
Some facts about polynomials modulo m
(Full proof of the Fingerprinting Theorem)

In order to understand the details of the “Fingerprinting Theorem” on fin-
gerprints of different texts from Chapter 19 of the book

”
Algorithms Unplug-

ged“ [AU2011], you have to look at “polynomials modulo m”. For this you
need a little patience, and you should not be afraid of a fumbling around
with variables, unknowns, integers, and prime numbers. The award in the
end is a full proof of the theorem.

We have calculated a fingerprint for a text (a1, . . . , an) (of numbers between
0 and m− 1) as follows:

(1) (a1 · rn + a2 · rn−1 + · · ·+ an−1 · r + an · r) mod m.

Here r was a number between 1 and m− 1. However, r = 0 is also allowed,
it only always gives the result 0.

Let us look a little more closely at expressions as in (1). Since we don’t know
in advance which r is to be substituted, we write a symbol “x” in place of r,
a “variable”. In this way we enter the world of “polynomials”.

Polynomials modulo m

Let us look at m = 17 as an example. Then mod-m-polynomials are expres-
sions like

10x4 + 14x + 2 or x3 + 2x or x10 + 7.

This means there are powers

x0 = 1, x1 = x, x2, x3, x4, . . . ,

of a symbol x (the variable). Among these powers there is the expression
x0, to be read as “1” and to be omitted when it appears as a factor: 2 ·
x0 = 2. Instead of x1 we write x. Such powers of x we can multiply with
numbers c between 0 and m − 1 to obtain terms cxj. The factor c here is
then called a coefficient. We get polynomials by adding arbitrary terms with
different powers of x. In order not to get confused we normally order the
terms according to falling powers of x, but we may also write 5x + 3x2 + 1
or 5x + 2x2 + 1 + x2: these are just a different way of writing 3x2 + 5x + 1.
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If we are given an expression like

2x4 − 3x3 + 30x2 + 3

that is not really a polynomial modulo 17, because coefficients that are ne-
gative or larger than 16 are illegal, we may just take all numbers modulo 17
to obtain a proper mod-17-polynomial:

2x4 + 14x3 + 13x2 + 3.

The general format for a mod-m-polynomial is the following:

(2) cn · xn + cn−1 · xn−1 + · · ·+ c2 · x2 + c1 · x + c0.

Here cn, . . . , c0 are numbers between 0 and m− 1 (endpoints included).1

It is interesting to note that if one wants to calculate with polynomials there is
no need to deal with the “x” and its powers at all. One just stores the numbers
c0, c1, . . . , cn, e. g. in an array C[0..n], and has the complete information.

Arithmetic for mod-m-polynomials

With mod-m-polynomials we can carry out the arithmetic operations ad-
dition, subtraction, and multiplication. This is very easy, if one just
applies the standard rules for placing things outside brackets or multiplying
out products of sums. With coefficients we always calculate modulo m.

Addition: We add two mod-m-polynomials by calculating as if x was just
some unknown and collect terms that have the same power of x in them.
The coefficients in these terms are added – of course modulo m. For example
(m = 17):

(2x4 + 3x3 + 10x + 3) + (3x5 + 14x3 + 10x + 4) = 3x5 + 2x4 + 3x + 7.

(The summand with x3 disappears, because (3 + 14) mod 17 = 0.)

Subtraction: We proceed in a way very similar to addition. For example:

(10x3 + 3x + 2)− (x3 + 2x + 13) = 9x3 + x + 6.

1In comparison to (1) the numbering of the terms is reversed and a summand c0 has
been added.
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We subtract the coefficients that come with the same powers of x, always
thinking modulo m. One can avoid subtraction or the use of negative numbers
by first replacing coefficient c by m − c in the polynomial to be subtracted,
and add the resulting polynomial. In the example from above the calculation
then runs as follows:

(10x3 + 3x + 2) + (16x3 + 15x + 4) = 9x3 + x + 6.

A special situation occurs if one subtracts a polynomial from itself:

(10x3 + 3x + 2)− (10x3 + 3x + 2) = (10x3 + 3x + 2) + (7x3 + 14x + 15) = 0.

The result is a polynomial in which all powers of x have a coefficient that is 0.
This polynomial is called the zero polynomial. Although normally one would
not really like to deal with such a strange thing that tells us “nothing”, we
will see that the zero polynomial is very special and it is very important for
our purpose that we recognize it when it shows up.

Multiplication: In order to multiply two polynomials (modulo m) we mul-
tiply out and then collect terms with the same power of x. For example:

(10x4 + 3x + 2) · (x3 + 2x + 13)

= (10x7 + 3x5 + 11x4) + (3x4 + 6x2 + 5x) + (2x3 + 4x + 9)(3)

= 10x7 + 3x5 + 14x4 + 2x3 + 6x2 + 9x + 9.

Is there also a division for polynomials? Yes, but that is a little more com-
plicated.

Division: After the result of the multiplication from (3) we will certainly
write (always modulo m):

(10x7 + 3x5 + 14x4 + 2x3 + 6x2 + 9x + 9) : (x3 + 2x + 13) = 10x4 + 3x + 2.

Somtimes however (well, actually more often than not) it “doesn’t add up”.
Just as with ordinary numbers we then do “division with remainder”. We
don’t want to run into problems with dividing numbers modulo m, so as
divisors we admit only polynomials in which the highest power of x appears
with a coefficient of 1. For example, x10 + 5 is admissible as divisor, but
10x2 + 3x + 1 is not.

The remainder in polynomial division is again a polynomial whose highest
power of x is smaller than the highest power of x that occurs in the divisor.
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Exampe: We have (modulo 17)

(2x + 5) · (x2 + 4) + (2x + 4) = 2x3 + 5x2 + 10x + 7,

and so we write

(4) (2x3 + 5x2 + 10x + 7) : (x2 + 4) = (x2 + 4) with remainder 2x + 4.

There is even an algorithm for dividing a polynomial f by a polynomial g,
which always calculates the quotient polynomial and the remainder polyno-
mial. We don’t need such an algorithm here. All we have to know is that for
every polynomial f and every polynomial g that has coefficient 1 with its
highest power of x (which of course is at least x0) there is a “quotient po-
lynomial” q and a “remainder polynomial” re so that the following equation
holds:

(5) f = g · q + re ;

here the highest power of x appearing in re is smaller than the highest power
of x in g. For example, in (4) the highest power of x in the remainder x = x1

is smaller than the highest power of x in the divisor (x2).

For our fingerprint application we only need an extremely simple case: Di-
vision by polynomials x + s, for s a number. With a little patience you can
check that (here: s = 3):

3x4 + 13x3 + 5x2 + 2x + 6 = (3x3 + 4x2 + 10x + 6) · (x + 3) + 5.

That is,

(3x4 + 13x3 + 5x2 + 2x + 6) : (x + 3) = 3x3 + 4x2 + 10x + 6 with remainder 5.

In general it is clear that when dividing by a polynomial x+ s the remainder
is simply a number.2

2The interested reader may want to try and find an algorithm to divide a polynomial
cnxn + · · ·+ c1x + c0 by a polynomial x + s.
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Substituting into polynomials, roots,

factoring out linear factors x − r

Up to here we only calculated with polynomials as formal expressions, never
touching the “variable” x. Another very important operation with polyno-
mials is

”
substitution“. That means, at least in our simple situation, that we

replace the x by some number between 0 and m−1 and evaluate to see what
the resulting number is.

For example, if in the polynomial

f = 3x4 + 13x3 + 5x2 + 2x + 1

we substitute the number 2 for x, we get

f(2) = (3 · 24 + 13 · 23 + 5 · 22 + 2 · 2 + 1) mod 17 = 7,

if we substitute the number 14 for x, we get

f(14) = (3 · 144 + 13 · 143 + 5 · 142 + 2 · 14 + 1) mod 17 = 0,

and so on.

If f(r) = 0 we call r a root of f . Thus, r = 14 is a root of f = 3x4 + 13x3 +
5x2 + 2x + 1. Now we divide f by x − 14 = x + 3 (viewed modulo 17) and
note:

(3x4 + 13x3 + 5x2 + 2x + 1) : (x + 3) = 3x3 + 4x2 + 10x + 6.

There is no remainder in the division! We can try more examples with divi-
ding polynomials by x− r, where r is a root, and will always find that there
is no remainder. Here’s the general fact, and because it is very important for
us, we prove it.

Theorem 1
For polynomials modulo m, for a number m ≥ 2, we have:
if r is a root of the polynomial f , then division of f by x− r
( = x + (m− r)) yields remainder 0.
This means: It is possible to write f = (x− r) · q, for some (quotient)
polynomial q.
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Proof :
We can certainly divide f by x− r, with remainder, that is, we can write:

f = q · (x− r) + re.

Here re is a number between 0 and m − 1, and q is a polynomial. Now we
substitute r for x on both sides. Because r is a root of f , we get:

0 = f(r) = q(r) · (r − r) + re = re.

Since the remainder re is 0, we get f = q·(x−r), and Theorem 1 is proved. �

One can put Theorem 1 as follows: If r is a root of f , one can “factor out”
the factor x− r from f . The next theorem says that if m is a prime number
this can be done with several roots of a polynomial one after the other. The
proof is a little more tricky.

Theorem 2
Consider polynomials modulo m, for a prime number m ≥ 2.
If k ≥ 1 and r1, . . . , rk are different roots of f between 0 and m − 1,
then it is possible to write

f = (x− r1) · (x− r2) · · · · · (x− rk) · h,

for some polynomial h.

Proof : Let us first consider the case where f has two different roots r und t.
By Theorem 1 we can write

f = q · (x− r).

Since t is a root of f , we have (modulo m):

0 = f(t) = q(t) · (t− r).

This means: The number q(t) · (t − r), calculated with integer arithmetic
(without taking remainders modulo m), is divisible by m. Because t and r
are different numbers between 0 and m− 1, the number t− r is not divisible
by m. Now it is a well known basic fact about prime numbers m that from

m is a divisor of a · b
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it follows that m must divide a or b (or both)3. This gets us that m divides
q(t) (in the integers). Viewed modulo m this means that q(t) = 0. Thus t is a
root of the quotient polynomial q. We apply Theorem 1 once again and write
q = p·(x−t) for a suitable polynomial p. Thus we get that f = p·(x−t)·(x−r),
as desired.

Example: For m = 17 and

(6) f = x4 + 16x3 + x2 + 14x + 11

we have that f(2) = f(16) = 0 and that

f = (x− 2) · (x− 16) · (x2 + 3) = (x + 15) · (x + 1) · (x2 + 3).

If f happens to have more than two roots, one can proceed along the same
pattern and keep factoring out linear factors, until the desired representation
f = (x−r1)·(x−r2)·· · ··(x−rk)·h is obtained. (Formally, one uses induction
on k.) �

Now we can formulate and prove the statement we need for our purposes.

Theorem 3
Consider polynomials modulo m, for a prime number m ≥ 2.
If f is a polynomial that is not the zero polynomial, and xn is the
highest power of x that occurs in f (with a coefficient cn 6= 0), then f
has no more than n distinct roots between 0 and m− 1.

Examples : (Always modulo 17.) The polynomial 2x + 11 has one root, which
is 3; the polynomial 2x2 + 7x + 12 has two roots, which are 2 and 3; the
polynomial x4 + 16x3 + x2 + 14x + 11 from (6) cannot have more than four
roots (actually, there are only two roots: 2 and 16).

Proof of Theorem 3: We take any k distinct roots of f and call them r1, . . . , rk.
The aim is to show that k cannot be larger than n. By Theorem 2 we can
write:

(7) f = (x− r1) · (x− r2) · · · · · (x− rk) · h.

3For numbers m that are not prime this is not necessarily so: the number 6 divides
4 · 9 = 36, but 6 divides neither 4 nor 9.
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Here h cannot be the zero polynomial, since otherwise f would be the zero
polynomial. In h there is a highest power of x, dx`, say, with d 6= 0, ` ≥ 0.
Now if we multiply out the right hand side of (7) we obtain the power xk+`,
with factor d as well, and there is no other term in the product with a larger
power of x. Since xn is the highest power of x in f with a nonzero coefficient,
we must have n = k + ` ≥ k, as desired. �

Polynomials and fingerprints

After these preparations we can finally prove the fingerprinting theorem
from [AU2011].

Fingerprinting Theorem
If TA and TB are different texts of length n, and if m is a prime number
that is larger than the largest number occurring in TA and TB, then
at most n out of the m pairs of numbers

FP(TA, r), FP(TB, r), 0 ≤ r < m,

can consist of two equal numbers.

Proof : We look at two “texts” (that is to say: sequences of numbers)

TA = (a1, . . . , an) and TB = (b1, . . . , bn) .

The numbers a1, . . . , an, b1, . . . , bn are between 0 and m−1. From these texts
we form two polynomials:

fA = a1 · xn + · · ·+ an · x and

fB = b1 · xn + · · ·+ bn · x,

and the polynomial g obtained from fA and fB by subtraction modulo m:

g = fA − fB = (a1 − b1) · xn + · · ·+ (an − bn) · x.

Now if TA and TB are different texts, then (also if we look at the numbers
modulo m) at least one of the coefficients (ai − bi) in g is not zero, hence g
is not the zero polynomial. Obviously, in g no power of x with an exponent
larger than n can occur. (Note that xn need not occur, since we could have
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an = bn. It very much depends on the texts what g looks like. Maybe it has
only one nonzero term.)

Now, obviously,

FP(TA, r) = fA(r) and FP(TB, r) = fB(r).

So if the fingerprints FP(TA, r) and FP(TB, r) are equal, then fA(r) = fB(r),
hence g(r) = 0 — and this means that r is a root of g.

By Theorem 3 the polynomial g cannot have more than n roots. Hence there
are no more than n numbers r with FP(TA, r) = FP(TB, r), and hence the
Fingerprinting Theorem is proved. �
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