whole recursion) of sorting an input of length n in
the respective cost measure. As before, we get the recurrence:

E(Cn) = E(Pn) +
1(
n
k

) ∑
a0+···+ak=n−k

(E(Ca0) + · · ·+ E(Cak)).

Again, this recurrence has the form of (2), so we may apply (3) for linear partitioning
cost. Thus, from now on we focus on a single partitioning step.

7.5. Analysis
Our goal in this section is to prove the following theorem. A discussion of this result
will be given in the next section.

THEOREM 7.1. Let k ≥ 1 be the number of pivots and m = dk+1
2 e. Then for Algo-

rithm 1, we have that

E(Pse
n ) =


m+ 1

2
· n+O(1), for odd k,

m2

2m− 1
· n+O(1), for even k,

(12) eq:memory:accesses:exchange:k

E(Pwa
n ) =


2m3 + 3m2 −m− 2

2m(2m+ 1)
· n+O(1), for odd k,

2m3 − 2m− 1

2m(2m− 1)
· n+O(1), for even k,

(13) eq:write:accesses:exchange:k

E(Pas
n ) =


2m3 + 6m2 −m− 4

2m(2m+ 1)
· n+O(1), for odd k,

2m3 + 3m2 − 5m− 2

2m(2m− 1)
· n+O(1), for even k,

(14) eq:assignments:exchange:k

thm:partition:cost

From this theorem, we get the leading term of the total sorting cost in the respective
cost measure by applying (3).

sec:additional:cost:measures:cache:misses
Scanned Elements. We will first study how many elements are scanned by the pointers

used in Algorithm 1 when sorting an input.
Let the pivots and thus a0, . . . , ak be fixed. The pointers i and j together scan the

whole array, and thus inspect n− k array cells. When Algorithm 1 terminates, b1 points
to A[k + a0 + 1], having visited exactly a0 array cells. An analogous statement can be
made for the pointers b2, . . . , bk−1. On average, we have (n− k)/(k+ 1) elements of each
group A0, . . . , Ak, so b1 and bk−1 each visit (n− k)/(k+ 1) array cells on average, b2 and
bk−2 each visit 2(n− k)/(k + 1) array cells, and so on.
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For the average number of scanned elements in a partitioning step we consequently
get

E(Pse
n ) =


2 ·
dk/2e∑
i=1

i · (n− k)

k + 1
, for odd k,

2 ·
k/2∑
i=1

i · (n− k)

k + 1
+
k/2 + 1

k + 1
· (n− k), for even k,

(15) eq:memory:accesses:1

and a simple calculation shows

E(Pse
n ) =


(
m+ 1

2

)
· (n− k), for odd k,(

m2

2m− 1

)
· (n− k), for even k.

(16) eq:memory:accesses:exchange:k

Write Accesses. We now focus on the average number of write accesses. First we
observe that a rotate operation involving ` elements in Algorithm 1 makes exactly `
element scans and ` write accesses. So, the only difference between element scans and
write accesses is that whenever pointer i finds an Am−1-element in Line 7 or pointer j
finds an Am-element in Line 12, the element is scanned but no write access takes place.
Let Ci,m−1 be the random variable that counts the number of Am−1-elements found in
Line 7, and let Cj,m be the random variable that counts the number of Am-elements
found in Line 12 of Algorithm 1.

Thus, we know that

E(Pwa
n ) = E(Pse

n )− E(Ci,m−1)− E(Cj,m). (17) eq:from:scanned:elements:to:write:accesses

LEMMA 7.2. Let k be the number of pivots and let m = dk+1
2 e. Then

E(Ci,m−1) + E(Cj,m) =


m+ 1

m(2m+ 1)
n+O(1), for k odd,

2m+ 1

2m(2m− 1)
n+O(1), for k even.

lem:avg:correctly:placed:elements

PROOF. We start by obtaining bounds on E(Ci,m−1) and E(Cj,m) when k is even.
The calculations for the case when k is odd are simpler because of symmetry. In
the calculations, we will consider the two events that the groups A0, . . . ,Am−1 have L
elements in total, for 0 ≤ L ≤ n−k, and that group Am−1 has K elements, for 0 ≤ K ≤ L.
If the group sizes are as above, then the expected number of Am−1 elements scanned by
pointer i is L ·K/(n− k). We first observe that

E(Ci,m−1) =

n∑
L=0

L∑
K=0

Pr(a0 + · · ·+ am−1 = L ∧ am−1 = K) · L · K

n− k

(∗)
=

1

n ·m

n∑
L=0

Pr(a0 + · · ·+ am−1 = L) · L2 +O(1)

=
1

n ·m

n∑
L=1

(
L−1
m−1

)(
n−L
m−2

)(
n

2(m−1)

) · L2 +O(1), (18) eq:proof:write:accesses:1
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where (∗) follows by noticing that
∑L
K=0 Pr(am−1 = K | a0 + · · · + am−1 = L) · K is

just the expected size of the group Am−1 given that the first m groups have exactly L
elements, which is L/m. We calculate the sum of binomial coefficients as in (18) for a
more general situation:

CLAIM 7.3. Let `1 and `2 be arbitrary integers. Then we have

(i)
n∑

L=1

(
L−1
`1

)(
n−L
`2

)(
n

`1+`2+1

) · L2 =
(`1 + 1)(`1 + 2) · (n+ 2)(n+ 1)

(`1 + `2 + 2)(`1 + `2 + 3)
− (`1 + 1) · (n+ 1)

(`1 + `2 + 2)
.

(ii)
n∑

L=1

(
L−1
`1

)(
n−L
`2

)(
n

`1+`2+1

) · (n− L)2 =
(`2 + 1)(`2 + 2) · (n+ 2)(n+ 1)

(`1 + `2 + 2)(`1 + `2 + 3)
− 3(`2 + 1) · (n+ 1)

`1 + `2 + 2
+ 1.

claim:binomial:coefficients

PROOF. We denote by nk the k-th falling factorial of n, i. e., n(n − 1) · · · (n − k + 1).
Using known identities for sums of binomial coefficients, we may calculate

n∑
L=1

(
L−1
`1

)(
n−L
`2

)(
n

`1+`2+1

) · L2

=
1(
n

`1+`2+1

) n∑
L=1

(
(`1 + 1)(`1 + 2)

(
L+ 1

`1 + 2

)(
n− L
`2

)
− L

(
L− 1

`1

)(
n− L
`2

))

=
1(
n

`1+`2+1

) n∑
L=1

(
(`1 + 1)(`1 + 2)

(
L+ 1

`1 + 2

)(
n− L
`2

)
− (`1 + 1)

(
L

`1 + 1

)(
n− L
`2

))
(∗)
=

1(
n

`1+`2+1

)((`1 + 1)(`1 + 2)

(
n+ 2

`1 + `2 + 3

)
− (`1 + 1)

(
n+ 1

`1 + `2 + 2

))
=

(`1 + 1)(`1 + 2)(n+ 2)`1+`2+3(`1 + `2 + 1)!

(`1 + `2 + 3)! · n`1+`2+1
− (`1 + 1)(n+ 1)`1+`2+2(`1 + `2 + 1)!

(`1 + `2 + 2)! · n`1+`2+1

=
(`1 + 1)(`1 + 2)(n+ 2)(n+ 1)

(`1 + `2 + 2)(`1 + `2 + 3)
− (`1 + 1)(n+ 1)

(`1 + `2 + 2)
,

where (∗) follows by using the identity [Graham et al. 1994, (5.26)]. The calculations for
(ii) are analogous by using an index transformation K = n− L.

Using the claim, we continue from (18) as follows:

E(Ci,m−1) =
m(m+ 1) · (n+ 1)(n+ 2)

nm · (2m− 1)2m
+O(1) =

m+ 1

2m(2m− 1)
n+O(1). (19) eq:proof:write:accesses:cim

By similar arguments, we obtain

E(Cj,m) =
1

n · (m− 1)

n∑
L=0

(
L

m−1

)(
n−L
m−2

)(
n

2(m−1)

) · (n− L)2 +O(1)

=
(m− 1)m

2nm(m− 1)(2m− 1)
n2 +O(1) =

1

2(2m− 1)
n+O(1). (20) eq:proof:write:accesses:cjm

Thus, in the asymmetric case it holds that E(Ci,m−1) + E(Cj,m) = 2m+1
2m(2m−1)n+O(1).

Applying Lemma 7.2 to (16) and (17) and simplifying gives us the value from Theo-
rem 7.1.
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Assignments. To count the total number of assignments, we first observe that each
rotate operation that involves ` elements makes ` write accesses and `+ 1 assignments.
Thus, the total number of assignment is just the sum of the number of write accesses
and the number of rotate operations. So we observe

E(Pas
n ) = E(Pwa

n ) + E(#rotate operations). (21) eq:from:write:accesses:to:assignments

LEMMA 7.4. Let k be the number of pivots and m = dk+1
2 e. Then it holds that

E(#rotate operations) =

{
3m2−2

2m(2m+1) , for odd k,
3m2−3m−1
2m(2m−1) , for even k.

lem:avg:rotate:operations

PROOF. The number of rotate operations is counted as follows. For each non-Am−1

element that is scanned by pointer i, a rotate operation is invoked (Line 9 and Line 18
in Algorithm 1). In addition, each Am′ element with m′ > m scanned by pointer j
invokes a rotate operation (Line 14 in Algorithm 1). So, the number of rotate operations
is the sum of these two quantities. Again, we focus on the case that k is even. Let
Ci,<m−1 be the number of Am′ elements with m′ < m− 1 scanned by pointer i. Define
Ci,>m−1 and Cj,>m analogously. By symmetry (cf. (18)) we have that

E(Ci,<m−1) = (m− 1) · E(Ci,m−1) =
(m− 1)(m+ 1)

2m(2m− 1)
n+O(1),

see (19). Furthermore, since we expect that pointer i scans m
2m−1 (n− k) elements, we

know that

E(Ci,>m−1) =
m

2m− 1
(n− k)−m · E(Ci,m−1) =

(
m

2m− 1
− m+ 1

2(2m− 1)

)
n+O(1).

Finally, again by symmetry we obtain

E(Cj,>m) = (m− 2) · E(Cj,m) =
m− 2

2(2m− 1)
n+O(1).

For even k the result now follows by adding these three values. For odd k, we only have
to adjust that we expect that pointer i scans (n − k)/2 elements, and that there are
m− 1 groups Am+1, . . . ,Ak when calculating E(Cj,>m).

Applying Lemma 7.4 to (21) and simplifying gives the value from Theorem 7.1.

7.6. Discussion and Empirical Validation
Using the formulae developed in the previous subsection we calculated the average
number of scanned elements, write accesses, and assignments in partitioning and in
sorting for k ∈ {1, . . . , 9, 15, 31} using Theorem 7.1 and (3). Table II shows the results of
these calculations. Next, we will discuss our findings.

Interestingly, Algorithm 1 improves over classical quicksort when using more than
one pivot with regard to scanned elements. A 3-pivot quicksort algorithm, using this
partitioning algorithm, has lower cost than classical and dual-pivot quicksort. Moreover,
the average number of scanned elements is minimized by the 5-pivot partitioning
algorithm. However, the difference to the 3-pivot algorithm is small. Using more than 5
pivots increases the average number of scanned elements. With respect to write accesses
and assignments, we see a different picture. In both cost measures, the average sorting
cost rapidly increases from classical quicksort to quicksort variants with at least two
pivots. For a growing number of pivots, it slowly increases. In conclusion, Algorithm 1
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Table II. Average number of scanned elements (E(Pse
n )), write accesses

(E(Pwa
n )), and assignments (E(Pas

n )) for partitioning together with the total
sorting cost for sorting an input of length n disregarding lower order terms
and factors rounded using k pivots.tab:partition:cost

k E(Pse
n ) E(Cse

n ) E(Pwa
n ) E(Cwa

n ) E(Pas
n ) E(Cas

n )

1 1.000n 2.000n lnn 0.333n 0.667n lnn 0.500n 1.000n lnn

2 1.333n 1.600n lnn 0.917n 1.100n lnn 1.333n 1.600n lnn

3 1.500n 1.385n lnn 1.200n 1.108n lnn 1.700n 1.569n lnn

4 1.800n 1.403n lnn 1.567n 1.221n lnn 2.133n 1.662n lnn

5 2.000n 1.379n lnn 1.810n 1.248n lnn 2.405n 1.658n lnn

6 2.286n 1.435n lnn 2.125n 1.334n lnn 2.750n 1.726n lnn

7 2.500n 1.455n lnn 2.361n 1.374n lnn 3.000n 1.746n lnn

8 2.778n 1.519n lnn 2.656n 1.452n lnn 3.311n 1.810n lnn

9 3.000n 1.555n lnn 2.891n 1.499n lnn 3.555n 1.843n lnn

15 4.500n 1.890n lnn 4.434n 1.862n lnn 5.132n 2.156n lnn

31 8.500n 2.779n lnn 8.468n 2.769n lnn 9.193n 3.006n lnn

benefits from using more than one pivot only with respect to scanned elements, but not
with respect to the average number of write accesses and assignments.

Running Time Implications. We now ask what the considerations made so far mean
for empirical running time. Since each memory access, even if it can be served from L1
cache, is much more expensive than other operations like simple subtraction, addition,
or assignments on or between registers, the results for the cost measures scanned
elements show that there are big differences in the time the CPU has to wait for
memory between multi-pivot quicksort algorithms.6 If in addition writing an element
back into cache/memory is more expensive than reading from the cache (as it could
happen with the “write-through” cache strategy), then the calculations show that
we should not expect advantages of multi-pivot quicksort algorithms over classical
quicksort in terms of memory behavior. However, cache architectures in modern CPUs
apply the “write-back” strategy which does not add a penalty to running time for writing
into memory.

As is well known from classical quicksort and dual-pivot quicksort, the influence of
lower order terms cannot be neglected for real-world values of n. Next, we will validate
our findings for practical values of n.

Empirical Validation. We implemented Algorithm 1 and ran it for different input
lengths and pivot numbers. In the experiments, we sorted inputs of size 2i with 9 ≤
i ≤ 27. Each data point is the average over 600 trials. For measuring cache misses we
used the “performance application programming interface” (PAPI), which is available
at http://icl.cs.utk.edu/papi/.

Intuitively, fewer scanned elements should yield better cache behavior when memory
accesses are done “scan-like” as in the algorithms considered here. The argument
used in [LaMarca and Ladner 1999] and [Kushagra et al. 2014] is as follows: When
each of the m cache memory blocks holds exactly B keys, then a scan of n′ array cells
(that have never been accessed before) incurs dn′/Be cache misses. Now we check

6As an example, the Intel i7 used in our experiments needs at least 4 clock cycles to read from memory if the
data is in L1 cache and its physical address is known. If the data is in L2 cache but not in L1 cache, there is
an additional penalty of 6 clock cycles. On the other hand, three (data-independent) MOV operations between
registers on the same core can be made in 1 clock cycle. See [Fog 2014] for more details.
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Table III. Cache misses incurred by Algorithm 1 (“Exchangek”) in a single
partitioning step. All values are averaged over 600 trials.tab:cache:misses:partitioning

Algorithm Exchange1 Exchange2 Exchange5 Exchange9
avg. L1 misses / n 0.125 0.163 0.25 0.378

Table IV. Average number of L1/L2 cache misses compared to the average number of scanned
elements for sorting inputs of size n = 227. Cache misses are scaled by n lnn and are
averaged over 600 trials. In parentheses, we show the ratio to the best algorithmic variant
of Algorithm 1 w. r. t. memory/cache behavior (k = 5), calculated from the non-truncated
experimental data.tab:cache:misses

Algorithm E(Cse
n ) L1 Cache Misses L2 Cache Misses

Exchange1 2.000n lnn (+ 45.0%) 0.140n lnn (+ 48.9%) 0.0241n lnn (+263.1%)
Exchange2 1.600n lnn (+ 16.0%) 0.110n lnn (+ 16.9%) 0.0124n lnn (+ 86.8%)
Exchange3 1.385n lnn (+ 0.4%) 0.096n lnn (+ 1.3%) 0.0080n lnn (+ 19.8%)
Exchange5 1.379n lnn ( — ) 0.095n lnn ( — ) 0.0067n lnn ( — )

Exchange7 1.455n lnn (+ 5.5%) 0.100n lnn (+ 5.3%) 0.0067n lnn (+ 0.7%)
Exchange9 1.555n lnn (+ 12.8%) 0.106n lnn (+ 12.2%) 0.0075n lnn (+ 12.9%)

whether the assertion that partitioning an input of n elements using Algorithm 1 incurs
dE
(
Pse
n

)
/Be cache misses is justifiable. (Recall that E

(
Pse
n

)
is the average number of

scanned elements during partitioning.) In the experiment, we partitioned 600 inputs
consisting of n = 227 items using Algorithm 1, for 1, 2, 5, and 9 pivots. The measurements
with respect to L1 cache misses are shown in Table III. In our setup, each L1 cache line
contains 8 elements. So, Algorithm 1 should theoretically incur 0.125n, 0.166n, 0.25n,
and 0.375n L1 cache misses for k ∈ {1, 2, 5, 9}, respectively. The results from Table III
show that the empirical measurements are very close to these values.

Table IV shows the exact measurements regarding L1 and L2 cache misses for sorting
600 random inputs consisting of n = 227 elements using Algorithm 1 and relates them to
each other. The figures indicate that the relation with respect to the measured number
of L1 cache misses of the different algorithms reflect their relation with respect to the
average number of scanned elements very well. However, while the average number of
cache misses correctly reflects the relative relations, the measured values (scaled by
n lnn) are lower than we would expect by simply dividing E(Cse

n ) by the block size B.
We suspect this is due to (i) the influence of lower order terms and (ii) array segments
considered in the recursion already being present in cache. In summary, scanned
elements are a suitable cost measure to predict the L1 cache behavior of Algorithm 1.
However, this is not true with regard to L2 cache behavior of these algorithms, as shown
in Table IV.

Figure 8 shows the measurements we got with regard to the average number of
assignments. We see that the measurements agree with our theoretical study (cf.
Table II). In particular, lower order terms seem to have low influence on the sorting
cost.

7.7. Comparison with Other Partitioning Algorithms
Here we compare Algorithm 1 to two algorithms known from the literature that can
be used as partitioning algorithms and exhibit good runtime behavior under certain
circumstances. The big difference to Algorithm 1 is that these algorithms work in a
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Fig. 8. The average number of assignments for sorting a random input consisting of n elements using
Algorithm 1 (“Exchangek”) for certain values of k. Each data point is the average over 600 trials. fig:assignments

two-pass fashion; in the first pass, they classify the input elements (to find out group
sizes), in the second pass, they produce the actual partition.

We study the following adaption of Algorithm 4.1 from [McIlroy et al. 1993]. For
each k ≥ 1 we consider an algorithm Permutek. This algorithm carries out an in-place
permutation, and it works in the following way. Suppose the group sizes are a0, . . . , ak.
For each h ∈ {0, . . . , k} let sh = k+ 1 +

∑
0≤i≤h−1 ai. Let sk+1 = n+ 1. Then the segment

in the array which (at the end) will contain the elements of group Ah in the partition is
A[sh..sh+1 − 1]. For each group Ah, h ∈ {0, . . . , k}, the algorithm uses two variables. The
variable ch (“count”) contains the number of elements in group Ah that have not been
seen so far. (Of course, initially ch = ah.) The variable oh (“offset”) contains the largest
index where the algorithm has made sure that A[sh..oh − 1] only contains Ah-elements.
Initially, oh = sh. The algorithm uses one index j where initially j = k+ 1. In one round,
the algorithm scans the array from left to right until it finds a misplaced element at
A[j] with sh ≤ j ≤ sh+1 − 1. Let this element be x and suppose x belongs to group
Ah′ , h′ ∈ {0, . . . , k}. The algorithm now shifts elements in a cyclic fashion (without using
extra space) to move x to a final location and write an Ah-element into A[j]. Technically,
the algorithm repeats the following until it writes an element into A[j]: Scan the array
from A[oh′ ] to the right until a misplaced element y is reached, say, at A[j′]. (Note that
j′ ≤ sh′+1 − 1.) Assume y belongs to group Ah′′ . Write x into A[j′]. If h′′ 6= h, set h′ := h′′

and x := y and continue the loop. Otherwise write y into A[j], which ends the round.
Now some elements have been moved to final locations, some offsets have changed,
and a new round starts. These rounds are iterated until no misplaced elements are
left. Pseudocode for the algorithm is shown as Algorithm 2. An example for its memory
layout is given in Figure 9 and an example for one round in the algorithm is shown in
Figure 10.

We also consider a variant of Algorithm 2 we call “Copyk”. This algorithm was the
basic partitioning algorithm in the “super scalar sample sort algorithm” of Sanders
and Winkel [2004]. It uses the same offset values as Algorithm 2. Instead of carrying
out an in-place permutation it allocates a new array and produces the partition by
sweeping over the input array, copying elements to a final position in the new array
using these offsets. So, this algorithm needs at least twice as much space as the input
length. Pseudocode for this algorithm is given as Algorithm 3.

We now give a short analysis of the average number of scanned elements, write
accesses, and assignments in Algorithm 2 and Algorithm 3, respectively.
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Algorithm 2 Permute elements in-place to produce a partition
procedure Permutek(A[1..n])
Requires: Segment sizes are a0, . . . , ak.

1: for h from 0 to k do
2: ch ← ah; oh ← k + 1 +

∑h−1
i=0 ai;

3: for h from 0 to k − 1 do
4: while ch > 0 do
5: while A[oh] belongs to group Ah do . Find misplaced element
6: oh++; ch--;

7: if ch = 0 then
8: break;
9: home← oh;

10: prev← home;
11: x← A[prev];
12: while true do . Move elements cyclicly
13: Ag ← Group of x;
14: while A[og] belongs to group Ag do . Skip non-misplaced elements
15: og++; cg--;

16: next← og; og++; cg--;
17: prev← next;
18: if home 6= prev then
19: r← A[next]; A[next]← x; x← r;
20: else
21: A[prev]← x;
22: break;algo:permute:k

Algorithm 3 Copy elements to produce a partition
procedure Copyk(A[1..n])
Requires: Segment sizes are a0, . . . , ak.

1: for h from 0 to k do
2: oh ← k + 1 +

∑h−1
i=0 ai;

3: allocate a new array B[k + 1..n];
4: for i from k + 1 to n do
5: Ap ← group of A[i];
6: B[o[p]]← A[i];
7: o[p]++;
8: Copy the content of B to A;algo:copy:k

First we consider Algorithm 2. To find out the group sizes, an actual partitioning
algorithm has to scan the whole array. We count one element scan, no write access and
no assignment for each element. During rearranging the input, each element that is
already at a final location is scanned once and involves no write access or assignment
(Line 4 and Line 13). Each element that has to be moved involves one scan, one write
access (to its final location) and two assignments (one for storing its value into variable
x, one for writing it into its final location). Note that we do not count the assignment
“x← r”, since it involves two variables that should be in registers and no memory access
is involved. Moreover, to connect element scans to cache misses, we assume here that
an array cell is never evicted from cache between the moment it was accessed for the
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Fig. 9. General memory layout of Algorithm 2 for k = 2. fig:permute:k
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Fig. 10. Top: Example for the cyclic rotations occurring in one round of Algorithm 2 starting from the example
given in Figure 9. First, the algorithm finds an A2-element, which is then moved into the A2-segment (1.),
replacing an A1-element which is moved into the A1-segment (2.). It replaces an A2-element that is moved to
replace the next misplaced element in the A2-segment, an A0 element (3.). This element is then moved to the
A0-segment (4.), overwriting the misplaced A2-element, which ends the round. Bottom: Memory layout and
offset indices after moving the elements from the example. fig:permute:k:one:round

first time and the moment when a final element is written into it. We will discuss this
assumption later.

By a simple calculation it follows that on average there are k(n− k)/(k + 2) elements
that have to be moved. Hence,

E
(
Pse
n

)
= 2(n− k),

E
(
Pwa
n

)
=

k

k + 2
· (n− k),

E
(
Pas
n

)
=

2k

k + 2
· (n− k). (22) eq:assignments:permute

The analysis of Algorithm 3 is even simpler. Again, we count one element scan, no write
access and no assignment for each element for finding out group sizes. It makes exactly
2(n− k) element scans and n− k write accesses and assignments to rearrange the input
(Line 5 in Algorithm 3). In addition, we charge 2(n− k) element scans and n− k write
accesses and assignments for copying the input back (Line 7 in Algorithm 3). So, we get

E
(
Pse
n

)
= 5(n− k),

E
(
Pwa
n

)
= E

(
Pas
n

)
= 2(n− k). (23) eq:assignments:copy

Table V shows the total sorting cost of these two algorithms for certain pivot numbers
using the formulae from above and (3). Comparing with Table II, we observe the
following. In general, Algorithm 2 has lower cost than Algorithm 3. Both algorithms are
(asymptotically) worse than Algorithm 1 for very small values of k. When k becomes
larger, the total sorting cost decreases (asymptotically). Already for 7 pivots, Algorithm 2
has (asymptotically) lower cost than the best possible pivot choices in Algorithm 1. The
same is true for Algorithm 3, but it has to use more, e. g., 127 pivots to achieve this
improvement over Algorithm 1. So, both algorithms have lower partitioning cost than
Algorithm 1. We will see in Section 9 how these algorithms compete with Algorithm 1
with regard to running time. In short, these algorithms allow for faster sorting times,
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Table V. Average total sorting cost w. r. t. scanned elements, write accesses, and assign-
ments of Algorithm 2 and Algorithm 3 for k ∈ {1, 3, 7, 15, 31, 127}.tab:opt:cost:permute:copy

k E(Cse
n )

(Algorithm 2)
E(Cwa

n )
(Algorithm 2)

E(Cas
n )

(Algorithm 2)
E(Cse

n )
(Algorithm 3)

E(Cwa
n )

(Algorithm 3)
E(Cas

n )
(Algorithm 3)

1 4.000n lnn 0.667n lnn 1.333n lnn 10.00n lnn 4.000n lnn 4.000n lnn

3 1.846n lnn 0.554n lnn 1.108n lnn 4.615n lnn 1.846n lnn 1.846n lnn

7 1.164n lnn 0.453n lnn 0.906n lnn 2.911n lnn 1.164n lnn 1.164n lnn

15 0.840n lnn 0.371n lnn 0.742n lnn 2.100n lnn 0.840n lnn 0.840n lnn

31 0.654n lnn 0.307n lnn 0.614n lnn 1.635n lnn 0.654n lnn 0.654n lnn

127 0.451n lnn 0.222n lnn 0.444n lnn 1.128n lnn 0.451n lnn 0.451n lnn

but we must store element classifications from the initial classification step, which
requires using additional memory in both algorithms. Or clas-

sify twice,
which is
too slow.

Or clas-
sify twice,
which is
too slow.

The analysis of Algorithm 2 and Algorithm 3 showed that the respective sorting
cost decreases with an increasing number of pivots. Of course, there are drawbacks of
using many pivots, which we discuss now. From a theoretical point of view, we were
only interested in the leading term of the average sorting cost. The cost of sorting a
sample to pick the pivots should have a big influence on the lower order terms and thus
influence the cost for real-world input lengths for a large number of pivots. From an
architectural point of view, using many pivots means that many different areas of the
array are accessed in succession (Line 14 in Algorithm 2 and Line 6 in Algorithm 3).
Considering for example the Intel i7 processor used for the experiments, the L1 cache
in it can store 32kB of data where each cache line can hold eight 64bit integers. This
means that there are 512 different cache lines and thus at most 512 different memory
segments can be accommodated at once. Since both Algorithm 2 and Algorithm 3 access
memory segments depending on the outcome of classifications, their access patterns are
almost fully random. (We know from Section 3 that dependencies among classifications
introduce only lower order error terms.) So, for both algorithms the size of the L1 cache
restricts the maximum number of pivots. In experiments we found that for up to 127
pivots there are no surprising effects and accesses that are suppossed to be served
from L1 cache were served accordingly. Another cache structure important for the
discussion is the translation lookaside buffer (TLB) that translates between virtual
memory addresses (used in a process) and physical memory addresses. Each memory
address used in a process must be translated to its physical address; the TLB is the
cache structure that speeds up this translation. (If a “TLB miss” happens, a tree walk
must be started to find out the physical memory address.) This address translation
is even more important when processes run inside virtual machines because then
the translation has to happen twice. Only recently, a foundation for the theoretical
study of these effects has been developed by Jurkiewicz and Mehlhorn [2014]. As an
example, the Intel i7 used in the experiments has a TLB that consists of two levels
of 64 and 512 entries, respectively, for each core [Levinthal 2009]. In addition, there
is a TLB consisting of 32 entries for large pages. However, many operation system do
not support large pages. To get an impression between differences of algorithms with
respect to TLB misses, we compare all algorithms to the TLB misses that happen in
Algorithm 1 with one pivot for inputs of size at most 227, see Figure 11. First, for inputs
of size at most 223, almost no TLB misses happen. Afterwards, all algorithms make
increasingly many TLB misses. For at most 9 pivots, there is no difference between
variants of Algorithm 1 to the one pivot case. Also, Algorithm 3 with up to 512 pivots
makes basically the same number of TLB misses as Algorithm 1. The picture is very
different for Algorithm 2. For inputs of size 227 and using 127 pivots, it makes 76%
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Fig. 11. TLB misses for Algorithm 1 (“Exchk”), Algorithm 2 (“Permk”), and Algorithm 3 (“Copyk”). Each data
point is averaged over 500 trials, TLB load misses are scaled by n lnn. fig:tbl:misses:k:pivot

more TLB misses than Algorithm 1, with 512 pivots it makes 244% more of them. In
experiments we noticed that this has a significant negative effect to running time when
comparing Algorithm 1 and Algorithm 2 as the input size increases. So, especially for
Algorithm 2 the virtual address translation limits the maximum number of pivots.

7.8. Conclusion on Rearranging Elements
In this section we analyzed an algorithm (Algorithm 1) for the rearrangement problem
with respect to three different cost measures. We found out that the cost measure
“scanned elements” is very useful to estimate the number of cache misses. (As we will
see later there is a strong correlation to running time.) With respect to the number of
scanned elements, Algorithm 1 is particularly good with three or five pivots. For the
cost measures “write accesses” and “assignments” we found out that the cost increases
with an increasing number of pivots. We compared this algorithm with two other
rearrangement algorithms from the literature. The analysis showed that they are both
better than Algorithm 1 in all three cost measures, starting from 7 pivots (Algorithm 2)
or 127 pivots (Algorithm 3), at the cost of higher space usage and a two-pass approach.
Details of the architecture place a natural limit on the maximum number of pivots that
yield efficient variants of these algorithms.

8. PIVOT SAMPLING IN MULTI-PIVOT QUICKSORTsec:pivot:sampling

In this section we consider the benefits of sampling pivots. By “pivot sampling” we
mean that we take a small, constant-sized sample of elements from the input, sort these
elements, and then pick certain elements of this sorted sequence as pivots. One particu-
larly popular strategy for classical quicksort, known as median-of-three, is to choose as
pivot the median of a sample of three elements. From a theoretical point of view it is well
known that choosing the median in a sample of Θ(

√
n) elements in classical quicksort is

optimal with respect to minimizing the average comparison count [Martínez and Roura
2001]. Using this sample size, quicksort achieves the (asymptotically) best possible
average comparison count of 1.4426..n lnn+O(n) comparisons on average. For dual-pivot
quicksort, Wild, Nebel, and Martínez [2015] showed in recent work that no matter how
well the pivots are chosen, Yaroslavskiy’s algorithm makes at least 1.49..n lnn+O(n)
comparisons on average. Aumüller and Dietzfelbinger [2015] demonstrated that this
is not an inherent limitation of the dual-pivot quicksort approach. Using the simple
strategy of always comparing with the largest pivot first, they proved that choosing
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Fig. 12. The extremal tree for seven pivots. fig:extremal:comp:tree

as pivots the elements of rank n/4 and n/2 makes it again possible to achieve the
minimum possible comparison count for comparison-based sorting algorithms.

Here we study two different sampling scenarios for multi-pivot quicksort. First we
develop formulae to calculate the average number of comparisons and the average
number of scanned elements for Algorithm 1 when pivots are chosen from a small
sample. Example calculations demonstrate that the cost in both measures can be
decreased by choosing pivots from a small (fixed-sized) sample. Interestingly, with
respect to scanned elements the best pivot choices do not balance subproblem sizes but
tend to make the middle groups, i. e., groups Ap with p close to dk+1

2 e, larger. Then we
consider a different setting in which we can choose pivots of a given rank for free. In
this setting we want to find out which pivot choices minimize the respective cost. Our
first result shows that if we choose an arbitrary comparison tree and use it in every
classification, it is possible to choose pivots in such a way that on average we need at
most 1.4426..n lnn + O(n) comparisons to sort the input. The second result is that in
order to minimize the average number of scanned elements, one particular pivot choice
provides minimal sorting cost. In contrast to the results of the previous section we
show that with these pivot choices, the average number of scanned elements decreases
with a growing number of pivots. (Recall that when choosing pivots directly from the
input, the five-pivot quicksort algorithm based on Algorithm 1 has minimal cost.) From
these calculations we also learn which comparison tree (among the exponentially many
available) has lowest cost when considering as cost measure the sum of the number of
comparisons and the number of scanned elements. In contrast to intuition, the balanced
comparison tree, in which all leaves are as even in depth as possible, has non-optimal
cost. The best choice under this cost measure is to use the comparison tree which uses
as root pivot pm with m = dk+1

2 e. In its left subtree, the node labeled with pivot pi is the
left child of the node labeled with pivot pi+1 for 1 ≤ i ≤ m− 1. (So, the inner nodes in its
left subtree are a path (pm−1, . . . ,p1).) Analogously, in its right subtree, the node labeled
with pivot pi+1 is the right child of the node labeled with pivot pi for m ≤ i ≤ k − 1.
For given k ≥ 1, we call this tree the extremal tree for k pivots. In Figure 12 we see an
example for the extremal tree for seven pivots.

General Structure of a Multi-Pivot Quicksort Algorithm Using Sampling. We gen-
eralize a multi-pivot quicksort algorithm in the following way. (This description is
analogous to those in [Hennequin 1991] for multi-pivot quicksort and [Nebel et al.
2015] for dual-pivot quicksort.) For a given number k ≥ 1 of pivots, we fix a vector
t = (t0, . . . , tk) ∈ Nk+1. Let κ := κ(t) = k +

∑
0≤i≤k ti be the number of samples.7)

7The notation differs from [Hennequin 1991] and [Nebel et al. 2015] in the following way: This paper focuses
on a “pivot number”-centric approach, where the main parameter is k, the number of pivots. The other papers
focus on the parameter s, the number of element groups. In particular, it holds s = k + 1. The sample size κ
is denoted k in these papers.
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Assume that an input of n elements residing in an array A[1..n] is to be sorted. If n ≤ κ,
sort A directly. Otherwise, sort the first κ elements and then set pi = A[i +

∑
j<i tj ],

for 1 ≤ i ≤ k. Next, partition the input A[κ+ 1..n] with respect to the pivots p1, . . . , pk.
Subsequently, move the elements residing in A[1..κ] to correct final locations. This is
possible by using a constant number of rotations. Finally, sort the k + 1 subproblems
recursively.

The sampling technique described above does not preserve randomness in subprob-
lems, because some elements have already been sorted during the pivot sampling step.
For the analysis, we ignore that the unused samples have been seen and get only an
estimate on the sorting cost. A detailed analysis of this situation for dual-pivot quicksort
is given in [Nebel et al. 2015], and the same methods that were proposed in their paper
can be used in the multi-pivot quicksort case, too.

The Generalized Multi-Pivot Quicksort Recurrence. For a given sequence t =
(t0, . . . , tk) ∈ Nk+1, we define H(t) by

H(t) =

k∑
i=0

ti + 1

κ+ 1
(Hκ+1 −Hti+1). (24) eq:entropy

Let Pn denote the random variable which counts the cost of a single partitioning step,
and let Cn denote the cost over the whole sorting procedure. In general, we get the
recurrence

E(Cn) = E(Pn) +
∑

a0+···+ak=n−k

(E(Ca0) + · · ·+ E(Cak)) · Pr(〈a0, . . . , ak〉), (25) eq:sampling:recurrence

where 〈a0, . . . , ak〉 is the event that the group sizes are exactly a0, . . . , ak. The probability
of this event for a given vector t is (

a0
t0

)
· · ·
(
ak
tk

)(
n
κ

) .

For the following discussion, we re-use the result of Hennequin [1991, Proposition III.9]
which says that for fixed k and t and average partitioning cost a · n+O(1) recurrence
(25) has the solution

a

H(t)
n lnn+O(n). (26) eq:quicksort:recurrence:sampling

The Average Comparison Count Using a Fixed Comparison Tree. Fix a vector t ∈ Nk+1.
First, observe that for each i ∈ {0, . . . , k} the expected number of elements belonging
to group Ai is ti+1

κ+1 (n− κ). If the n− κ remaining input elements are classified using a
fixed comparison tree λ, the average comparison count for partitioning (cf. (5)) is

(n− κ) ·
k∑
i=0

depthλ(Ai) ·
ti + 1

κ+ 1
. (27) eq:comp:count:sampling

The Average Number of Scanned Elements of Algorithm 1. Fix a vector t ∈ Nk+1 and
let m = dk+1

2 e. Arguments analogous to the ones presented in the previous section, see
(15), show that the average number of scanned elements of Algorithm 1 isn ·

∑m
i=1 i ·

(
tm−i+tk−m+i+2

κ+1

)
+O(1), for k odd,

n · (m+ 1) · t0+1
κ+1 + n ·

∑m
i=1 i ·

(
tm+1−i+tk−m+i+2

κ+1

)
+O(1), for k even.

(28) eq:access:count:sampling
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Next, we will use these formulae to give some example calculations for small sample
sizes.

Optimal Pivot Choices for Small Sample Sizes. Table VI contains the lowest possible
cost for a given number of pivots and a given number of sample elements. We consider
three different cost measures: the average number of comparisons, the average number
of scanned elements, and the sum of these two costs. Additionally, it contains the t-
vector and the comparison tree that achieves this value. (Of course, each comparison
tree yields the same number of scanned elements. Consequently, no comparison tree is
given for the best t-vector w. r. t. scanned elements.)

Looking at Table VI, we make the following observations. Increasing the sample
size for a fixed number of pivots decreases the average cost significantly, at least
asymptotically. Interestingly, to minimize the average number of comparisons, the best
comparison tree is not always the one that minimizes the depth of the tree, e. g., see the
best comparison tree for 5 pivots and 6 additional samples. However, for most situation
it has minimal cost. To minimize the number of scanned elements, the groups in the
middle should be made larger. The extremal tree provides the best possible total cost,
summing up comparisons and scanned elements. Compared to the sampling choices
that minimize the number of scanned elements, the sampled elements are slightly less
concentrated around the middle element groups. This provides first evidence that the
extremal tree is the best possible comparison tree for a given number of pivots with
respect to the total cost.

With regard to the question of the best choice of k, Table VI shows that it is not
possible to give a definite answer. All of the considered pivot numbers and additional
sampling elements make it possible to decrease the total average sorting cost to around
2.6n lnn using only a small sample.

Next, we will study the behavior of these cost measures when choosing the pivots is
for free.

Optimal Pivot Choices. We now consider the following setting. We assume that
for a random input of n elements8 we can choose (for free) k pivots w. r. t. a vector
τ = (τ0, . . . , τk) such that the input contains exactly τin elements from group Ai, for i ∈
{0, . . . , k}. By definition, we have

∑
0≤i≤k τi = 1. This setting was studied in [Martínez

and Roura 2001; Nebel et al. 2015] as well.
We make the following preliminary observations. In our setting, the average number

of comparisons per element (see (27)) becomes

cτ :=

k∑
i=0

deptht(Ai) · τi, (29) eq:sampling:comparisons

and the average number of scanned elements per element (see (28)) is

aτ :=

{∑m−1
i=1 i · (τm−i−1 + τk−m+i+1), for k odd,

m · τ0 +
∑m−1
i=1 i · (τm−i + τk−m+i+1), for k even.

(30) eq:sampling:mem:accesses:tau

Furthermore, using that the κth harmonic number Hκ is approximately lnκ, we get
that H(τ) from (24) converges to the entropy of τ

H(τ) := −
k∑
i=0

τi ln τi.

8We disregard the k pivots in the following discussion.
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Table VI. Best sampling and comparison tree choices for a given number k of pivots and a given sample size (in
addition to pivots). A comparison tree is presented as the output of the preorder traversal of its inner nodes. Since
the number of scanned elements is independent of the used comparison tree, no comparison tree is given for this
cost measure.tab:sampling:cost

k Add. Samples Cost measure Best candidate (cost, t, tree)
comparisons 1.846n lnn, (0, 0, 0, 0), [2, 1, 3]

3 0 scanned elements 1.385n lnn, (0, 0, 0, 0), —
cmp + scanned elements 3.231n lnn, (0, 0, 0, 0), [2, 1, 3]

comparisons 1.642n lnn, (1, 1, 1, 1), [2, 1, 3]
4 scanned elements 1.144n lnn, (0, 2, 2, 0), —

cmp + scanned elements 2.874n lnn, (1, 1, 1, 1), [2, 1, 3]

comparisons 1.575n lnn, (2, 2, 2, 2), [2, 1, 3]
8 scanned elements 1.098n lnn, (1, 3, 3, 1), —

cmp + scanned elements 2.745n lnn, (1, 3, 3, 1), [2, 1, 3]

comparisons 1.522n lnn, (4, 4, 4, 4), [2, 1, 3]
16 scanned elements 1.055n lnn, (2, 6, 6, 2), —

cmp + scanned elements 2.627n lnn, (3, 5, 5, 3), [2, 1, 3]

comparisons 1.839n lnn, (0, 0, 0, 0, 0, 0), [3, 2, 1, 4, 5]
5 0 scanned elements 1.379n lnn, (0, 0, 0, 0, 0, 0), —

cmp + scanned elements 3.218n lnn, (0, 0, 0, 0, 0, 0), [3, 2, 1, 4, 5]

comparisons 1.635n lnn, (0, 0, 0, 2, 2, 2), [4, 3, 1, 2, 5]
6 scanned elements 1.097n lnn, (0, 1, 2, 2, 1, 0), —

cmp + scanned elements 2.741n lnn, (0, 1, 2, 2, 1, 0), [3, 2, 1, 4, 5]

comparisons 1.567n lnn, (1, 1, 4, 4, 1, 1), [3, 2, 1, 4, 5]
12 scanned elements 1.019n lnn, (0, 1, 5, 5, 1, 0), —

cmp + scanned elements 2.635n lnn, (1, 1, 4, 4, 1, 1), [3, 2, 1, 4, 5]

comparisons 1.746n lnn, (0, 0, 0, 0, 0, 0, 0, 0), [4, 2, 1, 3, 6, 5, 7]
7 0 scanned elements 1.455n lnn, (0, 0, 0, 0, 0, 0, 0, 0), —

cmp + scanned elements 3.201n lnn, (0, 0, 0, 0, 0, 0, 0, 0), [4, 2, 1, 3, 6, 5, 7]

comparisons 1.595n lnn, (1, 1, 1, 1, 1, 1, 1, 1), [4, 2, 1, 3, 6, 5, 7]
8 scanned elements 1.094n lnn, (0, 0, 1, 3, 3, 1, 0, 0), —

cmp + scanned elements 2.698n lnn, (0, 0, 1, 3, 3, 1, 0, 0), [4, 3, 2, 1, 5, 6, 7]

comparisons 1.544n lnn, (2, 2, 2, 2, 2, 2, 2, 2), [4, 2, 1, 3, 6, 5, 7]
16 scanned elements 1.017n lnn, (0, 0, 2, 6, 6, 2, 0, 0), —

cmp + scanned elements 2.594n lnn, (0, 0, 2, 6, 6, 2, 0, 0), [4, 3, 2, 1, 5, 6, 7]

comparisons 1.763n lnn, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), [5, 3, 2, 1, 4, 7, 6, 8, 9]
9 0 scanned elements 1.555n lnn, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), —

cmp + scanned elements 3.318n lnn, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), [5, 3, 2, 1, 4, 7, 6, 8, 9]

comparisons 1.602n lnn, (0, 0, 1, 2, 2, 2, 2, 1, 0, 0), [5, 3, 2, 1, 4, 7, 6, 8, 9]
10 scanned elements 1.131n lnn, (0, 0, 0, 1, 4, 4, 1, 0, 0, 0), —

cmp + scanned elements 2.748n lnn, (0, 0, 0, 1, 4, 4, 1, 0, 0, 0), [5, 4, 3, 2, 1, 6, 7, 8, 9]

comparisons 1.543n lnn, (1, 1, 2, 3, 3, 3, 3, 2, 1, 1), [5, 3, 2, 1, 4, 7, 6, 8, 9]
20 scanned elements 1.040n lnn, (0, 0, 0, 2, 8, 8, 2, 0, 0, 0), —

cmp + scanned elements 2.601n lnn, (0, 0, 1, 2, 7, 7, 2, 1, 0, 0), [5, 4, 3, 2, 1, 6, 7, 8, 9]
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In the following we want to obtain optimal choices for the vector τ that minimize the
three values

cτ
H(τ)

,
aτ
H(τ)

,
cτ + aτ
H(τ)

, (31) eq:sample:asymp

i. e., that minimize the factor in the n lnn term of the sorting cost in the respective cost
measure.

We start by giving a general solution to the problem of minimizing formulae where
a linear function in variables τ0, . . . , τk over the simplex

∑
i τi = 1 is divided by the

entropy of τ0, . . . , τk, as in (31).

LEMMA 8.1. Let α1, . . . , αk > 0 be arbitrary constants. For a vector τ = (τ0, . . . , τk)
with

∑
i τi = 1, define the function

f(τ) =
α0τ0 + · · ·+ αkτk

H(τ)
.

Let x be the unique solution in (0, 1) of the equation

1 = xα0 + xα1 + · · ·+ xαk .

Then τ = (xα0 , xα1 , . . . , xαk) minimizes f(τ), i .e., f(τ) ≤ f(τ ′) over all choices τ ′ with∑
i τ
′
i = 1. This minimum is −1/ lnx.lem:sol:sampling:minima

PROOF. Gibb’s inequality says that for arbitrary nonnegative σ0, . . . , σk with
∑
i σi ≤

1 and arbitrary nonnegative τ0, . . . , τk with
∑
i τi = 1 it holds

H(σ0, . . . , σk) ≤
k∑
i=0

σi ln

(
1

τi

)
.

Choose x ∈ (0, 1) such that
∑
i x

αi = 1 and set τi = xαi . According to Gibb’s inequality,
for arbitrary σ0, . . . , σk we have the bound

H(σ0, . . . , σk) ≤
k∑
i=0

σi ln

(
1

xαi

)
=

k∑
i=0

σiαi ln

(
1

x

)
.

So, we may conclude that for arbitrary σ0, . . . , σk

f(σ0, . . . , σk) =

∑k
i=0 σiαi

H(σ0, . . . , σk)
≥ 1

ln
(

1
x

) .
Finally, observe that

f(τ0, . . . , τk) =

∑k
i=0 τiαi

H(τ0, . . . , τk)
=

∑k
i=0 αix

αi

−
∑k
i=0 x

αi ln(xαi)
=

1

ln
(

1
x

) .
We first consider optimal choices for the sampling vector τ in order to minimize the

average number of comparisons. The following theorem says that each comparison tree
makes it possible to achieve the minimum possible sorting cost for comparison-based
sorting algorithms in the considered setting.

THEOREM 8.2. Let k ≥ 1 be fixed. Let λ ∈ Λk be an arbitrary comparison tree. Then
there exists τ such that the average comparison count using comparison tree λ in each
classification is (1/ ln 2)n lnn+O(n) = 1.4426..n lnn+O(n).thm:opt:class
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PROOF. For each i ∈ {0, . . . , k}, set τi = 2−depthλ(Ai). First, observe that
∑
τi = 1.

(This is true since every inner node in λ has exactly two children.) Starting from (27),
we may calculate:

k∑
i=0

depthλ(Ai) · τi =

k∑
i=0

− log(τi) · τi = − 1

ln 2

k∑
i=0

τi · ln(τi).

This shows the theorem.

We now consider the average number of scanned elements of Algorithm 1. The following
theorem says that pivots should be chosen in such a way that (in the limit for k →∞)
2/3 of the input are only scanned once (by the pointers i and j), 2/9 should be scanned
twice, and so on.

THEOREM 8.3. Let k ≥ 1 be fixed. Let m = dk+1
2 e. Let τ be chosen according to the

following two cases:

(1) If k is odd, let x be the unique value in (0, 1) such that
1 = 2(x+ x2 + · · ·+ xm).

Let τ = (xm, xm−1, . . . , x, x, . . . , xm).
(2) If k is even, let x be the unique value in (0, 1) such that

1 = 2(x+ x2 + · · ·+ xm−1) + xm.

Let τ = (xm, xm−1, . . . , x, x, . . . , xm−1).

Then the average number of scanned elements using Algorithm 1 with τ is minimal over
all choices of vectors τ ′. For k →∞, this minimum is 1/(ln 3)n lnn ≈ 0.91n lnn scanned
elements.thm:mem:acc

PROOF. Setting the values α0, . . . , αk in Lemma 8.1 according to Equation (30) shows
that the choices for τ are optimal with respect to minimizing the average number of
scanned elements. One easily checks that in the limit for k → ∞ the value x in the
statement is 1/3.

For example, in the special case of Yaroslavskiy’s algorithm Nebel et al. [2015] noticed
that τ = (q2, q, q) with q =

√
2− 1 is the optimal pivot choice to minimize element scans.

In this case, around 1.13n lnn elements are scanned on average. The minimal average
number of scanned elements using Algorithm 1 for k ∈ {3, 5, 7, 9} are around 0.995n lnn,
0.933n lnn, 0.917n lnn, and 0.912n lnn, respectively. Hence, already for small values of k
the average number of scanned elements is close to 0.91n lnn. However, from Table VI
we see that for sample sizes suitable in practice, both the average comparison count and
average pointer visit count are around 0.1n lnn higher than these asymptotic values.

To summarize, we learned that (i) every fixed comparison tree yields an optimal
classification strategy and (ii) one specific pivot choice has the best possible average
number of scanned elements in Algorithm 1. Next, we consider as cost measure the sum
of the average number of comparisons and the average number of scanned elements.

THEOREM 8.4. Let k ≥ 1 be fixed. Let m = dk+1
2 e. Let τ be chosen according to the

following two cases:

(1) If k is odd, let x be the unique value in (0, 1) such that
1 = 2(x3 + x5 + · · ·+ x2m−3 + x2m−1 + x2m).

Let τ = (x2m, x2m−1, x2m−3, . . . , x, x, . . . , x2m−3, x2m−1, x2m).
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(2) If k is even, let x be the unique value in (0, 1) such that
1 = 2(x3 + x5 + · · ·+ x2m−3) + x2m−2 + x2m−1 + x2m.

Let τ = (x2m, x2m−1, x2m−3, . . . , x3, x3, . . . , x2m−3, x2m−2).

Then the average cost using Algorithm 1 and classifiying all elements with the extremal
comparison tree for k pivots using τ is minimal among all choices of vectors τ ′. For
k →∞ this minimum cost is about 2.38n lnn.thm:memcmp:sampling

PROOF. First, observe that for the extremal comparison tree for k pivots, (29) be-
comes

cτ =

{
m(τ0 + τk) +

∑m−1
i=1 (i+ 1)(τm−i + τm+i−1), for k odd,

m(τ0 + τ1) + (m− 1)τk +
∑m−2
i=1 (i+ 1)(τm−i + τm+i−1), for k even.

(32) eq:proof:memcmp:1

The optimality of the τ choice in the theorem statement now follows from adding (30) to
(32), and using Lemma 8.1. For k →∞, the optimal x value is the unique solution in
(0, 1) of the equation 2x3 + x2 = 1, which is about 0.6573. Thus, the total cost is about
2.38n lnn.

Interestingly, the minimal total cost of 2.38n lnn is only about 0.03n lnn higher than
adding (1/ ln 2)n lnn (the minimal average comparison count) and 0.91n lnn (the mini-
mal average number of scanned elements). Using the extremal tree is much better than,
e. g., using the balanced comparison tree for k = 2κ − 1 pivots. The minimum sorting
cost using this tree is 2.489n lnn, which is achieved for three pivots9. We conjecture that
the extremal tree has minimal total sorting cost, i. e., minimizes the sum of scanned
elements and comparisons. We found this to be true via exhaustive search for k ≤ 9
pivots.

Again, including scanned elements as cost measure yields unexpected results and
design recommendations for engineering a sorting algorithm. Looking at comparisons,
the balanced tree for 2κ − 1 pivots is the obvious comparison tree to use in a multi-pivot
quicksort algorithm. Only when including scanned elements, the extremal tree shows
its potential in leading to fast multi-pivot quicksort algorithms.10 Fußnote in

Einleitung?
Fußnote in
Einleitung?

9. EXPERIMENTSsec:experiments

In this section, we focus on the actual running time needed to sort a random per-
mutation of the set {1, . . . , n} using multi-pivot quicksort methods. We implemented
the algorithms in C++ and used clang in version 3.5 for compiling with the optimiza-
tion flag -O3. Our experiments were carried out on an Intel i7-2600 at 3.4 GHz with
16 GB Ram running Ubuntu 14.10 with kernel version 3.16.0. The source code of
the multi-pivot quicksort algorithms is available at http://eiche.theoinf.tu-ilmenau.de/
quicksort-experiments/.

We restricted our experiments to sorting random permutations of the integers
{1, . . . , n}. We tested inputs of size 2i, 21 ≤ i ≤ 27. For each input size, we ran each
algorithm on the same 600 random permutations. All figures in the following are the
average over these 600 trials.

Our goal in the following is to compare empirical running times of the generic ap-
proach “k-pivot quicksort”. To achieve this, all algorithms were generated automatically
based on Algorithm 1, where classifications in Line 7 and Line 12 were implemented

9For three pivots, the extremal tree and the balanced tree are identical.
10Here, we want to stress that papers dealing with multi-pivot quicksort such as [Hennequin 1991; Kushagra
et al. 2014; Iliopoulos 2014] do not describe the full design space for multi-pivot quicksort algorithms, but
rather always assume the “most-balanced” tree is best.
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Fig. 13. Running time experiments for k-pivot quicksort algorithms based on the “Exchangek” partitioning
strategy. Each data point is the average over 600 trials. Times are scaled by n lnn. fig:running:times:k:pivot:quicksort

using the extremal comparison tree. The script that generates the k-pivot quicksort
algorithms also takes a sampling vector τ as input to apply different pivot sampling
strategies. (We remark that manually writing the algorithm code is error-prone and
tedious. For example, the source code for the 9-pivot algorithm uses 376 lines of code
and needs nine different rotate operations.) Subarrays of size at most 500 were sorted
using the fast three-pivot quicksort algorithm of [Kushagra et al. 2014]. At the end
of this section, we compare the results to Algorithm 2, Algorithm 3, and the standard
introsort sorting method from C++’s standard library.

The Extremal Comparison Tree vs. the Balanced Comparison Tree. We report on the
differences between the 7-pivot algorithm that uses the extremal comparison tree and
the 7-pivot algorithm that uses the balanced comparison tree. For inputs of size n = 227,
the 7-pivot quicksort algorithm using the extremal tree was at least 2% faster than the
7-pivot algorithm using the balanced tree in 95% of the runs. The difference in running
time is hence statistically significant, but only minimal.

Running Times of k-pivot Quicksort Algorithms. The time measurements of our
experiments can be seen in Figure 16. With respect to the average running time, we see
that the variants using 4 and 5 pivots are the fastest algorithms. On average the 5-pivot
algorithm is about 1% slower than the 4-pivot algorithm. However, there is no significant
difference in running time between these two variants. On average, the 3-pivot and
2-pivot algorithm are 3.5% and 3.7% slower than the 4-pivot quicksort algorithm. The
6- and 7-pivot algorithms are about 5.0% slower. It follows the 8-pivot algorithm (6.5%
slower), the 9-pivot algorithm (8.5% slower), classical quicksort (11.0% slower), and the
15-pivot algorithm (15.5% slower). With respect to significant differences in running
time, i. e., differences observed in at least 95% of all runs, these numbers decrease by
about 1–2%. We got similar results for a different setup, see Appendix B.

Comparing these running time measurements to the theoretical study we conducted
in this paper, only the average number of scanned elements of an algorithm corre-
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sponds (to a considerable extent) to observed running times. (The average number of
comparisons decreases with the number of pivots, the average number of assignments
increases with the number of pivots.) Only for scanned elements, algorithms using 3–5
pivots should be the fastest algorithms, and using more than 5 pivots should increase
the running time, see Table II. We have observed this effect nicely in our running time
experiments. For a large number of pivots, additional work, e. g., finding the pivots,
seems to have a noticeable influence on running time. For example, according to the
average number of scanned elements the 15-pivot quicksort should not be slower than
classical quicksort. Shows im-

portance
of experi-
ments.

Shows im-
portance
of experi-
ments.The Influence of Sampling to Running Time. Here we report on the influence of

sampling to running time. First we want to stress that comparing the overhead incured
by sorting a larger sample to the benefits of having better pivots is very difficult from a
theoretical point of view because of the influence of lower-order terms to the sorting cost
for real-world values of n . In our experiments we observed that samples that make the
groups closer to the center larger improved the running time more significantly than
balanced samples, which validates our finding from Section 8. However, the benefits of
choosing pivots from a small sample to empirical running time when sorting random
inputs are marginal. Compared to choosing pivots directly from the input, the largest
improvement in running time were observed for the 7- and 9-pivot algorithms. For these
algorithms, the running time could be improved by about 3% by choosing pivots from
a small sample. Figure 14 depicts the running times we got for variants using seven
pivots and different sampling vectors. In some cases, e. g., for the 4-pivot algorithm,
we could not observe any improvements by sampling pivots. This does not support the
hypothesis that improvements of multi-pivot quicksort algorithms are largely due to its
better cache behavior, because sampling improves the cache behavior, see Table VI.11

Comparison with Other Methods. Finally, we report on experiments that compared
the algorithms from before with other quicksort-based algorithms known from the
literature. For the comparison, we used the std::sort implementation found in C++’s
standard STL (from gcc), Yaroslavskiy’s algorithm from [Nebel et al. 2015, Figure
4], the two-pivot algorithm from [Aumüller and Dietzfelbinger 2015, Algorithm 3],
the three-pivot algorithm of [Kushagra et al. 2014], see [Aumüller and Dietzfelbinger
2015, Algorithm 8], and an implementation of the super scalar sample sort algorithm of
Sanders and Winkel [2004] (Algorithm 3 in Section 7) with basic source code provided by
Timo Bingmann. Algorithm std::sort is an introsort implementation, which combines
quicksort with a heapsort fallback when subproblem sizes decrease too slowly. As
explained in [Sanders and Winkel 2004], Algorithm 3 can be implemented to exploit
data independence (classifications are decoupled from each other) and predicated move
instructions, which reduce branch mispredictions in the classification step. See the
source code at http://eiche.theoinf.tu-ilmenau.de/quicksort-experiments/ for details.

Figure 15 shows the measurements we got for these algorithms.12 We see that
std::sort is by far the slowest algorithm. Of course, it is slowed down by special
precautions for inputs that are not random or have equal entries. (Such precautions
have not been taken in the other implementations.) Next come the two dual-pivot
quicksort algorithms. The three-pivot algorithm of [Kushagra et al. 2014] is a little bit

11For example, the 4-pivot algorithm without sampling incurred 10% more L1 cache misses, 10% more L2
cache misses, and needed 7% more instructions than the 4-pivot algorithm with sampling vector (0, 0, 1, 1, 0).
Still, it was 2% faster in experiments. The reason might be that it made 7% less branch mispredictions.
12We used gcc version 4.9 to compile Yaroslavskiy’s algorithm and the algorithm of Sanders and Winkel.
For both algorithms, the executable obtained by compiling with clang was much slower. For Yaroslavskiy’s
algorithm, compiling with the compiler flag -O3 was fastest, while for the algorithm of Sanders and Winkel
the flags -O3 -funroll-loops were fastest.
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Fig. 14. Running time experiments for different sampling strategies for the 7-pivot quicksort algorithm based
on the “Exchange7” partitioning strategy. Each line represents the running time measurements obtained
with the given τ sampling vector. Each data point is the average over 600 trials. Times are scaled by n lnn. fig:running:times:7:sampling
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Fig. 15. Running time experiments for different quicksort-based algorithms compared to the “Exchangek”
partitioning strategies Ex3 and Ex4. The plot includes the average running time of C++’s std::sort imple-
mentation (“stdsort”), Yaroslavskiy’s algorithm (“Y”), the dual-pivot quicksort algorithm from [Aumüller
and Dietzfelbinger 2015, Algorithm 3] (“L”), the three-pivot quicksort algorithm from Kushagra et al. (“K”),
the variant of Algorithm 2 using 127 pivots (“Permute127”) and the variant of Algorithm 3 using 127 pivots
(“Copy127”). Each data point is the average over 600 trials. Times are scaled by n lnn. fig:running:times:other

faster than the automatically generated three-pivot quicksort algorithm, but a little
slower than the automatically generated four-pivot quicksort algorithm. (This shows
that the automatically generated quicksort algorithms do not suffer in performance
compared to fine-tuned implementations such as Yaroslavskiy’s algorithm and the
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three-pivot algorithm from [Kushagra et al. 2014].) The super scalar sample sort
algorithm of Sanders and Winkel is by far the fastest algorithm, being roughly 31%
faster than the four-pivot algorithm. (However, it needs about twice as much space
and good compiler/hardware support.) We remark that on our hardware, the variant of
Algorithm 3 with 127 pivots is fastest. Using 255 pivots is slightly slower, using 511 is
much slower. Moreover, Algorithm 2 using 127 pivots is slower than Algorithm 3 with
127 pivots, and makes many misses in the TLB if the input consists of more than 225

items. Still, it was about 15% faster than the fastest variant of Algorithm 1, but also
has to store the results of the classification step to be competitive in running time.

Conclusion
on experi-
ments?

Conclusion
on experi-
ments?

10. CONCLUSION
In this paper we studied the design space of multi-pivot quicksort algorithms and
demonstrated how to analyze their sorting cost. In the first part we showed how to
calculate the average comparison count of an arbitrary multi-pivot quicksort algorithm.
We described optimal multi-pivot quicksort algorithms with regard to key comparisons.
It turned out that calculating their average comparison count seems difficult already
for four pivots (we resorted to experiments) and that they cannot compete with simpler
variants with respect to running time. Similar improvements in key comparisons can
be achieved by much simpler strategies such as the median-of-k strategy for classical
quicksort. In the second part we switched our viewpoint and studied the problem of
rearranging entries to obtain a partition of the input. We analyzed a one-pass algorithm
(Algorithm 1) with respect to the cost measures “scanned elements”, “write accesses”,
and “assignments”. For the second and third cost measure, we found that the cost
increases with an increasing number of pivots. The first cost measure turned out to be
more interesting. Using Algorithm 1 with three or five pivots was particularly good,
and we asserted that “scanned elements” correspond to L1 cache misses in practice.
Experiments revealed that there is a high correlation to observed running times. We
also analyzed two algorithms (Algorithm 2 and Algorithm 3) known from the literature
and found out that they have decreasing cost as the number of pivots increases, but
details of the architecture place a natural limit on the maximum number of pivots. In
the last part of this paper, we discussed the influence of pivot sampling to sorting cost.
With respect to comparisons we showed that for every comparison tree we can describe
a pivot choice such that the cost is optimal. With regard to the number of scanned
elements, we noticed that pivots should be chosen such that they make groups closer to
the center larger. To determine element groups, the extremal comparison tree should
be used. We conjectured that this choice of tree is also best when we consider as cost
the sum of comparisons and scanned elements.

For future work, it would be very interesting to see how the optimal average compari-
son count of k-pivot quicksort can be calculated analytically, cf. (11). With respect to the
rearrangement problem, it would be interesting to identify an optimal algorithm that
shifts as few elements as possible to rearrange an input. From a empirical point of view,
it would be interesting to test multi-pivot quicksort algorithms at input distributions
that are not random permutation, but have some kind of “presortedness” or contain
equal keys.
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A. SOLVING THE GENERAL QUICKSORT RECURRENCEapp:sec:recurrence:solution

In Section 2 we have shown that the sorting cost of k-pivot quicksort follows the
recurrence:

E(Cn) = E(Pn) +
1(
n
k

) n−k∑
i=0

(k + 1)

(
n− i− 1

k − 1

)
E(Ci).

We will use the continuous Master theorem of Roura [2001] to solve this recurrence. For
completeness, we give the CMT below:

THEOREM A.1 ([MARTÍNEZ AND ROURA 2001, THEOREM 18]). Let Fn be recur-
sively defined by

Fn =

{
bn, for 0 ≤ n < N,

tn +
∑n−1
j=0 wn,jFj , for n ≥ N,

where the toll function tn satisfies tn ∼ Knα logβ(n) as n→∞ for constants K 6= 0, α ≥
0, β > −1. Assume there exists a function w : [0, 1]→ R such that

n−1∑
j=0

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n

w(z) dz

∣∣∣∣∣ = O(n−d), (33) eq:cmt:shape:function

for a constant d > 0. Let H := 1−
∫ 1

0
zαw(z) dz. Then we have the following cases:13

(1) If H > 0, then Fn ∼ tn/H.
(2) If H = 0, then Fn ∼ (tn lnn)/Ĥ, where

Ĥ := −(β + 1)

∫ 1

0

zα ln(z)w(z) dz.

(3) If H < 0, then Fn ∼ Θ(nc) for the unique c ∈ R with∫ 1

0

zcw(z) dz = 1.

thm:CMT

THEOREM A.2. Let A be a k-pivot quicksort algorithm which has for each subarray
of length n partitioning cost E(Pn) = a · n+O(n1−ε). Then

E(Cn) =
1

Hk+1 − 1
an lnn+O(n),

where Hk+1 =
∑k+1
i=1 (1/i) is the (k + 1)st harmonic number.

13Let f(n) and g(n) be two functions. We write f(n) ∼ g(n) if f(n) = g(n) + o(g(n)). If f(n) ∼ g(n), we say
that “f and g are asymptotically equivalent.”
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PROOF. By linearity of expectation we may obtain a solution for the recurrence for
toll function t1,n = a ·n and toll function t2,n = K ·n1−ε separately and add the solutions.

For toll function t1,n, we use the result of Hennequin [1991, Proposition III.9] that says
that for partitioning cost a · n+O(1) we get sorting cost E(C1,n) = a

Hk+1−1n lnn+O(n).
For t2,n, we apply the CMT as follows. First, observe that Recurrence (2) has weight

wn,j =
(k + 1) · k · (n− j − 1) · . . . · (n− j − k + 1)

n · (n− 1) · . . . · (n− k + 1)
.

We define the shape function w(z) as suggested in [Roura 2001] by

w(z) = lim
n→∞

n · wn,zn = (k + 1)k(1− z)k−1.

We note that for all z ∈ [0, 1]:

|n · wn,zn − w(z)| ≤ k · (k + 1) ·
∣∣∣∣ (n− zn− 1)k−1

(n− k)k−1
− (1− z)k−1

∣∣∣∣
= k · (k + 1) ·

∣∣∣∣∣
(
n(1− z)
n− k

− 1

n− k

)k−1

− (1− z)k−1

∣∣∣∣∣
≤ k · (k + 1) ·

∣∣∣∣∣
(
n(1− z)
n− k

)k−1

− (1− z)k−1 +O
(
n−1

)∣∣∣∣∣
≤ k · (k + 1) ·

∣∣∣∣∣(1− z)k−1 ·

(
1(

1− k
n

)k−1
− 1

)
+O

(
n−1

)∣∣∣∣∣
≤ k · (k + 1) ·

∣∣∣∣(1− z)k−1 ·
(

1

1−O(n−1)
− 1

)
+O

(
n−1

)∣∣∣∣
≤ k · (k + 1) ·

∣∣(1− z)k−1 ·O(n−1) +O
(
n−1

)∣∣
= O(n−1),

where we used the Binomial theorem for the asymptotic bounds.
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Now we have to check (33) to see whether the shape function is suitable. We calculate:
n−1∑
j=0

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n

w(z) dz

∣∣∣∣∣
=

n−1∑
j=0

∣∣∣∣∣
∫ (j+1)/n

j/n

n · wn,j − w(z) dz

∣∣∣∣∣
≤
n−1∑
j=0

1

n
max

z∈[j/n,(j+1)/n]
|n · wn,j − w(z)|

≤
n−1∑
j=0

1

n

(
max

z∈[j/n,(j+1)/n]
|w(j/n)− w(z)|+O

(
n−1

))

≤
n−1∑
j=0

1

n

(
max

|z−z′|≤1/n
|w(z)− w(z′)|+O

(
n−1

))

≤
n−1∑
j=0

k(k + 1)

n

(
max

|z−z′|≤1/n

∣∣(1− z)k−1 − (1− z − 1/n)k−1
∣∣+O

(
n−1

))

≤
n−1∑
j=0

O
(
n−2

)
= O

(
n−1

)
,

where we again used the Binomial theorem in the last two lines.
Thus, w is a suitable shape function. Using partial integration, we see that

H := 1− k(k + 1)

∫ 1

0

z1−ε(1− z)k−1 dz < 0.

Thus, the third case of the CMT applies. Again using partial integration, we check that

k(k + 1)

∫ 1

0

z(1− z)k−1 dz = 1,

so we conclude that for toll function t2,n the recurrence has solution E(C2,n) = O(n).
The theorem follows by adding E(C1,n) and E(C2,n).

B. EXPERIMENTS ON A DIFFERENT MACHINEapp:ktinfty

These experiments were carried out on an Intel Xeon E5645 at 2.4 GHz with 48 GB
Ram running Ubuntu 14.04 with kernel version 3.13.0.
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Fig. 16. Running time experiments for k-pivot quicksort algorithms based on the “Exchangek” partitioning
strategy. Each data point is the average over 600 trials. Times are scaled by n lnn. fig:running:times:k:pivot:quicksort

50


