
Chapter 0

Prologue

In the following, “the book” means

Dasgupta, Papadimitriou, Vazirani: Algorithms. McGraw Hill, 2008.

Please have Chapter 0 of the book ready, and read along with these notes, which
contain additional remarks.

0.1 Books and algorithms

The book tells the story of the German goldsmith

Johannes Gutenberg

who in the 15th century invented printing books with movable letters cast from metal,
and with a printing press. https://en.wikipedia.org/wiki/Johannes_Gutenberg
(By the way, his picture in the book is fantasy, or rather, fake.)

The book also mentions the Roman number system used in Europe at that time.

MCMLXXXIV = 1000 + (1000− 100) + 50 + 10 + 10 + 10 + (5− 1) means 1984.

Adding and subtracting numbers in this representation is difficult.

Multiplying and dividing numbers in this representation is very difficult.

The revolution that resolved these problems had already happened many centuries
earlier, not known in Europe for a long time!

1



2 CHAPTER 0. PROLOGUE

The decimal number system, with digit 0, had been invented in India, around 600
CE (i.e. 600 AD):

https://en.wikipedia.org/wiki/Hindu-Arabic_numeral_system#History

https://en.wikipedia.org/wiki/Hindu-Arabic_numeral_system#/media/File:The_

Brahmi_numeral_system_and_its_descendants.png

For some strange reason, we nowadays call it the Arabic numeral system.

It became known to Abu Jafar Muhammad ibn Musa “al-Khwarizmi” (“the man from
Khwarezm”, about 780–850), a Persian mathematician and polymath,

https://www.wikiwand.com/de/Al-Chwarizmi

who wrote influential books on methods for doing calculations with this number sys-
tem. One of these books was, around 820, “The Compendious Book on Calculation by
Completion and Balancing”, “al-Kitab al-mukhtasar fi hisab al-jabr wal-Muqabala”,
whose title contained the root from which the word algebra evolved! See
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_

and_Balancing .

Al-Khwarizmi’s book described methods for Addition, Subtraction, Multiplication,
Division, things kids have to study in school all over the world today.

More advanced methods were also described, like extracting square roots, calculating
digits of π = 3.14159 . . . , and so on.

Procedures described by al-Khwarizmi were precise, step-by-step, mechanical, correct,
applicable to arbitrarily long numbers; they were

algorithms.

The etymology of “algorithm” is a mess (see https://www.etymonline.com/word/

algorithm), but it is connected to “al-Khwarizmi”.

The German mathematician Adam Ries, who lived in Erfurt for a while, also wrote
textbooks on arithmetic, for school children and for merchants, but around 1520,
many centuries later.

https://en.wikipedia.org/wiki/Adam_Ries

https://en.wikipedia.org/wiki/Adam_Ries#/media/File:Rechnung_auff_der_linihen_

1525_Adam_Ries.PNG

(Haus zum Schwarzen Horn, Erfurt, was the printer’s shop.)



0.2. ENTER FIBONACCI 3

0.2 Enter Fibonacci

Much later, in Italy, there was Leonardo of Pisa (1170–1250), called Fibonacci.

https://fr.wikipedia.org/wiki/Leonardo_Fibonacci

(Another fake picture in the book. Seemingly the name was not used by Leonardo
himself. See https://en.wikipedia.org/wiki/Fibonacci .)

Fibonacci popularized the Hindu-Arabic numeral system in Europe, also by writing
a book (but of course hand-copied at this early time):
Liber Abaci (Book of Calculation).

Today you all know the famous sequence of Fibonacci numbers F0, F1, F2, . . ., which
is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

The sequence is defined recursively by:

Fn =


0, for n = 0
1, for n = 1
Fn−2 + Fn−1, for n ≥ 2

It has a myriad of applications, in biology, demography, art, architecture, computer
science, to name only a few. Actually, it was known long before Fibonacci lived, like
in the study of poetic meters in Sanskrit – ancient India again!
See https://en.wikipedia.org/wiki/Fibonacci_number .

We want to play around with Fibonacci numbers a little bit, so it is good to know
somewhat more.

The sequence grows very fast. An important number in connection with it is the
golden ratio

Φ =
1

2
(
√
5 + 1) ≈ 1.618034,

which is the unique positive number that satisfies Φ2 = Φ+1 (This is easily checked.)

Claim 1: Fn ≥ Φn−2, for n ≥ 1.

The proof is by induction on n. First the basis: The claim is true for n = 1, since F1 = 1 >
Φ−1, and for n = 2, since F2 = 2 > 1 = Φ0. Now assume (as induction hypothesis) that
n ≥ 3 and that the claim is true for all numbers n′ < n. Then (this is the induction step):

Fn = Fn−2 + Fn−1 ≥ Φn−4 +Φn−3 = (1 + Φ)Φn−4 = Φ2Φn−4 = Φn−2.

Claim 2: Fn ≤ Φn−1, for n ≥ 0.



4 CHAPTER 0. PROLOGUE

Again, the proof is by induction on n. Basis: The claim is true for n = 0, since F0 = 0 < Φ−1,
and for n = 1, since F1 = 1 = Φ0. Further if n ≥ 2 and the claim is true for all n′ < n (the
induction hypothesis), we get (the induction step)

Fn = Fn−2 + Fn−1 ≤ Φn−3 +Φn−2 = (1 + Φ)Φn−3 = Φ2Φn−3 = Φn−1.

The claims taken together say that Fn deviates from Φn−1 only by a constant factor,
which is at most Φ.

We say the Fibonacci sequence grows “expontially”, with basis Φ.

Note that up to constant factors

Φn−1 ≈ Φn ≈ (2log2 Φ)n = 2(log2 Φ)n ≈ 20.694n,

since log2Φ ≈ 0.694241.

If you want to know even more details, look up that Fn can be given by the “closed formula”

Fn =
1√
5
(Φn − (1− Φ)n) .

Here Φ and 1 − Φ = 1
2 (1 −

√
5) ≈ −0.618034 are the two roots of the quadratic equation

x2 = x+ 1. This formula allows us to estimate Fn as the closest integer to 1√
5
Φn, for n ≥ 0.

From this one sees the exponential growth even more clearly.

The sequence
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, . . .

of the powers of 2 grows exponentially with basis 2.

We want to calculate the exact value of Fn, given n. The definition shows us a method.

Algorithm 1: fib1

1 function fib1(n):
2 if n = 0 then return 0
3 if n = 1 then return 1
4 return fib1(n− 1) + fib1(n− 2) // recursion!

The algorithm is written in “pseudocode”. (A little different from the way it is in
the book, but you will understand.) Note it is recursive, i.e. that for executing the
algorithm on input n ≥ 2 it calls the same algorithm on smaller inputs n − 2 and
n− 1.

We ask three questions, which we will ask over and over again, about all our algo-
rithms:



0.2. ENTER FIBONACCI 5

� Is the algorithm correct?

� How much time does it take? (As a function of the “input size” n.)

� Can we do better?

Correctness: Yes, it is correct, since we just use the formula from the definition of
the sequence.

Running time:
Let us say the tests in lines 2 and 3 and the addition in line 4 each cost one unit of time.
(Just define time units so that they accommodate these operations. We assume that
organizing the recursive calls and returning the result is subsumed in these costs.)

Let T (n) := number of time units for calculating Fn by fib1.
(We don’t know the time, but we can still give it a name!)

Claim: T (n) ≤ Fn+5 − 3, for all n ≥ 0.

Proof : By induction on n. Note that F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8.
Basis: n = 0 and n = 1: T (0) = 1 ≤ 5− 3 = F5 − 3 and T (1) = 2 ≤ 8− 3 = F6 − 3.
Now assume n ≥ 2. The induction hypothesis is that the claim is true for all n′ < n.
Induction step: We add the cost for lines 2 and 3, the two recursive calls, and the addition
in line 4. We get:
T (n) ≤ 1 + 1 + T (n− 1) + T (n− 2) + 1.
Using the induction hypothesis for n−1 and n−2 and the definition of the Fibonacci sequence
we get
T (n) ≤ (F(n−1)+5 − 3) + (F(n−2)+5 − 3) + 3 = Fn+4 + Fn+3 − 3 = Fn+5 − 3,
which is the induction claim. □

The claim gives an “upper bound” on the running time, which is exponential in n.

The bad news is that function fib1 really needs exponential running time. We just
count recursive calls to fib1. Let

C(n) := number of recursive calls for calculating Fn.

Note that C(0) = 1 = F1 and C(1) = 1 = F2 and C(n) ≥ C(n− 2) +C(n− 1) for all
n ≥ 2. From this it follows directly (by induction) that C(n) ≥ Fn+1 ≈ 1√

5
Φn+1 ≈

1√
5
20.694n.

So it seems our first algorithm is not really good. Let’s try a quite small number, like
n = 200. One can see that F200 ≈ 1√

5
20.694·200 ≈ 2138, up to a small constant factor.

How long does it take to carry out the 2138 calls needed for F200?

Here’s a useful estimate (please memorize): 210 = 1024 > 1000 = 103.

So 2138 > 103·13.8 > 1041.



6 CHAPTER 0. PROLOGUE

Now 1041 is quite a lot. Assume our super-supercomputer (for a list see https:

//en.wikipedia.org/wiki/Supercomputer) carries out 5 · 1017 recursive calls per
second (actually, the fastest supercomputers of the year 2020 carry out somewhat less
than 500,000 TeraFLOPs, meaning 500,000 · 1012 = 5 · 1017 floating-point operations
(FLOPs), but it is reasonable to assume a recursive call is slower than a FLOP). This
also is a lot. But then the call fib1(200) takes at least

1041/(5 · 1017) = 2 · 1023 seconds, which is about 6.34 · 1015 years.

Astrophysicists estimate that the age of the universe is about 13.8 · 109 < 1.5 · 1010
years (https://en.wikipedia.org/wiki/Age_of_the_universe). This means our
calculation would take more than 400 000 times the age of the universe. So unreach-
able are calculations with exponential running times even for not too large inputs!

Can we do better?

What is wrong with fib1? As shown in Figure 0.1 in the book, it repeats the same
calculations over and over again. Namely, fib1(n) is called once (F1 times), fib1(n−1)
is called once (F2 times), fib1(n− 2) is called twice (F1 +F2 = F3 times), fib1(n− 3)
is called three (F2 + F3 = F4) times, fib1(n− 4) is called five (F3 + F4 = F5) times,
. . . , fib1(n− i) is called Fi−1+Fi = Fi+1 times, . . . , and fib1(0) is called Fn+1 times.

Fortunately, the naive (or stupid) procedure used in fib1 can be improved easily. Of
course, one should calculate the Fibonacci numbers in the order F0, F1, F2, . . . , Fn,
and store the results one has already calculated. This leads to the following second
attempt.

Algorithm 2: fib2

1 function fib2(n):
2 generate array F [0..n] of integers
3 F [0]← 0; F [1]← 1;
4 for i from 2 to n do // iteration, with memory
5 F [i]← F [i− 1] + F [i− 2];
6 return F [n].

This is quite nice, we only have n additions, for n = 200 this means 200 additions.
One has to take into account that the largest numbers that we add will be of size
about 2138. This means they need 138 bits to represent in a computer, or five 32-bit
words. Still, adding two such numbers is no problem at all. (You can even do that by
hand. The number of decimal digits is not more than 42.)

Our algorithm fib2 needs an array of size n. This is not really necessary. Observe:



0.2. ENTER FIBONACCI 7

To calculate F [i], only F [i− 2] and F [i− 1] are needed, we can forget older values.

So we require only two variables Fi_1 and Fi for the two most recent values Fi−1

and Fi, and one auxiliary variable g for their sum. The new algorithm is:

Algorithm 3: fib2a

1 function fib2a(n):
2 Fi_1← 0; Fi← 1; // Fi_1 contains F0, Fi contains F1

3 for i from 2 to n do
4 g← Fi_1+ Fi;
5 Fi_1← Fi;
6 Fi← g; // Invariant: Fi_1 and Fi contain Fi−1 and Fi

7 return Fi.

With this algorithm we can calculate calculate F200 by hand (although it takes a
little patience) and Fn for really large n. As before, we have n additions, but now
also very little storage space.

How long does the calculation take? Is the running time “linear” (like the number of
additions), i.e., proportional to n (we’ll later call this O(n) or Θ(n))?

More careful analysis

There is a catch. The numbers we are dealing with are possibly large: In round i we
add Fi−2 and Fi−1, they are about 20.694i, and have about 0.694i bits.

How do we represent such long integers in a computer? O.k., if you need them you
use a package like GNU Multiple Precision Arithmetic Library (or another one, see
https://en.wikipedia.org/wiki/List_of_C++_multiple_precision_arithmetic_

libraries for an incomplete list). But what is happening in these libraries if we are
dealing with integers of thousands or millions of bits, say?

Assume you want to store an integer x with ℓ bits in a computer with word length
w. (Nowadays, standard word lengths are w = 32 bits or w = 64 bits.) So create an
array A[0..k − 1] of long unsigned integers, for1 k ≥ ⌈ℓ/w⌉. Then chop the binary
representation of x into w-bit pieces x0, x1, . . . , xk−1, with x0 the w lowest-order bits,
. . . , xk−1 the highest order bits. Then store xi in A[i], for 0 ≤ i < k. Note that we
have

x =
∑

0≤j<k

xi · (2w)j ,

1For any real number α, ⌈α⌉ (“ceiling”, “rounded up”) is the smallest integer ≥ α, and ⌊α⌋ (“floor”,
“rounded down”) is the largest integer ≤ α.



8 CHAPTER 0. PROLOGUE

so this can be regarded as representing x in a digital number system with basis 2w.

If we add two numbers represented in this way on a computer, we need k ≈ ℓ/w
machine instructions for adding the single words.

For our Fibonacci numbers, the bitlength of the numbers in the addition to get Fi is
about 0.694i, giving about 0.694i/w machine instructions. Overall, we have about2

∑
2≤i≤n

0.694i/w =
0.694

w

∑
2≤i≤n

i =
0.694

w

(n(n+ 1)

2
− 1

)
>

0.347

w
· n2

machine instructions.

Now assume w = 64. Then 0.347/w ≈ 0.00542, and the running time behaviour of
fib2a is about 0.00542n2 additions. This is “quadratic”, proportional to n2 (we’ll later
call this O(n2) or Θ(n2)).

If n = 1012, which is not entirely unreasonable, we will have about 0.00542 · 1024 ≈
5 · 1021 word additions. On our super-supercomputer from above this will take about
10 000 seconds, which is about 23

4 hours. (On a notebook it takes longer; for notebooks
or desktop computers n = 109 is a more reasonable input size.)

Can we do better than that? It may be surprising, but yes, see exercises.

0.3 O-Notation

We want to be able to estimate the number of computer steps without getting bogged
down in the details of architecture and even of implementation details for algorithms.
For this, we introduce notation that allows us to just note the rough behaviour of
functions (in particular running time bounds) for large input sizes n.

In the following, one should imagine g(n) is a complicated, detailed bound on the
running time or the number of operations carried out by an algorithm, and f(n) is a
smoother function used to estimate g(n). (The definition is more general.)

Definition 0.3.1. Let f : N→ R+ and g : N→ R+ be functions. (If g(n) is negative or
undefined for a finite number of n, we do not care.) We say “g(n) = O(f(n))” if

there are c > 0 and n0 ∈ N such that g(n) ≤ c · f(n) for all n ≥ n0.

(See Figure 1.)

We read: g(n) “is (big-)Oh of f(n)”.



0.3. O-NOTATION 9

2f(n)

f(n)

g(n)

n ≥ n0

Figure 1: g(n) = O(f(n)), since g(n) ≤ 2 · f(n) for n ≥ n0.

Sometimes one sees the notation “g ∈ O(f)” for the same idea.3

Example: 4n2+2n+5 = O(n2), since 4n2+2n+5 ≤ 5n2 for all n ≥ 3. Similarly one
sees 4n2 + 2n+ 5 = O(n3): overestimating is not forbidden. Note that in O-notation
the “=”does not mean the two things are equal, rather that g(n) is somehow“smaller
than or equal to” f(n).

Informal interpretation: “Asymptotically” (i.e., for n getting larger and larger), g(n)
grows at most as fast as f(n).

Some rules. (We will use these rules, and you will get used to them. For proofs see more

detailed textbooks on algorithms.)

Assume f : N → R+ and g : N → R+ are functions. It does not matter if these
functions are not defined for some small values of n.

Limit rule. If limn→∞
g(n)
f(n) = c for some c ≥ 0, then g(n) = O(f(n)).

Example: limn→∞
4n2+5n+6

n2 = 4, hence 4n2+5n+6 = O(n2). The generalization
for arbitrary polynomials should be clear: it is the leading term that counts.

This rule is the easiest way of establishing O-relations among functions. When
asked to prove g(n) = O(f(n)), the first approach is to try to determine the

2We use the well-known formula 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2.
3The book uses the notation “g = O(f)”, but this is not common. A few other authors write

“g(n) ∈ O(f(n))”, but this is also rare. It’s better not to use these variants.



10 CHAPTER 0. PROLOGUE

limit of the quotient.

Addition rule. If g1(n) = O(f1(n)) and g2(n) = O(f2(n)), then
g1(n) + g2(n) = O(f1(n) + f2(n)) = O(max{f1(n), f2(n)}).

This rule is used for analyzing the running time of algorithms carried out se-
quentially.

Example: If we have an algorithm A1 with running time t1(n) = O(n2) and an
algorithm A2 with running time t2(n) = O(n log n), and these algorithms are
carried out one after the other, the total running time will be O(n2 + n log n),
which is O(n2).

Multiplication rule. If g1(n) = O(f1(n)) and g2(n) = O(f2(n)), then
g1(n)g2(n) = O(f1(n)f2(n)).

This rule is used for analyzing the running time of algorithms consisting of a
loop.

Example: If algorithm A involves a loop that is carried out t1(n) = O(n) many
times on inputs of size n, and each execution of the body of the loop takes time
t2(n) = O(n log n), the total time will be O(n · n log n), which is O(n2 log n).

Transitivity rule. If h(n) = O(g(n)) and g(n) = O(f(n)), then h(n) = O(f(n)).

This rule allows us to argue in a chain, like this: If t1(n) = O(n2) and t2(n) =
O(n2 log n), then t1(n) + t2(n) = O(n2 + n2 log n) = O(n2 log n) = O(n11/5).

Domination rule. (“Omit lower order terms.”) If limn→∞
h(n)
g(n) = 0, then

g(n)± h(n) = O(g(n)).

Constant factor rule. (“Omit constant factors.”) Constant factors inside a O(. . . ) ex-
pression are irrelevant, so they can and should be omitted: If f(n) is a “simple”
function, write O(f(n)), not O(c · f(n)) for a constant c.

Examples: Write O(n2), not O(0.1n2), write O(1), not O(3).

Write O(n log n) (short for O(n log2 n)), not O(n log10 n), because n log10 n =
1

log2 10
· n log2 n.

Some concrete rules are listed in the book:

1. na dominates nb if a > b > 0. This means that nb = O(na) and even na + nb =

O(na). The reason is that limn→∞
nb

na = limn→∞
1

na−b = 0, and the domination
rule.



0.3. O-NOTATION 11

2. Any polynomial dominates any logarithm, e.g.
√
n dominates (log n)3. That

limn→∞
(logn)3√

n
= 0 is a fact from calculus.4

3. Any exponential function dominates any polynomial, e.g., 2n dominates n5. The
reason is that limn→∞

n5

2n = limn→∞ 2−(n−5 logn) = 0. (One could also use the
quotient rule.)

Definition 0.3.2. We say “g(n) = Ω(f(n))” if

there are c > 0 and n0 ∈ N such that g(n) ≥ c · f(n) for all n ≥ n0.

(See Figure 2.)

We read: g(n) “is (big-)Omega of f(n)”. Informal interpretation: Asymptotically, g(n)
grows at least as fast as f(n).

f(n)

3
4 · f(n)

g(n)

n ≥ n0

Figure 2: g(n) = Ω(f(n)), since g(n) ≥ 3
4 · f(n) for n ≥ n0.

In comparison to“O”only the comparison symbol switches from ≤ to ≥. Equivalently,
one can say that g(n) = Ω(f(n)) is the same as f(n) = O(g(n)).

Finally, we say g(n) = Θ(f(n)) if g(n) = O(f(n)) and g(n) = Ω(f(n)).
(Apart from constant factors, g(n) grows just as fast as f(n).) For an illustration see
Figure 3. We read: g(n) “is (big-)Theta of f(n)”.

4One possible proof: limn→∞
(logn)3√

n
= limx→∞

(log x)3√
x

(for real numbers), and this is equal to

limt→∞
t3√
2t

= limt→∞
t3√
2
t = limn→∞

n3
√
2
n . The latter limit is 0, by the quotient criterion.



12 CHAPTER 0. PROLOGUE

3
2 · f(n)

3
4 · f(n)

g(n)

f(n)

n ≥ n0

Figure 3: g(n) = Θ(f(n)), since 3
4f(n) ≤ g(n) ≤ 3

2 · f(n) for n ≥ n0.

To finish the discussion of estimations using the O-notation we give a list of some
functions that might occur as f(n) in such bounds. They are given in increasing order
(column by column). Recall that log n means log2 n.

log n n log n nlogn

(log n)2 n(log n)2 20.67n√
n n1.1 2n

n2/3 n3/2 3n
n

logn n2 n!

n n5 nn

First column: “sublinear” and “linear” growth. Second column: “polynomial” growth.
Third column: “superlinear” and “exponential” growth.

A closing example: We have seen that fib2a calculates Fn in time O(n2), more exactly
in 0.00542n2 additions. Exercise 0.4 in the book describes an algorithm fib3 that
calculates Fn in time O(M(0.694n)), where M(ℓ) is the time for multiplying two
ℓ-bit numbers. We shall see later that some algorithm gives us M(ℓ) = O(ℓ1.59).5

Assume fib3 takes ≤ 10n1.59 single word additions to calculate Fn. Then it is clear
that fib2a will be faster than fib3 for smaller n, but finally, for sufficiently large n,

5And this is not even the best exponent known. Actually, in 2019 mathematicians proved that
there is a multiplication algorithm with running time O(ℓ log ℓ) on ℓ-bit integers. Unfortunately, this
algorithm is not practically useful, as yet.



0.3. O-NOTATION 13

the algorithm with the ”‘asmptotically better”’ running time O(n1.59) will take over.
Can you calculate what the crossover point is?

(Answer: 10n1.59 ≤ 0.00542n2 means n0.41 ≥ 10/0.00542 ≈ 1845. This means n ≥
18451/0.41 ≈ 9.25 · 107, or 92.5 million.)


