
Chapter 1

Algorithms with Numbers

Is 37 a prime number? Clearly, yes. Is 9679 a prime number? Yes, try all possible
divisors smaller than 100. Is 999331 a prime number? Yes, just try all possible divisors
smaller than 1000. Is

4392805700980135242870321343287541732850471346081\

32740321038473602187341320486136768121381

(one big number cut in two pieces) a prime number? Yes, it is, but how do we know?
Is

324879079234509342806587265987248400359274857263004851895943815801\

8821033138476283974821379413240421343114340013520435613746370

a prime number? No, it is not. Its factors are

2, 3, 5, 7, 11, 421, 32794163,
33955479227018536815506600936182726861892858643489623487\

275753724372328604535201410235859759337342296918208875783.

How do we know? Well, we can try small divisors up to 40 million. This will give the
first seven factors. The remaining number turns out to be a prime number. How do
we know that? Is

163421418938098756375961933842691855151338780648114983801973493912\

08504985133173452099015606934480971397639419

a prime number? No, it is not. I know this because I multiplied two long prime
numbers to obtain it. But my favorite computer algebra system will only tell me it
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2 CHAPTER 1. ALGORITHMS WITH NUMBERS

is not prime, but it is not able to find the factors in reasonable time. Is this a little
impressive?

The main goal in this chapter is to set up efficient algorithms for testing whether a
natural number (with several thousand bits, i.e., many hundreds of decimal digits) is
a prime number or not, giving a yes/no answer. On the other hand, there is reason
to assume that there is no efficient algorithm that will always find the prime factors
of an arbitrary given number. In brief:

Testing primality is “easy”.
Factoring is presumably “hard” (in many important cases).

Taking these two observation together, we will be able to set up a modern cryptosys-
tem, at least in principle, and show that it is efficient and argue that it is presumably
secure. This is the RSA cryptosystem. It is an essential tool in today’s secure com-
munication in the internet, e.g. for internet banking.

For carrying out this program, we need quite a few intermediate steps, setting up
more and more algorithms for numbers.

1.1 Basic arithmetic

We work with different sets of digits.

In everyday life it is the decimal system with digits {0, 1, . . . , 9}.

In computers it is the binary system with digits {0, 1}, or the hexadecimal system with
the 16 digits {0, 1, . . . , 9,A,B,C,D,E,F}. (One digit needs four bits to represent.)

In general, one considers systems to a base b with b ≥ 2. The digits are {0, 1, . . . , b−1}.

Examples for relevant bases are b = 2, 10, 16, 256 = 28, 65536 = 216, 232, 264, . . . . In
the last four examples we use 8 bits (one byte), 16 bits, 32 bits, or 64 bits to represent
one digit.

For representing a natural number N > 0 in a system with base b one needs exactly1

⌈logb(N + 1)⌉ ≈ logN

log b

digits from {0, 1, . . . , b− 1}.

In general one needs ⌈log2 b⌉ bits to represent a digit from {0, 1, . . . , b− 1} in binary.

1Why? If N requires exactly k digits, we know that bk−1 ≤ N ≤
∑

0≤i<k(b−1)bi = (b−1)· b
k−1
b−1

=

bk − 1. Hence k − 1 < logb(N + 1) ≤ k.
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Since log2 b is a constant, the representation has Θ(logN) digits no matter what b is.

Note: If you are not sure about logarithms, read the box on page 12 in the book.
Tiny correction:

4. A binary tree with N leaf nodes has depth at least ⌈logN⌉; if it is complete, N
is a power of 2 and the depth is exactly logN .
A binary tree with n (inner) nodes has depth ⌊log(n)⌋; if it is complete, n+ 1
is a power of 2 and the depth is log(n+ 1)− 1.

Representation of k-digit numbers in a computer: Assume a computer word can hold
a digit from {0, . . . , b − 1}. (For this, its length must be at least log b bits.) Then
a number x with representation (xk−1, . . . , x1, x0) to the basis b (leading zeros are
allowed) is stored in an array A[0..k−1], as follows: xi is stored in A[i], for 0 ≤ i < k.

1.1.1 Addition

Given a basis b, we need an elementary operation sum3 for summing three digits,
resulting in two digits (carry, sum), i.e., sum3(u, v, w) = (c, s) with cb+s = u+v+w.

Examples: b = 2: sum3(u, v, w) = (c, s) with s = u ⊕ v ⊕ w and c = uv ∨ vw ∨ uw.
(Multiplication of bits is the same as logical AND, and ⊕ is XOR: u⊕v = u+v−2uv.
A circuit with the functionality of sum3 is called a fulladder.)
b = 10: sum3(9, 8, 7) = (2, 4) (because 9 + 8 + 7 = 24).
b = 16: sum3(A,B,E) = (2, 3), since 10 + 11 + 14 = 35 = 2 · 16 + 3.
b = 232: For adding three 32-bit numbers, we can use the machine instructions. The
sum s will have 32 bits, the carry will be 0, 1, or 2.

Given the sum3 operation, we can formulate addition of two k-digit numbers in
pseudocode. It is done in a single pass from the lower-order digits to the higher-order
digits, and for each position we carry out one sum3-operation. In the book an example
with bits is depicted, additions for numbers with larger bases b are done just as in
school. The sum will have at most k + 1 digits.

Algorithm 1: Addition of two numbers

1 function add(A[0..k − 1], B[0..k − 1]):
2 (c, s)← sum3(A[0], B[0], 0);
3 C[0]← s;
4 for i from 1 to k − 1 do
5 (c, s)← sum3(A[i], B[i], c); C[i]← s;
6 C[k]← c;
7 return C[0..k].
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The running time for adding two k-digit numbers is determined by k cycles through
the loop, hence it is O(k). Assume the represented numbers have n bits each. If b and
the word length w are constant we will have k = Θ(n), and the running time is O(n).

Can we do better? No, since we must read every one of the 2k = Θ(n) input digits,
which takes time Ω(k) = Ω(n).

What about negative integers and subtraction? In one sentence: For binary repre-
sentation, these operations can be reduced to addition, by an extremely clever trick
called “two’s complement representation”. We’ll discuss this issue briefly later in the
context of modular arithmetic. For the moment we note that addition and subtrac-
tion of arbitrary positive and negative integers with up to n bits take time O(n),
“linear time”.

1.1.2 Multiplication and division

Multiplication

The “school method” for multiplication of two k-digit numbers, base b (e.g. b = 10),
runs as follows. One first creates a rectangular scheme by writing the product of
A[0..k − 1] with B[j] · bj in row j (multiply A[0..k − 1] by B[j] and shift the result j
positions to the left; the shift is practically for free). Now we have k numbers of up
to 2k − 1 digits in our scheme; these numbers have to be added.

Example: x · y = 450295 · 39046

x︷ ︸︸ ︷ y=(y4...y0)10︷ ︸︸ ︷
4 5 0 2 9 5 · 4 9 0 4 6

2 7 0 1 7 7 0 x · y0
1 8 0 1 1 8 0 x · y1

0 0 0 0 0 0 0 x · y2
4 0 5 2 6 5 5 x · y3

1 8 0 1 1 8 0 x · y4
2 2 0 8 5 1 6 8 5 7 0

This addition can be done by different methods. In school (at least in Germany) we
do it column by column; the disadvantage is that carries can build up to have several
digits. When programming multiplication, it is better to carry out k− 1 additions of
numbers of length up to 2k. One could add the row x · y1 to the one for x · y0, the
row for x · y2 to the result, and so on; in general the row for x · yi is added to the sum
of the rows for x · y0, . . . , x · yi−1, for i = 1, . . . , k− 1. Then we never have big carries,
and it is obvious that the total running time is O(k2), “quadratic time”. If the bit
length of the input numbers is n, the time for multiplication by the school method is
O(n2).
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For b = 2 the scheme is pictured in the book, page 13. (Beware: This case is a little
simpler than for larger b like our b = 10.)

For programming multiplication, we use an elementary operation maa(u, v, w) for
three digits, which multiplies u and v and adds w. The result can be represented
in two digits, as a pair (c, s). (This is because for u, v, w < b we have uv + w <
(b− 1)2 + (b− 1) = (b− 1)b < b2.)
In formulas: u · v + w = c · b+ s.

Example, for b = 10: maa(6, 9, 3) = (5, 7) since 6 · 9 + 3 = 57.

In the pseudocode program (Algorithm 2), the product is built up in an array
C[0..2k − 1], initially zero. In rounds for j = 0, . . . , k − 1 one multiplies A[0..k − 1]
with B[j], giving D[0..k], and adds this to the array C[0..2k−1] in the right position,
namely in C[j..j + k].

Algorithm 2: Multiplication of two k-digit numbers

1 function multiply(A[0..k − 1], B[0..k − 1]) : C[0..2k − 1]
2 // Arrays A and B contain two k-digit integers x, y ≥ 0 as input
3 // Output in C[0..2k − 1]: the product x · y
4 Initialize C[0..2k − 1] with zeros;
5 for j from 0 to k− 1 do // lines 6–9: D[0..k]← A[0..k− 1] ·B[j]
6 (c, s)← maa(A[0], B[j], 0); D[0]← s;
7 for i from 1 to k − 1 do
8 (c, s)← maa(A[i], B[j], c); D[i]← s;
9 D[k]← c;
10 C[j..j + k]← add(C[j..j + k], D[0..k]);

// add D[0..k] to the intermediate result in C[0..j + k], at the right place
11 return C[0..2k − 1].

Note: (i) The auxiliary arrayD[0..k] is added into C[..] at the correct position. In this addition
there cannot be a carry into position C[j+ k+1] since the product of A[0..k− 1] and B[0..j]
has at most k + j + 1 digits. (ii) The procedure can be streamlined by combining the loops
in lines 7 and 8 and the loop in the add-function into one loop: Add s to the correct position
in C[...] as it is generated. This even gets rid of the array D.

Time analysis: The main work is in the loops in lines 7 and 8 and in the addition in line
10. One execution of the body of the j-loop needs time O(k) (i-loop: O(k), addition:
O(k)). Since there are k such executions, the overall time is k ·O(k) = O(k2). If the
factors are n-bit numbers and the base b is constant, we get running time O(n2) for
multiplication.

Can we do better? It is not obvious how one can improve on Algorithm 2. However,
in Chapter 2 we will see that the answer is yes. This involves a clever use of recursion
and of subtraction, which is a little bit surprising, as we only wish to multiply. The
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running time we obtain2 is O(n1.585).

Alternative: Multiplication à la Français3:

Example: x · y with x = 13 and y = 21. We write two columns in parallel. In
the first one we start with x and double as we go down: x, 2x, 4x, 8x, . . . . In the
second one we start with y and keep halving (without remainder) until we hit 1:
y, ⌊y/2⌋, ⌊y/4⌋, ⌊y/8⌋ . . . . Finally, we strike out rows where in the second column we
see an even number, and add the remaining numbers in the first column.

13 21 13
26 10 strike out (10 is even) –
52 5 52

104 2 strike out (2 is even) –
208 1 208

sum: 273

What is happening? We note that in the first column the entry in row i is x · 2i, if
we number the rows i = 0, 1, 2, . . . . In the second column we have ⌊y/2i⌋ in this row.
The procedure is best understood by looking at the binary representation of y. By
repeated halving we keep chopping of the last bit, until only the leading bit 1 is left.

x · 2i ⌊y/2i⌋ in binary

13 · 20 10101 13 · 20
13 · 21 1010 strike out (1010 ends with 0) –
13 · 22 101 13 · 22
13 · 23 10 strike out (10 ends with 0) –
13 · 24 1 13 · 24
sum: 13 · (20 + 22 + 24) = 13 · 21

We observe that if y has binary representation bk−1 . . . b1b0, i.e., x =
∑

0≤i<k bi2
i for

b0, . . . , bk−1 ∈ {0, 1}, then exactly those rows x · 2i with bi = 1 are kept for addition.
So the result is

∑
0≤i<k bi · (x · 2i) = x ·

∑
0≤i<k bi2

i = x · y.

2This can be further improved. In 2019 it was even shown that multiplication of two n-bit integers
can be done in time O(n logn). The paper“Integer multiplication in time O(n logn)”by David Harvey
and Joris van der Hoeven, to appear in Annals of Mathematics, is only for mathematically trained
scholars . . .

3This is the name used by the authors of our book. Wikipedia says that the more common name
for this method is “Russian peasant multiplication” and that the old Egyptians may have done it
slightly differently: https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication
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Hidden in this is also a simple recursive formula worth noticing:

x · y =


0 , if y = 0
x , if y = 1
(2 · x) · (y/2) , if y ≥ 2 even
(2 · x) · ((y − 1)/2) + x , if y ≥ 2 odd

With ⌈α⌉ = smallest integer ≥ α and ⌊α⌋ = largest integer ≤ α, for arbitrary α ∈ R,
we can write (note there is a little difference to the version in the book, in the
positioning of the parentheses):

x · y =


0 , if y = 0
x , if y = 1
(2 · x) · ⌊y/2⌋ , if y ≥ 2 even
(2 · x) · ⌊y/2⌋+ x , if y ≥ 2 odd

We get Algorithm 3, which works recursively, but when one looks closely, it just
carries out multiplication à la Français.

Note that in the book the parentheses are put at different positions. This also gives a correct
algorithm, but it is not really that closely related to multiplication à la Français. In our
procedure the connection is clear: When it is called for x = 13 and y = 21, the recursive
calls are for (13∗, 21), (26, 10), (51∗, 5), (104, 2), (208∗, 1), which are just the rows in our
two-column scheme from above. The numbers marked with asterisks are added, because they
appear at a place where the second component is odd.

Algorithm 3: Multiplication à la Français

1 function mult-francais(x, y):
2 // Input: Two nonnegative n-bit integers x and y;
3 // Output: product x · y
4 if y = 0 then return 0;
5 if y = 1 then return x;
6 z ← mult-francais(2 · x, ⌊y/2⌋);
7 if y is odd then z ← z + x;
8 return z

Time analysis: The intermediate results are all smaller than x · y, and hence have
length not more than 2n bits. In binary, multiplication by 2 is a shift to the left,
division by 2 is a shift to the right: both need only linear time. If the basis is not
2, the multiplication 2 · x can be effected by the addition x + x, and halving y can
be done by iteratively treating the digits of y from the most significant digits to the
least significant digits, again in linear time. The addition in line 7 takes time O(n).
How many recursive calls do we have (“depth of recursion”)? With each recursive call
y is halved, meaning that the number of bits of y reduces by 1. So the number of
recursive calls is not larger than n. Total time: O(n2).
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Division

Task: Given x ∈ Z and y ∈ N \ {0}, calculate the quotient q = ⌊x/y⌋ and the
remainder r = x− q · y.

We can also describe q and r as the unique integers that satisfy x = qy + r with
0 ≤ r < q.

Examples: x = 13 divided by y = 3 gives quotient q = 4 and remainder r = 1.
x = −13 divided by y = 3 gives quotient q = ⌊(−13)/3⌋ = −5 and remainder r = 2.

We could take the “school method” for dividing integers (but note: “school method”
may mean different things in different countries!) and show it takes time O(n2) for
n-bit integers.

However, we choose as alternative the following recursive procedure.

Algorithm 4: Division

1 function divide(x, y):
2 // Input: Two n-bit integers x, y, with y ≥ 1
3 // Output: (q, r): quotient and remainder when dividing x by y
4 if x = 0 then return (0, 0);
5 if x = −1 then return (−1, y − 1);
6 (q, r)← divide(⌊x/2⌋, y); // Recursion! Division by 2 takes time O(n)
7 q ← 2 · q; r ← 2 · r; // Multiplication by 2 takes time O(n)
8 if x is odd then r ← r + 1;
9 if r ≥ y then (q, r)← (q + 1, r − y);

// Comparison, subtraction take time O(n)
10 return (q, r).

Correctness can “easily” be checked, by induction on recursive calls. The program
terminates since in each recursive call |x| strictly decreases. (Watch out! In the book
line 5 is missing, and the program runs into an infinite loop for all inputs (x, y) with
negative x, since the case x = −1 leads to a recursive call with x = ⌊(−1)/2⌋ = −1
again.) It is essential that in line 8 the number r is smaller than 2y.

Running time: The depth of the recursion is n, since in each recursive call x is halved.
On each level of the recursion we do multiplications and divisions by 2, additions and
subtractions, which all take O(n) time. Total time: O(n2).

1.2 Modular arithmetic

Please read pages 16–17 in the book.
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We use the following notation, for integers x,N , where N ≥ 2:

x mod N := r, where (q, r) is the result of dividing x by N.

(Read: “x modulo N”.) This means: 0 ≤ r < N , and we can write x = qN + r for
some q. Alternatively: 0 ≤ r < N , and x− r is divisible by N .

Examples: 10 mod 7 = 3, 3 mod 7 = 3, −4 mod 7 = 3.

Closely related, but a little different, is the following helpful notation:

x ≡ y (mod N), if x mod N = y mod N. (Read: “x is congruent to y modulo N”.)

Examples: 10 ≡ 3, and 3 ≡ 3, and −4 ≡ 3 (mod 7).

Claim: x ≡ y (mod N) holds if and only if N is a divisor of x− y.

Proof : Assume x ≡ y (mod N). Let r = x mod N = y mod N . Then N divides x − r and
y−r, so N divides (x−r)−(y−r) = x−y. Now assume that N divides x−y. Let r = x mod N
and r′ = y mod N . Then N divides (x− r)− (y − r′) = (x− y) + (r′ − r). Hence N divides
r − r′, a number with absolute value smaller than N . This implies r − r′ = 0. □

From the definition it is immediate that the binary relation · ≡ · (mod N) is an
equivalence relation4 on Z. So it splits Z into equivalence classes. Two numbers x and
y are in the same equivalence class if x ≡ y (mod N). In our example, one equivalence
class is

{. . . ,−11,−4, 3, 10, 17, . . . }.

We write [x] or [x]N for the equivalence class that contains x.

We get exactly N equivalence classes, one for each number r with 0 ≤ r < N :
[0], [1], . . . , [N − 1].

There are two possibilities for calculating “modulo N”: One could write a sequence

expr1 mod N = expr2 mod N = · · · = exprs mod N,

by somehow making sure that the remainder does not change from expression to
expression. Or one writes

expr1 ≡ expr2 ≡ · · · ≡ exprr (mod N),

again making sure that the remainders always stay the same. The second way is a
little more compact and neater, since there are fewer “modN”. So we will prefer it.

We list some rules for transforming expressions so that the remainders do not change.
When calculating “modulo N” with additions, subtractions, and multiplications, we
can arbitrarily substitute elements of one equivalence class for each other. This helps
in keeping arguments small. In formulas:

4It is reflexive (x ≡ x), symmetric (if x ≡ y then y ≡ x), and transitive (if x ≡ y and y ≡ z then
x ≡ z).
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Substitution rules

If x ≡ x′, y ≡ y′ (mod N) then x+ y ≡ x′ + y′ (mod N),

x− y ≡ x′ − y′ (mod N),

x · y ≡ x′ · y′ (mod N),

xc ≡ x′c (mod N).

From this it follows that if we have an arbitrary arithmetic expression involving +,−, ·
and even powers (with equal exponents c), we can substitute congruent numbers
or expressions for numbers or subexpressions, without changing the remainder. In
particular we can always and everywhere replace a number z by its remainder z mod
N (since the two are congruent). This helps a lot in evaluating seemingly complicated
expressions, Sometimes it is also advantageous to chose another equivalent number,
as in the following example, modulo 33:

21001 = 21000 · 2 = (25)200 · 2 = 32200 · 2 ≡ (−1)200 · 2 = 1 · 2 = 2 (mod 33).

We’ll see a systematic way of carrying out modular exponentiations with really large
exponents very efficiently!

By the way, the three rules marked“Associativity”,“Commutativity”,“Distributivity”on page
17 of the book are trivial (since, eg., in xy = yx we even have equality, which is stronger than
congruence). So you can ignore these rules.

1.2.1 Modular addition and multiplication

Please read page 18 in the book.

Modular addition. The task is the following. Given are x, y ∈ {0, . . . , N −1}, where
N has at most n bits. Calculate (x+ y) mod N .

At the first glance this takes time O(n) for the addition and O(n2) for the modulo
operation (division), but it is better. We calculate z = x+ y (time O(n)). We know
that z < 2N . So there are only two possibilities: Calculate u = z−N and compare u
with 0 (this also takes time O(n)). If u < 0, the result is z; if u ≥ 0, the result is u.

Modular subtraction (x−y) mod N has the same running time, with a similar method.

Modular multiplication. The task is the following. Given are x, y ∈ {0, . . . , N − 1},
where N has at most n bits. Calculate (x · y) mod N .

We need a multiplication, to obtain z = x·y, and a division, to calculate the remainder
z mod N . Both operations take time O(n2), so the total time is O(n2).

There is also an operation called modular division. We postpone the discussion of
that operation.
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1.2.2 Modular exponentiation

Warning: Our method is a little different from that in the book.

Here we consider the following task: Given natural numbers N ≥ 2, x < N , and y,
with at most n bits each, calculate xy mod N .

Example: Calculate 43217893685021942617015 mod 5123. The result is 840. How does
one reach this result? Actually, it can be calculated by hand, with a good measure of
patience. (Not an exam problem!)

Modular exponentiation is used in the RSA cryptosystem mentioned before, and
there the numbers used, in particular N and y, will have 2000 bits or more, or 600
decimal digits or more. How can a computer evaluate such a formidable expression
in fractions of a second? Of course, there is no chance to apply an algorithm that
calculates xy mod N by y − 1 ≈ 10600 multiplications modulo N . Rather, we need a
trick. We start with an example.

Example: Calculate xy mod N with x = 13, y = 21, and N = 19. We write two
columns. In the first column we start with x and keep squaring, to obtain x, x2 mod
N, x4 mod N, x8 mod N, . . . , in the second we start with y and keep halving to obtain
y, ⌊y/2⌋, ⌊y/4⌋, ⌊y/8⌋ . . . . Finally, we multiply those powers of x from the first column
where the second column has an odd entry. (You should be reminded of multiplication
à la Français.)

x 13 21 13
x2 132 mod 19 = 17 10 strike out (10 is even) –
x4 172 mod 19 = 4 5 4
x8 42 mod 19 = 16 2 strike out (2 is even) –
x16 162 mod 19 = 9 1 9

Product: x · x4 · x16 mod 19
= 13 · 4 · 9 mod 19 = 12.

General idea: Write y = (bk−1 . . . b0)2 =
∑

0≤i<k bi2
i in binary. Calculate powers

x2
i
mod N for i = 0, 1, . . . , k − 1 by repeated squaring. Then calculate the product∏

i : bi=1

x2
i
mod N (= x

∑
0≤i<k bi·2i mod N = xy mod N),

by at most k − 1 multiplications modulo N . – There is a simple recursive way of
looking at this, similar to the situation with multiplication à la Français.

xy mod N =


1 , if y = 0
x , if y = 1

(x2 mod N)⌊y/2⌋ mod N , if y ≥ 2 even

((x2 mod N)⌊y/2⌋ mod N · x) mod N , if y ≥ 2 odd
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The formula is obviously correct. (We use the substitution rule and that 2⌊y/2⌋ = y
if y is even and 2⌊y/2⌋ = y − 1 if y is odd.) We get the program in Algorithm 5.

Algorithm 5: Fast modular exponentiation

1 function modexp(x, y,N):
2 Input: nonnegative n-bit integers x, y,N , N ≥ 2, x < N ;
3 Output: xy mod N
4 if y = 0 then return 1;
5 if y = 1 then return x;
6 z ← modexp((x · x) mod N, ⌊y/2⌋, N);
7 if y is odd then z ← (z · x) mod N ;
8 return z

An example calculation was presented above (1321 mod 19).

Time analysis: The intermediate results calculated in the algorithm are all modulo
N , hence they have length not more than n bits. The modular multiplications in lines
6 and 7 take time O(n2). The number of recursive calls is not larger than n. Thus the
total time is n · (O(n2) +O(n2)) = O(n3).

The procedure becomes faster if faster subroutines for multiplication and division are
employed.
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Intermezzo: Two’s complement. (This refers to the box on page 17 in the book. It is
only for interested students and will not be in the exam!) I assume you know that
negative integers are stored and processed in a computer by a technique called “two’s
complement”. This makes it possible to use the same electronic circuits for adding
and for subtracting integers. I do not explain here how it is done from the point of
view of circuits, only how to look at it from the perspective of modular arithmetic.

Have you seen the following trick for “subtracting by adding”? It is called “9’s complement”.
Assume we want to carry out the subtraction a−b = 415−378. We replace every digit t in the
subtrahend b = 378 by its complement 9− t to 9. This yields b̄ = (9− 3)(9− 7)(9− 8) = 621.
Now sum a+ b̄+ 1 = 415 + 621 + 1 = 1037. Omit the leading 1. The result 37 is the desired
difference a− b. Why does this work? We calculate modulo N = 1000. We have b+ b̄ = 999
by construction, so b+ b̄+1 = 1000, hence a+ b̄+1 = a+(1000− b− 1)+1 = 1000+(a− b).

Some things have to be considered when one wants to use this systematically, be able
to detect arithmetic overflow like a subtraction a − b with a < b, and if one wants
to enable representing negative numbers. The whole thing turns out to be about
calculating modulo some even number N .

Assume n is the bitlength of the nonnegative integers we want to represent. Let
N = 2n. (However, everything works also for arbitrary even numbers N , in particular
for the powers of 10. For these we get a systematic version of 9’s complement, including
representation of negative numbers.) We assume we have a circuit (or algorithm) C
that can add two numbers a′ and b′ from [0, N), with a little twist: The circuit takes
as additional input one bit c0, and it calculates the sum s′ = (a′ + b′ + c0) mod N
and an “overflow bit” c which is 0 if a′ + b′ + c0 < N and 1 otherwise. So we have:

a′ + b′ + c0 = s′ + cN.

Given a circuit or a method for addition, it is normally no problem to accommodate
the additional input bit c0 and also output an overflow bit. We do not worry about
the details.5

In our examples we use n = 5, and hence N = 32.

Examples:
C(9, 20, 0) gives s′ = 29 and c = 0 (because 9 + 20 + 0 = 29 = 29 + 0 · 32).
C(27, 22, 0) gives s′ = 17 and c = 1 (because 27 + 22 + 0 = 49 = 17 + 1 · 32).
C(27, 4, 1) gives s′ = 0 and c = 1 (because 27 + 4 + 1 = 32 = 0 + 1 · 32).

In order to represent also negative numbers, the trick in two’s complement represen-
tation is to keep calculating modulo N but to “interpret” some numbers differently. A
number a′ ∈ [0, N/2) represents itself, but a′ ∈ [N/2, N/2) represents a′ −N , which
is negative.

In the following table we list the 5-bit strings as well as their numerical values a′ ∈
[0, 31] and the integer a ∈ [−16, 15] represented by a′, in decimal notation.

5In pseudocode, one can look at Algorithm 1. One gets the desired behaviour by replacing
sum3(A[0], B[0], 0) by sum3(A[0], B[0], c0) in line 2. The overflow bit is the last carry c in line 6,
which can only be 0 or 1.
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binary a′ a binary a′ a
00000 0 0 10000 16 −16
00001 1 1 10001 17 −15
00010 2 2 10010 18 −14
00011 3 3 10011 19 −13
00100 4 4 10100 20 −12
00101 5 5 10101 21 −11
00110 6 6 10110 22 −10
00111 7 7 10111 23 −9
01000 8 8 11000 24 −8
01001 9 9 11001 25 −7
01010 10 10 11010 26 −6
01011 11 11 11011 27 −5
01100 12 12 11100 28 −4
01101 13 13 11101 29 −3
01110 14 14 11110 30 −2
01111 15 15 11111 31 −1

If a′ represents a, we always have a ≡ a′ (mod N). For example: −14 ≡ 18 (mod 32).
We call a representation a′ ∈ [0, N) for a positive if a is positive and negative if a is
negative. We abbreviate this as sign(a) = sign(a′) = 0 for “positive” and sign(a) =
sign(a′) = 1 for “negative”. Note that in case N = 2n the sign of a resp. a′ is the
leading bit of the binary representation.

We next discuss how to add two numbers represented in our system, and a bit. Let
a and b be given by their representations a′ and b′, and let c0 ∈ {0, 1}. We feed a′,
b′, and c0 into the addition circuit C and get a sum s′ ∈ [0, N) and an overflow bit c.
Question: Is s′ the representative of a+ b+ c0? We must consider four cases.

Case “00”: a = a′ and b = b′ are positive. — Then a, b < N/2, and hence 0 ≤
a+ b+ c0 < N , so c = 0 and s′ = a+ b+ c0. If s

′ is positive (i.e., sign(s′) = c), then
s′ is the representation of a+ b+ c0. If s

′ is negative (i.e., sign(s′) ̸= c), then the sum
a+ b+ c0 ≥ N/2 cannot be represented in our system.

Examples: We add 5 and 8 and 0. C(5, 8, 0) gives s′ = 13 (positive) and c = 0. If we add 11
and 8 and 1, the sum 20 does not have a representation. C(11, 8, 1) gives s′ = 20 (negative)
and c = 0.

Case “11”: a = a′ −N and b = b′ −N are negative. — Then N ≤ a′ + b′ + c0 < 2N ,
so circuit C will return s′ = a′ + b′ + c0−N = a+ b+ c0 +N and c = 1. If s′ ≥ N/2,
i.e., s′ is negative, then s′ is the correct representation of a+ b+ c0. If s

′ < N/2, i.e.,
positive, then a+ b+ c0 = s′ −N < −N/2 cannot be represented in our system.

Examples: We add −3 and −10 and 0. C(29, 22, 0) gives s′ = (29 + 22)− 32 = 19 (negative)
and c = 1. The result s′ is the correct representation of −13. Now we add −11 and −10 and
1. There is no representation of the sum −20. C(21, 22, 1) gives s′ = 44− 32 = 12 (positive)
and carry bit c = 1.

Case “01” or “10” (these cases are symmetric): One of a and b is positive, one is
negative. For example: a = a′ is positive and b = b′−N is negative. — Then −N/2 ≤
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a+ b+ c0 < N/2, hence the sum a+ b+ c0 has a representation. If a+ b+ c0 ≥ 0, we
have a′+ b′+ c0 ≥ N , hence circuit C gives result s′ = a′+ b′+ c0−N = a+ b+ c0. If
a+ b+ c0 < 0, we have a′+ b′+ c0 < N , hence circuit C gives result s′ = a′+ b′+ c0 =
a+ b+ c0 +N , which is the representation of a+ b+ c0. Thus, the result s′ is always
correct in this case.

Examples: We add −3 and 10 and 0. C(29, 10, 0) gives s′ = (29 + 10 + 0) − 32 = 7, which
is the correct representation of 7. Now we add 10 and −16 and 1. C(10, 16, 1) gives s′ = 27,
which is the correct representation of −5.

Summary of addition in two’s complement:
Given are a and b, represented as a′ and b′, and bit c0.
1) Apply C to a′, b′, c0 to obtain s′ and c.
2) If sign(a′) ̸= sign(b′), then s′ represents a+ b+ c0.
3) Otherwise s′ represents a+ b+ c0 if and only if sign(s′) = c.
(If this is not satisfied, a + b + c0 cannot be represented in our system. An overflow
occurs. But the result s′ is correct modulo N .)

In one logical expression, with 1 = true and 0 = false, and ⊕ denoting XOR:

The result s′ is correct if and only if (sign(a′)⊕ sign(b′)) ∨ (sign(s′) = c).

Subtraction: Now we want to carry out subtractions a − b, for arbitrary numbers a
and b that can be represented in our system, positive or negative.

The first step is to find the representation of −b − 1, given the representation b′ of
b. This is very easy:6 Let b′ := N − 1 − b′. If b ≥ 0, then b = b′ < N/2, and hence
b′ ≥ N/2, so that b′ represents b′−N = −b− 1. If b < 0, then b′ = b+N ≥ N/2, and
hence b′ < N/2, so that b′ represents itself, and b′ = N − b′ − 1 = −b− 1.

It is worth noting that b′ is extremely easy to calculate in binary representation: Just
flip (i.e., negate) all the bits of b′. This is because N − 1 has as binary representation
a word consisting of n 1’s.

Example: The number 12 has binary representation 01100. Flipping all the bits gives 10011,
which is 19 = 31 − 12, the representation of −13 = −12 − 1. Conversely, flipping all the
bits in 10011, which is 19 and represents −13, gives 01100, which represents 31− 19 = 12 =
−(−13)− 1.

All that remains is to calculate a′+ b′+1. For this, we can use the modified addition
circuit C described above. Namely, we let c0 = 1. The correctness criteria can be
taken from addition. We get that the result s′ is correct if either sign(a′) = sign(b′)
or sign(s′) = c.

Finally we can explain how to use the modified addition circuit C to carry out either
addition or subtraction. Let the inputs a and b be given by their representations a′

and b′, and the instruction whether we want to add or subtract. (This is usually a
bit in the instruction word in the computer.)

6Compare the “9’s complement” above, where N = 1000 and N − 1 = 999.
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Addition: To calculate a representation for a+b, feed (a′, b′, 0) into C, yielding (s′, c).
Then s′ is the correct result if and only if sign(a′) ̸= sign(b′) or sign(s′) = c.

Subtraction: To calculate a representation for a − b, get b′ by flipping all bits in b′

and then feed (a′, b′, 1) into C, yielding (s′, c). The result s′ is correct if and only if
sign(a′) = sign(b′) or sign(s′) = c.

End of intermezzo on two’s complement representation
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1.2.3 The Euclidean Algorithm

Definition 1.2.1
Let x and y be integers. We say that x divides y, in symbols x | y, if there is some
q ∈ Z such that x · q = y.
d ≥ 0 is a common divisor of x and y if d | x and d | y.

gcd(x, y) =

{
largest d that is a common divisor of x and y if x2 + y2 > 0
0 if x = y = 0.

Note that all x ∈ Z are divisors of 0, and that 0 only divides 0, no other number.
The condition “x2 + y2 > 0” is a way of expressing that not x = y = 0.

How do we find the greatest common divisor of two numbers a, b ≥ 0? In school one
learned that one can find the prime representation of both numbers, and then read
off the “common prime factors”.

Example: a = 120 and b = 140. We write 120 = 23 · 3 · 5 and b = 22 · 5 · 7, hence
gcd(a, b) = 22 · 5 = 20.

Unfortunately, this “method” is not suitable for use with numbers of the size we
want to treat. No algorithm is known that will find the prime factors of numbers of
several hundred decimal digits really fast. (As said before, the notorious difficulty of
the factoring problem is at the heart of the security of central cryptographic systems
that are in everyday use today.) Still, it is possible to calculate greatest common
divisors extremely fast, by an algorithm that is more than 2000 years old.

This algorithm is based on the following rules:

(i) gcd(x, y) = gcd(y, x).

(ii) gcd(x, y) = gcd(|x|, |y|).

(iii) gcd(a, 0) = a, for a ≥ 0.

(iv) gcd(a, b) = gcd(b, a mod b), for b > 0.

These rules are easily justified. (i) holds because the concept of “common divisors”
does not look at the order of x and y. (ii) follows from the fact that x | y ⇔ (−x) | y
⇔ x | (−y) for arbitrary integers x and y, since divisibility does not change if one
replaces x by −x or y by −y. For (iii) we first consider the case a > 0. Then a
is a common divisor of 0 and a, and of course the largest one. If a = 0, we have
gcd(a, 0) = 0 = a by definition. Finally, for (iv) we observe that the set of common
divisors of a and b is the set of common divisors of b and a mod b. Indeed, write
a = qb+ r for r = a mod b. Now if d divides a and b, then d also divides a− qb = r.
Reversely, if d divides b and r, then d also divides qb+ r = a.



18 CHAPTER 1. ALGORITHMS WITH NUMBERS

Rule (ii) allows us to reduce the problem to calculating gcd(a, b) for a, b ≥ 0. Rules (iii)
and (iv) are utilized in the recursive algorithm 6, the ancient “Euclidean Algorithm”.
Rule (iv) is used for the recursive step and rule (iii) for the basis of the recursion.

Algorithm 6: The Euclidean Algorithm

1 function Euclid(a, b):
2 Input: Two n-bit integers a, b ≥ 0;
3 Output: gcd(a, b)
4 if b = 0 then return a else return Euclid(b, a mod b);

Correctness follows from rules (iii) and (iv). If in the first call a = b = 0, the result
is correct by definition. So assume otherwise. If in the first call we have b > a ≥ 0,
then the first recursive call will have the arguments (b, a mod b) = (b, a). From then
on in all recursive calls the first argument will be larger than the second one, since
for b > 0 we have a mod b < b.

Examples: If the original argument is (56, 231), the next calls will be for (56, 231),
(231, 56), (56, 7), (7, 0), and the result is 7. For the original argument (120, 140) we
will have calls for (140, 120), for (120, 20), and for (20, 0), with result 20. If the original
argument is (0, 15), the next call will be for (15, 0), with result 15.

If we want to calculate gcd(x, y) for arbitrary integers x, y, we simply call Euclid(|x|, |y|).

How long does the Euclidean algorithm take on input (a, b) if both a and b have at
most n bits? In one recursive call, we must divide a by b to obtain the remainder
a mod b. This takes time O(n2). So it remains to determine the number of recursive
calls. Consider one call, for (a, b). We can assume that a > b > 0, since the other cases
are resolved by at most one extra recursive call. If b divides a, the algorithm stops in
the next round. Otherwise the next two calls are for (b, a mod b), then (a mod b, r),
for some r ≥ 0. So two recursive calls reduce the first component from a to a mod b.
We claim that a mod b < a/2. (The reason for this is the following: If b ≤ a/2, we
have a mod b < b ≤ a/2. If b > a/2, or 2b > a, then ⌊a/b⌋ = 1 and a mod b =
a− b < a− a/2 = a/2.) So in two rounds the number of bits of the first argument is
at least reduced by 1. This entails that there are at most 2n recursive calls. Overall,
the running time of the algorithm is 2n ·O(n2) = O(n3).

Fact. As a closer analysis shows, which takes the binary length of the intermediate
arguments into account, the Euclidean algorithm will even have running time O(n2)
on n-bit arguments. Experience shows that it is also very fast in practice.
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1.2.4 The Extended Euclidean Algorithm

The following lemma is in the book only in implicit form.

Lemma 1.2.2 Bezout’s Lemma
For all integers a and b there are integers x and y such that

gcd(a, b) = xa+ yb.

Examples: a = 5, b = 8, gcd(5, 8) = 1, and 1 = 5 · 5 + (−3) · 8 = (−3) · 5 + 2 · 8.
a = 21, b = −35, gcd(21,−35) = 7, and 7 = 2 ·21+1 ·(−35) = (−3) ·21+(−2) ·(−35).

From the examples one sees that the coefficients x and y are not unique.

For our purposes it is of central importance that such coefficients x and y do not
only exist, but can even be calculated efficiently. This is done by an extension of the
Euclidean Algorithm. Of course, existence is proved if we can show these coefficients
can be calculated!

The idea of the algorithm is the following. We recursively calculate d = gcd(a, b) and
coefficients x and y as in Bezout’s lemma. For this, we run the Euclidean Algorithm,
but with a little more bookkeeping. If the argument is (a, b), we calculate the quotient
q = ⌊a/b⌋ and the remainder r = a mod b = a−qb. The algorithm is called recursively
for (b, r), just as the usual Euclidean algorithm, and yields result (x′, y′, d′). From
these we can easily calculate d, x, y.

Algorithm 7: The Extended Euclidean Algorithm

1 function extendedEuclid(a, b):
2 Input: Two n-bit integers a, b ≥ 0;
3 Output: (x, y, d) such that d = gcd(a, b) = xa+ yb.
4 if b = 0 then return (1, 0, a);
5 (q, r)← divide(a, b); // quotient q = ⌊a/b⌋ and remainder r = a− qr

6 (x′, y′, d)← extendedEuclid(b, r);
7 return (y′, (x′ − q · y′), d).

Example: Consider input (20, 14). We list the ensuing recursive calls with arguments
(a, b) and (q, r) = (⌊a/b⌋, a mod b).

(20, 14): (q, r) = (1, 6).
(14, 6): (q, r) = (2, 2).
(6, 2): (q, r) = (3, 0).
(2, 0): bottom of recursion.

The results of the recursive calls, from bottom to top, are:
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(2, 0): (1, 0, 2)
(6, 2): (0, (1− 1 · 0), 2) = (0, 1, 2)
(14, 6): (1, (0− 2 · 1), 2) = (1,−2, 2)
(20, 14): (−2, (1− 1 · (−2)), 2) = (−2, 3, 2).

In the example we check that indeed we have (−2) · 20 + 3 · 14 = −40 + 42 = 2.

In order to show that the algorithm is correct we use (generalized) induction on b.
If b = 0, then gcd(a, b) = a = 1 · a + 0 · b. (Instead of 0 we could choose any other
coefficient for y.) Now assume b > 0. Then lines 5–7 are carried out. By the induction
hypothesis, line 6 yields (x′, y′, d) with

gcd(b, r) = d = x′b+ y′r = x′b+ y′(a− qb) = y′a+ (x′ − qy′)b.

Since gcd(b, r) = gcd(b, a mod b) = gcd(a, b), this shows that the output (y′, (x′ −
qy′), d) produced in line 7 is as required.

The running time for the extended Euclidean algorithm is the same as for the simple
algorithms, up to constant factors. When called on n-bit integers, each recursive call
takes time O(n2) for multiplications, divisions and one subtraction. The number of
recursive calls is at most 2n. So one immediately sees that the overall time is O(n3).
A more detailed analysis shows that the running time even is O(n2). As the simple
algorithm, the extended Euclidean algorithm is very fast in practice.

1.2.5 Modular division

In our discussion of modular arithmetic we considered addition, subtraction, multi-
plication, and exponentiation. What was missing was division, for the good reason
that it is a subtle issue, and that we need the extended Euclidean algorithm to master
it.

What could “modular division b/a modulo N” mean? We try the following formula-
tion: Given a, b, and N , find some number x such that ax mod N = b.

For the moment, we study the special case b = 1. Then we are given a and N and are
looking for some x such that ax mod N = 1. Such an x is called a modular inverse
of a modulo N . (We will come back to the case of general b at the end and in the
exercises.)

Example: Let N = 14. We list some inverses, which can be found by just trying some
numbers, and some problematic cases.

a inverse comment

5: 3 since 5 · 3 mod 14 = 1
7: ?? can’t find a suitable x
8: ?? can’t find a suitable x
9: 11 since 9 · 11 mod 14 = 99 mod 14 = 1
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About the case a = 7: One notices that 7x is always divisible by 7, and so it can
never be of the form qN + 1 = 14q + 1 for any q. Similarly, for a = 8: Since 8x is
always even, it cannot be of the form qN +1 = 14q+1 for any q. Obviously, we need
to find a rule for deciding when a modular inverse does exist and when it does not
exist.

Theorem 1.2.3 Modular division theorem
Let N ≥ 1 and let a be an integer. Then there is some integer x such that
ax mod N = 1 if and only if gcd(a,N) = 1.

A quick check with our example from above: gcd(5, 14) = gcd(9, 14) = 1, and
gcd(7, 14) = 7 and gcd(8, 14) = 2.

Proof : “⇒”: Assume that we have ax mod N = 1. That means there is some q such
that ax = qN + 1. If d is a common divisor of a and N , then d divides 1 = ax− qN .
So the greatest common divisor of a and N is 1.
“⇐”: Now assume gcd(a,N) = 1. By Bezout’s lemma there are integers x, y with
xa+ yN = 1. Then clearly ax mod N = (1− yN) mod N = 1. □

Note that in case a modular inverse x exists, we can always find one in the range
{1, . . . , N−1}: If ax mod N = 1, then also a(x mod N) mod N = 1, so x′ = x mod N
is as desired.

How can we calculate a modular inverse? That is easy, since the extended Euclidean
algorithm calculates the coefficients x and y whose existence is claimed in Bezout’s
lemma.

Algorithm 8: Modular inverses

1 function modularInverse(a,N):
2 Input: Integers N ≥ 1 and a
3 Output: x ∈ [N ] with ax mod N = 1, if it exists, “unsolvable” otherwise.
4 (x, y, d)← extendedEuclid(a,N);
5 if d = 1 then return x mod N else return “unsolvable”.

What is the time for calculating modular inverses? Well, the running time of the
algorithm is dominated by that of the call to extendedEuclid(a,N), which is O(n2).
We can calculate modular inverses just as fast (up to constant factors) as we can do
usual division with the school method!
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(The following segment was not treated in class, but it is the basis of Exercise 2(c) on problem
sheet number 3.)

Let us briefly return to the question of dividing two arbitrary numbers a and b “modulo N”.
That means, we are looking for some y such that

ay ≡ b (mod N), i.e. ay + zN = b for some integer z. (∗)

When can such a “division modulo N” be carried out, and how can we calculate a solution y
if it exists?

Consider d = gcd(a,N). If ay + zN = b for some z, then clearly b must also be divisible by
d. This leads to the following:

Fact. If b is not divisible by gcd(a,N), then (∗) is unsolvable.

Example: 15y ≡ 16 mod 21 has no solution, since gcd(15, 21) = 3 does not divide 16.

From here on we assume that d | b. We let a′ = a/d, b′ = b/d, and N ′ = N/d. Then (∗) is
equivalent to a′y + zN ′ = b′.

Example: From 20y ≡ 28 mod 84 (i.e., a = 20, b = 28, N = 84) we get d = 4 and the
equivalent relation 5y ≡ 7 mod 21.

This leaves us with an equation (∗) in which a and N are relatively prime. We use Algorithm 8
to calculate a modular inverse x = a−1 mod N of a and let y = bx mod N . Then ay mod N =
abx mod N = (ax mod N)b mod N = b mod N , as desired.

Example: a = 5, b = 7, N = 21. Then one sees (or finds with the extended Euclidean
algorithm) that 17a = 85 ≡ 1 (mod 7), so that the modular inverse of a is x = 17. Then we
let

y = bx mod 21 = 7 · 17 mod 21 = 119 mod 21 = 14.

We check: ya = 14 · 5 = 70 ≡ 7 (mod 21).

This y is also a solution to the original relation 20y ≡ 28 mod 84.
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Primality testing: Motivation

I tried to get my computer algebra program to its limits by demanding: Give me the
smallest prime number that is larger than

134091873409818526874639871487392107450981591384038764198327098157103\

487035178560873607813463412908437998709817309481324601329582137409871\

630587610876143987109384791561653298174313048971364287612847321364987\

132694871390423798315759861875638741632087469123871479132804387183468\

756198724632874612341324986081734087343209813265387560238461938705193\

285709187439132874691382764982137157674314035891058931604130487134601\

783403187356038716487031643876148730487167654764654865847587657813764\

39128743698317469874837149600015203804

(Just one big number.) This number has 521 decimal digits, the number of bits in its
binary representation is 1728. In a split second the program delivers the answer

134091873409818526874639871487392107450981591384038764198327098157103\

487035178560873607813463412908437998709817309481324601329582137409871\

630587610876143987109384791561653298174313048971364287612847321364987\

132694871390423798315759861875638741632087469123871479132804387183468\

756198724632874612341324986081734087343209813265387560238461938705193\

285709187439132874691382764982137157674314035891058931604130487134601\

783403187356038716487031643876148730487167654764654865847587657813764\

39128743698317469874837149600015204179

It seems the program checked something like 375 numbers for being prime. Well,
even numbers are never prime, so it will be more like 186. At least the program must
have some idea why the number it gives me is supposed to be prime. How does it do
this? How does software that creates keys for public key cryptography generate huge
primes like this in no time at all?

Of course, methods we all know from school like trying a bunch of possible divisors
will never work for immense numbers of this kind, even on a supercomputer.

The following sections will explain.

1.3 Primality Testing (The Fermat Test)

Recall that an integer N ≥ 1 is a prime number if it is divisible by exactly two
numbers, namely by 1 and by N . A number N is composite if it has a divisor x with
1 < x < N . Note that 1 is neither a prime number nor composite. An integer N ≥ 2 is
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composite if and only if it is not prime. The smallest prime number is 2, the smallest
composite number is 4.

We are looking for algorithms that can distinguish primes and composites. Clearly,
even integers N ≥ 3 cannot be prime, so we only look at odd numbers N ≥ 3.

An ideal primality test is an algorithm that takes as input an odd number N ≥ 3 and
outputs

� 0 (“prime”), if N is a prime number;

� 1 (“composite”), if N is composite.

Is this an easy or a hard problem? Note that the numbers we wish to treat may
have thousands of binary digits (see motivating example), or maybe 500 or 1000
decimal digits. If n is the number of binary digits of N , then 2n−1 ≤ N < 2n, so
n − 1 ≤ logN < n. As before, we measure the running time of any algorithms in
terms of n.

From high school we all know a very simple algorithm, called trial division: For
x = 3, 5, 7, 9, . . . , N − 3 check if x is a divisor of N . The running time is Θ(N · n2) =
Θ(2n · n2), so it is exponential in terms of n. One can save a lot of time by observing
that if there is a factor x < N at all then there must be a factor x ≤

√
N . So we

test all odd numbers x ≤
√
N to see if x divides N . The running time for this is

Θ(
√
N · n2) = Θ(2n/2 · n2). This is still exponential, and it is definitely infeasible for

numbers with more than 50 decimal digits. Naive improvements like dividing only by
prime numbers smaller than

√
N help a little, but not much.

We now look at a very old7 theorem from number theory. This will help us in formu-
lating a faster primality test.

Example 1.3.1
26 mod 7 = 82 mod 7 = 12 mod 7 = 1,
36 mod 7 = 93 mod 7 = 23 mod 7 = 8 mod 7 = 1,
46 mod 7 = 163 mod 7 = 23 mod 7 = 1.
530 mod 31 = 12510 mod 31 = (4 · 31 + 1)10 mod 31 = 110 mod 31 = 1.

It is no coincidence that we always get 1.

Theorem 1.3.2 Fermat’s Little Theorem
If p is a prime number, then for all a ∈ {1, 2, . . . , p− 1} we have

ap−1 mod p = 1.

7Pierre de Fermat (1601–1665) was a French mathematician.
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Proof of Fermat’s Little Theorem. Fix a with 1 ≤ a < p. Multiply each element of
S = {1, 2, . . . , p− 1} by a (modulo p). This gives numbers

(1 · a) mod p, (2 · a) mod p, . . . , ((p− 1) · a) mod p.

Example 1.3.3
For p = 7 and a = 4 we have S = {1, 2, 3, 4, 5, 6} and ((1 · 4) mod 7, (2 · 4) mod
7, . . . , (6 · 4) mod 7) = (4, 1, 5, 2, 6, 3), our six numbers in S in different order.

These p numbers are in S, and they must all be different: Since p is prime and a < p,
we have gcd(a, p) = 1, hence a has a multiplicative inverse a−1 mod p, by the modular
division theorem. So assume 1 ≤ i < j < p. Then f(i) must be different from f(j),
since

(a−1 ·f(i)) mod p = (a−1 ·a·i) mod p = i ̸= j = (a−1 ·a·j) mod p = (a−1 ·f(j)) mod p.

An injective function from the finite set S to S must be bijective. Hence we have
{(1 · a) mod p, (2 · a) mod p, . . . , ((p− 1) · a) mod p} = S. (∗)

We multiply all numbers in S, once in the natural order, once in the order given in
(∗), and get (always calculating modulo p):

1 · 2 · · · · · (p− 1) ≡ (1 · a) · (2 · a) . . . ((p− 1) · a) ≡ (1 · 2 · · · · · (p− 1)) · ap−1.

The number (p− 1)! = 1 · 2 · · · · · (p− 1) is not divisible by p, since none of the factors
is. (Here we use again that p is prime.) So X = (p− 1)! mod p is not divisible by p.
Hence X−1 mod p exists and we can multiply our equation X ≡ X ·ap−1 (mod p) by
X−1 mod p on both sides, to obtain 1 ≡ ap−1 (mod p), or ap−1 mod p = 1. □

Example 1.3.4
p = 7 and a = 4 (Ex. 1.3.3 continued): 6! = 1 · 2 · 3 · 4 · 5 · 6 ≡ (1 · 4) · (2 · 4) · (3 · 4) ·
(4 · 4) · (5 · 4) · (6 · 4) ≡ (6!) · 46 (mod 7). Multiplying by ((6!) mod 7)−1 mod 7 gives
1 ≡ 46 (mod 7), as desired.

Now assume N is given. The idea for the primality test is to pick some a from
{1, 2, . . . , N−1} at random and calculate aN−1 mod N . If N is prime, the result must
be 1. If N is composite, we somehow hope there is a fair chance that aN−1 mod N is
not 1.

Running time: The main effort is in the fast exponentiation, hence the whole algo-
rithm takes O(n3) time.

Behavior: We say that “N passes the Fermat test” if the a chosen by the algorithm
satisfies aN−1 mod N = 1 (the output is 0, read as “I guess N is prime”). We say that
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Algorithm 9: Fermat Test

1 function Fermat(N):
2 Input: Odd integer N ≥ 3.
3 choose a at random from {1, 2, . . . , N − 1};
4 b ← aN−1 mod N ; // fast exponentiation

5 if b ̸= 1 then return 1 else return 0. // shorter: return (b != 1)

good a’s with gcd(a, 91) > 1:

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84; 13, 26, 39, 52, 65, 78

bad a’s: good a’s with gcd(a, 91) = 1:

1, 3, 4, 9, 10, 12, 16, 17, 22, 2, 5, 6, 8, 11, 15, 18, 19, 20,

23, 25, 27, 29, 30, 36, 38, 40, 43, 24, 31, 32, 33, 34, 37, 41, 44, 45,

48, 51, 53, 55, 61, 62, 64, 66, 68, 46, 47, 50, 54, 57, 58, 59, 60, 67,

69, 74, 75, 79, 81, 82, 87, 88, 90 71, 72, 73, 76, 80, 83, 85, 86, 89

Table 1.1: Good and bad a’s for N = 91 = 7 · 13. There are 36 bad a’s and 36 good
a’s that are relatively prime to 91. It is easy to see that all 18 multiples of the factors
7 and 13 are good.

“N fails the Fermat test” if aN−1 mod N ̸= 1 (the output is 1, read as “I know that
N is composite”). It is important to notice that if N is composite then it is a matter
of chance if N passes or fails the test.

If N is a prime number, then N always passes the Fermat test, no matter which a is
chosen, by Fermat’s little theorem. So the output 0 is correct.

From here on, we assume that N ≥ 9 and N is composite. What can be said about
the behavior of the algorithm then? The output may be 0 or 1, depending on the
random choice of a. If the chosen number a is such that N fails the Fermat test
(output 1), then aN−1 mod N ̸= 1. We can conclude that N is not a prime number,
and confidently output 1. Strange but true: In this case we know that N is composite
although we have not found a divisor of N .

We call an integer a < N bad (for our purpose of finding out that N is composite) if
N passes the Fermat test when a is chosen, and we say a is good if N fails the Fermat
test when a is chosen. For the test to work well with a randomly chosen a, many
a’s should be good and few a’s should be bad. For an illustration of the situation see
Table 1.1. There all a < N = 91 are classified into good ones (54) and bad ones (36).
So if we pick a at random the probability that N passes the Fermat test (i.e. that we
choose a bad a) is 36

90 = 0.4.
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Observation: If gcd(a,N) > 1, then a is good.
(Proof by contraposition. Assume a is bad, i.e., aN−1 mod N = 1. Then a·((aN−2) mod
N) mod N = 1, hence a has a multiplicative inverse modulo N . The modular division
theorem [page 23 in the book] says that then gcd(a,N) = 1.)

So from here on we concentrate on the behavior of the algorithm on a with gcd(a,N) =
1. (In the example in Table 1.1 these are the 72 numbers in the two lower parts.)
There are “stubborn” numbers for which the Fermat test usually does not help much.

Definition 1.3.5
A composite odd number N ≥ 9 is called a Carmichael number if aN−1 mod N = 1
for all a with gcd(a,N) = 1.

(This means that for a Carmichael number N all numbers a < N with gcd(a,N) = 1
are bad. If we draw for N the picture given in Figure 1.1 for 91, then the lower
right rectangle is completely empty.) The three smallest Carmichael numbers are
561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, and 1729 = 7 · 13 · 19. There are infinitely many
such numbers.

For the moment we only consider non-Carmichael composite numbers N . For these
the Fermat test has good behaviour.

Proposition 1.3.6
If N is composite non-Carmichael number, then at least half of the numbers a with
gcd(a,N) = 1 are good.

Proof. Let BN := {a ∈ {1, . . . , N − 1} | aN−1 mod N = 1} be the set of bad numbers,
and let GN := {a ∈ {1, . . . , N − 1} | aN−1 mod N ̸= 1} be the set of good numbers.
Our plan for the proof is to show that every bad number a ∈ BN has a “good twin”
f(a) ∈ GN (this statement implies the claim).

Let us define a mapping f , as follows (see Figure 1.1). Since N is not a Carmichael
number, there is some b < N with gcd(b,N) = 1 and b ∈ GN . We define

f : BN → {1, . . . , N − 1} by f(a) := (b · a) mod N.

The function f is one-to-one, since we can recover a from f(a) by multiplying with
b−1 mod N . Since both b and a are relatively prime to N , also their product is, so
gcd(f(a), N) = 1. And f(a) is good, since

f(a)N−1 mod N = ((b · a) mod N)N−1 mod N

= (bN−1 · (aN−1 mod N)︸ ︷︷ ︸
≡1 (mod N)

) mod N = bN−1 mod N ̸= 1. □
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bad number a “good twin”
f(a)

BN

(all x ∈ BN satisfy
gcd(x,N) = 1)

a ∈ GN with
gcd(a,N) = 1

a ∈ GN with gcd(a,N) > 1

all numbers from {1, 2, . . . , N − 1}

Figure 1.1: Choices of a for the Fermat test, where BN is the set of bad numbers and
GN is the set of good numbers. The mapping f maps each bad a to a “good twin”
f(a) with gcd(f(a), N) = 1. (Cf. Table 1.1 for the subdivision for N = 91.)

From the proposition it follows that there are more good a’s than bad a’s. Namely,
for every bad a ∈ BN we have its “good twin” f(a) ∈ GN ; in addition, GN contains
all numbers a < N with gcd(a,N) > 1 (of which there is at least one, since N is
composite). Thus, we have |BN | < |GN |.

We can turn this into a probability statement. Assume N is not a Carmichael number.
We choose a at random. The probability that the answer given by the Fermat test is
“0” (which is wrong), i.e., that N passes the test, is

|BN |
|BN |+ |GN |

<
1

2
.

Thus, we have shown:

Theorem 1.3.7
The Fermat test has the following behaviour on input N (an odd number ≥ 3):

� If N is prime, then N passes the Fermat test.

� If N is composite, non-Carmichael, then Pr(N passes the Fermat test) < 1
2 .

(There is no statement for the case that N is a Carmichael number.)

An error probability of close to 1
2 will be too large in most cases. One obtains a

better algorithm by running the Fermat test several times (with a new randomly
chosen number a each time), see Algorithm 10.

Running time: For n-bit integers N , Algorithm 10 takes O(ℓ · n3) time.
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Algorithm 10: Iterated Fermat Test

1 function IterFermat(N, ℓ):
2 Input: Odd integer N ≥ 3, number ℓ of iterations
3 repeat ℓ times
4 choose a at random from {1, 2, . . . , N − 1};
5 b ← aN−1 mod N ;
6 if b ̸= 1 then return 1
7 return 0

Behavior: If N is a prime number, the output will be 0. Assume N is a composite
non-Carmichael number. Then the probability that there will be ℓ rounds in each of
which we choose some “bad” a is smaller than

1

2
· 1
2
· · · · · 1

2︸ ︷︷ ︸
ℓ factors

=
1

2ℓ
.

Theorem 1.3.8
The iterated Fermat test with ℓ repetitions has the following behaviour on input N
(an odd number ≥ 3):

(i) If N is prime, then N passes the iterated Fermat test.

(ii) If N is composite, non-Carmichael, then
Pr(N passes the iterated Fermat test) < 1

2ℓ
.

(There is no statement for the case that N is a Carmichael number.)

We add remarks on changes we can make to also accommodate Carmichael numbers.
As said before, the smallest Carmichael numbers are 561 = 3 ·11 ·17, 1105 = 5 ·13 ·17,
and 1729 = 7 ·13 ·19. All Carmichael numbers have three or more prime factors, each
one occurring only once. If all these prime factors are large, many a’s will N make
pass the Fermat test, an undesirable behaviour. The good news is that seemingly
Carmichael numbers are rare. So if N is picked at random, the probability that it is
one of these “stubborn” numbers is very small, and we could even rely on this.

The following algorithm can deal also with Carmichael numbers. As the Fermat test,
it picks a number a at random and calculates aN−1 mod N . But in a sense it does
this calculation “in slow motion” and looks at intermediate results. More precisely, it
writes the exponent N − 1 (which is even) as a product u · 2t of an odd number u
and a power of 2. Then it considers b0 = au mod N , then b1 = b20 mod N ,. . . , then
bi = b2i−1 mod N , . . . , then bt = b2t−1 mod N . One easily sees that

b0 = au mod N, . . . , bi = au·2
i
mod N, . . . , bt = au·2

t
mod N = aN−1 mod N.
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If b0 = 1 or the sequence b0, . . . , bt−1 contains N − 1, the algorithm outputs 0, other-
wise it outputs 1.

Algorithm 11: Miller-Rabin Primality Test

1 function MillerRabin(N):
2 Input: Odd integer N ≥ 3.
3 Find odd u and t ≥ 1 such that N − 1 = u · 2t;
4 choose a at random from {1, 2, . . . , N − 1};
5 b ← au mod N ; // fast exponentiation
6 if b ∈ {1, N − 1} then return 0; // Case 1
7 for j from 1 to t− 1 do// “repeat t− 1 times”
8 b← b2 mod N ;
9 if b = N − 1 then return 0; // Case 2
10 if b = 1 then return 1; // Case 3
11 return 1. // Case 4

It is easily seen that the numbers b0, b1, . . . , bt−1 appear in this order in variable b,
unless the algorithm stops somewhere on the way and gives an output. This is because
(au·2

i−1
)2 mod N = au·2

i
mod N . The number bt is not calculated.

Running time: The fast exponentiation with exponent u needs about log u rounds with
at most two modular multiplications each. The t−1 squaring rounds need one modular
multiplication each. So the total number of rounds is ≈ ⌈log u⌉ + t = ⌈log(N − 1)⌉,
which is ≤ n. Each round takes time O(n2). So the total time is O(n3).

Behavior of the Miller-Rabin algorithm on input N :

(i) If N is a prime number, the output is 0.

(ii) If N is composite, we have Pr(output is 0) ≤ 1
4 .

The proof of (ii) is somewhat involved and needs a little number theory. But we can
explain (i). Output 1 can appear only in the following situations:

“Case 3”: b0, . . . , bi−1 /∈ {1, N − 1} and bi = 1, for some i < t. – Then we have found
some number c = bi−1 with the property that c2 mod N = 1, but c /∈ {1, N − 1}.
(If bi−1 were one of these numbers, the algorithm would have stopped in the round
before.) Such a thing is impossible if N is a prime number.

(Assume p is prime. If c2 mod p = 1, then c2 − 1 = (c + 1)(c − 1) is divisible by p.
Since p is prime, it is a divisor of c+1 or of c− 1, hence c ≡ p− 1 or c ≡ 1 (mod p).)

“Case 4”: We have to discuss the number bt (which is not computed!). There are two
subcases:
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Subcase 4a: bt ̸= 1. – Since bt = aN−1 mod N , it follows from Fermat’s little theorem
that N is not a prime number.

Subcase 4b: bt = 1. – Then c = bt−1 has the property that c2 mod N = 1, but
c /∈ {1, N − 1}. We conclude as in Case 3 that N cannot be a prime number.

If the Miller-Rabin test is repeated ℓ times (output 0 if in all ℓ trials the output is
0), we get the following behaviour:

(i) If N is a prime number, the output is 0.

(ii) If N is composite, then Pr(output is 0) ≤ 1
4ℓ
.

Remark: In 2002, the Indian computer scientists Agrawal, Kayal, and Saxena pub-
lished a polynomial-time (in n) deterministic primality test (no random experiments).
It never makes errors. This was a breakthrough result in algorithmics. However, the
running time of the algorithm (there are variants that run in time O(n6(log n)c) for
a constant c) is not competitive with the randomized tests by Miller and Rabin or
by Solovay and Strassen. So in practice these randomized tests are used.

1.3.1 Generating random primes

Assume some n is given and we want to generate a prime number with n bits. In
cryptographic applications, n could be 512 or 1024 or 2048 or the like.

No efficient algorithm is known for systematically searching for such huge primes.
One resorts to a very simple method:

Pick some odd n-bit number N at random
and test it with the iterated Miller-Rabin test.

(Random odd n-bit numbers look like this in binary: 1bn−2 . . . b11, with n−2 random
bits between the two 1’s.) It will turn out that with quite high probability we will
have hit a composite number, so we should repeat this step until we find a number
that passes the iterated Miller-Rabin test.

Some questions arise: How long does this take? And: Since the Miller-Rabin test has
a certain probability of error, what is the risk of outputting a composite number?

To answer the first question, we need to have an idea of how many prime numbers
there are in {1, 2, 3, . . . , 2n − 1}. For getting an estimate, we can utilize the famous
prime number theorem. For arbitrary x ≥ 0 we let

π(x) := |{p ≤ x | p is a prime number}|.
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Algorithm 12: Generating a random prime

1 function GeneratePrime(n, ℓ):
2 Input: bitlength n, number ℓ of iterations
3 repeat
4 choose odd integer N at random from [2n−1, 2n) = {2n−1, . . . , 2n − 1}
5 until MillerRabin(N, ℓ) = 0
6 return N .

Theorem 1.3.9 Prime number theorem

lim
x→∞

π(x)

x/ lnx
= 1. (Often written as: π(x) ∼ x

ln x .)

The slight disadvantage of this formulation is that it does not tell us how fast the
quotient π(x)

x/ lnx approaches 1. But be assured:8 For x ≥ 500 000) we have x
lnx < π(x) <

1.1 x
lnx . This implies that in Algorithm 12, line 4, for n ≥ 20 the probability that N

is a prime number is at least

|{p ∈ [2n−1, 2n) | p is prime}|
2n−2

=
π(2n)− π(2n−1)

2n−2

≥ 2n/(n ln 2)− 1.1 · 2n−1/((n− 1) ln 2)

2n−2

≥ 4

n ln 2
− 2.2

n ln 2
· n

n− 1

≥ 2.4

n
.

Please make a note of this:

The fraction of prime numbers among the odd n-bit numbers is at least
12

5n
.

It follows that the expected number of repetitions of the loop in Algorithm 12 until
a prime number is hit (so that it definitely stops) is at most n/2.4.

What about the running time? Well, we know that one execution of MillerRabin(N, ℓ)
takes time O(ℓ · n3). How big should we choose ℓ? The answer depends on how close
to 1 we want to have the probability that the output is a prime number. Number
theorists have shown that for any fixed ℓ ≥ 1 and for n large enough the probability
that a composite number is returned is not more than 4−ℓ = 2−2ℓ. This gives:

8This follows from an elegant estimate by Pierre Dusart, see Corollary 5.2 in: Dusart, Pierre.
Explicit estimates of some functions over primes. Ramanujan J 45, 227–251 (2018). https://doi.
org/10.1007/s11139-016-9839-4.
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The expected running time for generating a random n-bit prime
with error probability ≤ 4−ℓ is O(n4ℓ).

For all practical applications it suffices to have an error probability smaller than
10−30, say, that means 22ℓ > 1030, or 2ℓ ln 2 > 30 ln 10, or ℓ > 50. In practice, much
smaller repetition numbers are used, without ever causing any known difficulties.
Also, in practice before applying the Miller-Rabin test to N in Algorithm 12 one
will use trial division for all prime numbers up to some number like 100 and in this
way unmask many composites very quickly, cutting down the running time by a big
constant factor. This has the consequence that it is no problem to generate random
primes with several thousand bits very fast on a standard computer, in spite of its
theoretical running time of O(n4).

1.4 Cryptography

The situation: Alice wants to send messages to Bob. A message or plaintext is a bit
string of length n, or, equivalently, an integer x < 2n. Typical values are n = 1020 or
n = 2040; we will see why below. If longer messages must be sent, they are split into
shorter pieces, which are treated one after the other. There is an“eavesdropper”, Eve,
who can listen in to the communication channel, which may be a telephone line or
an internet connection. Alice and Bob want to make it very hard or even impossible
or Eve to find out what the message is.

Let X (a set of bitstrings) be the set of plaintexts. Let Y (also a set of bitstrings) be
a set of possible cryptotexts. In principle Alice and Bob want to use

� an encryption function E : X → Y , which translates each plaintext into a
cyphertext and

� a decryption function D : Y → X, which translates each cyphertext into a
plaintext.

Idea: Alice computes y = E(x), sends y to Bob, Bob calculates z = D(y), which
should be x. For this to work, we need:

D(E(x)) = x , for all x ∈ X. (Decryption condition)

Further, calculating E(x) and D(y) should be efficient.

Eve only sees y, and we hope she cannot calculate x from y. So it should be impossible
or at least very “hard” for Eve to calculate x from y = E(x). However, if D is a fixed
function, it is sufficient for Eve to know D (get it by bribing Bob’s assistant), and
she can decrypt all future messages.
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Example: Caesar (more than 2000 years ago): Replace each letter by the one that is
three positions further down in the Latin alphabet, like9 e 7→ H.

x t h e q u i c k b r o w n f o x j u m p s o v e r t h e l a z y d o g

y W K H T X L F N E U R Z Q I R A M X P S V R Y H U W K H O D C B G R J

Decryption: Replace each letter by the one that is three positions before in the al-
phabet.

1.4.1 Private-key schemes: One-time pad

The big disadvantage of the Ceasar cypher is that everybody who knew the trick and
the number 3 could read all encrypted messages. Better: Use a “secret key”, k < 26,
say. Encryption: Replace each letter by the one that is k positions further down in
the alphabet. Decryption: Same with“k positions earlier in the alphabet”. In the next
table we use k = 13, so that a 7→ N, b 7→ O, and so on.

x t h e q u i c k b r o w n f o x j u m p s o v e r t h e l a z y d o g

y G U R D H V P X O E B J A S B K W H Z C F B I R E G U R Y N M L Q B T

Even better (this is called the Vigenère cryptosystem): Have a“composed”key (k1, . . . , ks)
of s possible shift values in {0, . . . , 25} and use k1 for the first letter, k2 for the second,
. . . , ks for the s-th letter, and then start again with k1. That means: Letter number
i is encoded with shift value k((i−1) mod s)+1. (Warning: This might look quite safe, in
particular for larger s, but if s is much smaller than the length of the message there
are well-known methods for breaking this system.)

More generally, a private-key scheme works as follows. There is a set K of possible
“keys”. The encryption function is:

E : X ×K → Y, (x, k) 7→ E(x, k);

the decryption function is

D : Y ×K → X, (y, k) 7→ D(y, k).

(The idea is to have many functions available, each one given by a key, and that Eve
does not know which key is used.) The decryption condition now is:

D(E(x, k), k) = x , for all x ∈ X, k ∈ K.

9It is customary in discussions of cryptosystems to write plaintext letters in lowercase and cypher-
text letters in uppercase.
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(Decrypting with the same key that was used for encryption gives back the original
plaintext.)

Somehow Alice and Bob have agreed on a key k ∈ K that only they know. Alice
encrypts by calculating y = E(x, k) and sends y to Bob. Bob decrypts z = D(y, k),
and then z = x, by the decryption condition.

We note that we must have:

Efficiency : It must be possible to calculate E(x, k) and D(y, k) quite fast.

Security : It should be hard, i.e., take a lot of time, for Eve to calculate x, or signif-
icant information about x, from y alone, without knowing k.

Example: One-time pad. – Plaintexts, cyphertexts, and keys are bitstrings of length
n, i.e., X = Y = K = {0, 1}n.

To get started, Alice and Bob secretly generate a randomly chosen bitstring k of
length n.

To encrypt x, Alice computes E(x, k) = x⊕n k, which means the bitwise XOR of x
and k. (We write a⊕ b for (a+ b) mod 2, the XOR of bits a and b.)

Alice sends y to Bob. To decrypt y, Bob computes z = y ⊕n k.

If for example n = 8, we could have x = 10010101, k = 00101011. Then y = E(x, k) =
10111110 (sent, and read by Eve as well) and z = D(y, k) = 10010101.

In general: Since zi = yi ⊕ ki = (xi ⊕ ki)⊕ ki = xi ⊕ (ki ⊕ ki) = xi ⊕ 0 = xi for every
bit position i in the strings, we have z = x, i.e., Bob gets back the original message
x.

Eve listens in and obtains y. What can she learn? It is easy to see that y is a random
string no matter what x is. (I.e., every n-bit string y0 appears as y with the same
probability 1/2n.) So from seeing y Eve cannot draw any conclusions about x, even
if she has unlimited computational power. We call this situation “perfect secrecy”.

Some things are inconvenient about this scheme: (1) The necessity to use a secret
key, which is only known to Alice and Bob. (2) The fact that the key is as long
as the message. (3) The fact that for each message to be sent a new key must be
used to have the security guarantee. – There are other symmetric schemes than the
one-time pad, which are used in practice and have shorter keys. (In order to arrive
at such a system, one starts from a good, but not perfect, cryptosystem for fixed
length messages, like AES, “Advanced Encryption Standard”. It is assumed, but not
proved, that this method is secure against an attacker with limited computing power,
even if several messages are encrypted and Eve intercepts several messages. Then
a method (“mode”) is employed for encrypting several arbitrarily long sequences of
messages from X = {0, 1}n with one key. Warning: It is completely insecure to just
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encrypt every single message with the same encryption function! Rather, one has to
use “modes” like “cypher block chaining”, see the literature.)

Still, (1) is a serious problem, if there are many pairs of partners that want to com-
municate. For each communication line one would need a new key. Institutions with
many communications would have to manage very many keys for pairwise commu-
nication. If there are m people with pairwise communication, each one would have
to list m − 1 keys, and there would be m(m − 1)/2 keys altogether. A lot, if m is a
million or so!

1.4.2 Public-key cryptosystems: RSA

Public key cryptosystems provide a way out of problem (1). Here the scheme is a little
different. For messages to be sent to Bob a pair (kenc, kdec) of keys is chosen from a
set K ⊆ Kenc×Kdec of legal key pairs. Everybody knows kenc (Bob’s public key, it is
published e.g. on Bob’s webpage or at the bottom of each e-mail he sends), but only
Bob knows kdec (his private key).

Encryption function: E : X ×Kenc → Y, (x, kenc) 7→ E(x, kenc).

Decryption function: D : Y ×Kdec → X, (y, kdec) 7→ D(y, kdec).

The decryption condition now reads:

D(E(x, kenc), kdec) = x, for all x ∈ X, key pairs (kenc, kdec) ∈ K.

Alice encrypts x as y = E(x, kenc), sends y to Bob, and Bob decrypts z = D(y, kdec).
This is x again, by the decryption condition. Eve listens in and she now knows y
and also kenc (since everybody does). It should be difficult for her to find out any
significant piece of information about x.

We describe the mathematical core of such a system, which was proposed by Ron
Rivest, Adi Shamir und Leonard Adleman in 1977 (the “RSA cryptosystem”)10 and
is heavily used today, e.g. making the communication with https:// webpages safe.
We prove the decryption condition, and discuss the efficiency of E and D as well as
the question of security.

Disclaimer: The “classroom version” of the RSA system as described here cannot and
must not be used for secure communication. To obtain a secure cryptosystem, the
system must be modified as described in the cryptography literature. To be on the
safe side: Use a system implemented by experts.

There are two parts, “preprocessing” and “communication”.

10Wikipedia: Clifford Cocks, an English mathematician working for the British intelligence agency
Government Communications Headquarters (GCHQ), described an equivalent system in an internal
document in 1973, but this was never published.
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RSA: The algorithm

Preprocessing: // Done by Bob, or by a certification authority on Bob’s request.

(1) Generate two random primes p and q with around n
2 + 1 bits.

(2) Let N = p · q.

//Example: p and q have 512 binary digits; N has at least 1023 digits.
In general we must have N ≥ 2n+1, so that x < N for the message x.

Running time in general: O(n4).

(3) Let φ(N) = (p− 1) · (q − 1).

// “Euler’s φ function”. This is the number of integers a ∈ {1, . . . , N − 1} that are
relatively prime to N .

(4) Choose e < φ(N) such that gcd(e, φ(N)) = 1.

// Choose randomly, check by Euclidean Algorithm (O(n2) time).

(5) Calculate d < φ(N) such that e · d mod φ(N) = 1.

// Can be done by the Extended Euclidean Algorithm (O(n2) time).

Bob’s “public key”: kenc = (N, e). // Posted on Bob’s web page.

Bob’s “private key”: kdec = (N, d).
// Never mind that the N part is public anyway. d is secret.

Communication:

Encryption function: E(x, (N, e)) = xe mod N , for x ∈ X = [N ].

Decryption function: D(y, (N, d)) = yd mod N , for y ∈ Y = [N ].

Assume Alice has a message (or plaintext) x ∈ [N ] = {0, . . . , N − 1}. She computes

y := E(x, (N, e)) = xe mod N

and sends y to Bob. Bob computes

z := D(y, (N, d)) = yd mod N.

For both computations we can use fast exponentiation; the running time is O(n3)
for both. Note that for n ≈ 2000 or even n ≈ 4000 this is no problem for today’s
computers.
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RSA Example:

Preprocessing: 4-bit primes. Choose p = 11, q = 13, N = 143.

Then φ(N) = (11− 1)(13− 1) = 10 · 12 = 120.

Choose e = 77
(from {1, . . . , 119} excepting the multiples of 2, 3, 5, the prime factors of 120).

Calculate d = 77−1 mod 120 = 53 using the extended Euclidean Algorithm
(check: 77 · 53 = 4081 = 34 · 120 + 1).

Public key (published by Bob): kenc = (N, e) = (143, 77).

Private key: kdec = (143, 53). The number 53 is kept secret by Bob.

p = 11, q = 13, φ(N) = 120 are discarded.

Sending messages:

(1) Plaintext: x = 33.

Alice uses fast exponentiation to calculate (see page 6):

332
i

mod 143 ⌊77/2i⌋
33 77 33

332 mod 143 = 88 38 strike out (38 is even) –
882 mod 143 = 22 19 22
222 mod 143 = 55 9 55
552 mod 143 = 22 4 strike out (4 is even) –
222 mod 143 = 55 2 strike out (2 is even) –
552 mod 143 = 22 1 22

Product: (33 · 22 · 55 · 22) mod 143 = 11.

She sends the result “11” to Bob.

Bob uses fast exponentiation in a similar way to calculate:

112
i

mod 143 ⌊53/2i⌋
11 53 11

112 mod 143 = 121 26 strike out (26 is even) –
1212 mod 143 = 55 13 55
552 mod 143 = 22 6 strike out (6 is even) –
222 mod 143 = 55 3 55
552 mod 143 = 22 1 22

Product: (11 · 55 · 55 · 22) mod 143 = 33.

The result is z = 1153 mod 143 = 33, which is x again, correct!

(2) Plaintext: x = 93. Calculate similarly as above (try it):
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Alice calculates y = 9377 mod 143 = 58 and sends “58” to Bob.

Bob calculates z = 5853 mod 143 = 93, correct!

RSA: Proof of correctness

We must check the decryption condition.

Claim: z = ((xe mod N)d) mod N = x. Equivalently:

Theorem 1.4.1
For all x ∈ [N ] = {0, 1, . . . , N − 1}: xed mod N = x.

Proof 11:

Since 0 ≤ x < N , the assertion means the same as xed mod N = x mod N . This is
equivalent to saying that the difference xed − x is divisible by N .

For this it is sufficient to show that both p and q divide xed − x.
(Recall a basic fact about prime numbers: If the distinct primes p and q both divide
some number a, then their product p · q divides a as well.)

We only show that p divides xed − x. (The argument for q is the same.)

If p divides x, then clearly p divides xed − x, and we are done.

Assume from here on that p does not divide x.

Then by Fermat’s little theorem we have xp−1 mod p = 1.

Since ed mod φ(N) = 1 by choice of d, we can write
ed = k · φ(N) + 1 = k(p− 1)(q − 1) + 1 for some integer k ≥ 1.

Then (calculating modulo p):

xed ≡ xk(p−1)(q−1) · x
≡ (xp−1)k(q−1) · x
≡ (xp−1 mod p)k(q−1) · x
≡ 1k(q−1) · x
= x,

which means that p divides xed − x, and we are done. □

11The proof follows Dasgupta, Papadimitriou, Vazirani, Algorithms, page 34, but it replaces the
Chinese remainder theorem by a more elementary statement.
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RSA: Efficiency and security

Note that RSA can be implemented and used only since certain algorithms for num-
bers (finding primes, extended Euclidean algorithm for finding inverses, fast expo-
nentiation for encryption and decryption) can be carried out fast for numbers of a
few thousand bits.

Security: We can only give remarks. (There is no formal proof that the RSA system is
secure in any precise sense.) The security hinges on the fact that factoring numbers
into their prime factors is difficult, as far as we know today. More precisely: No
algorithms with running time O(nk) for any constant k is known that finds factors p
and q from N as in the RSA system. No method is known to factor arbitrary 1024-bit
numbers in reasonable time.12

This means that the obvious attack from Eve, namely finding p and q by factoring N ,
does not work (as of the year 2021), as long as N is large enough. It would be enough
for Eve to find φ(N) or find d = e−1 mod φ(N) by other means than factoring. It
turns out, however, that this is not much easier than factoring N , in the sense that
if she had φ(N) she could easily find the factors, and the same when she had d. Of
course, there could be totally different ways of finding x from y and (e,N), which do
not imply factoring N , but no such method is known.

Remark: RSA encryption and decryption is relatively slow. It is typically not used
for encrypting a whole communication between parties. One of its main uses in com-
munication over the internet (think of https://), is to establish a “session key” to
be used between two participants in a (much faster) symmetric scheme.

Warning: It is never safe to encrypt a long text naively, by splitting it into blocks of
length ≤ n and simply encrypting each single block individually by the simple version
of the RSA system.

Among other enhancements, the following trick is helpful and is, in principle, used
in practice: Alice splits a long message x into segments x1, . . . , xm of length n/2
each. For each block xi, she chooses a new random string ri with n/2 bits. Then
x′i = xi ◦ ri (the concatenation) is encoded with Bob’s public key, for each i, resulting
in y′1, . . . , y

′
m. This sequence is sent to Bob, who decodes to get z′1, . . . , z

′
m. He then

drops the second half of each z′i to obtain z1, . . . , zm, which equals x1, . . . , xm. Apart
from other aspects, with this approach a central problem of deterministic block-wise
encryption disappears: even if xi = xj , we will have y′i ̸= y′j with high probability.

Warning: With an enhancement like this, RSA as described here may be “secure”
against adversaries that are only listening in. But it is vulnerable (like an open barn

12The algorithm one would want to use depends on the size of the numbers. For names of avail-
able algorithms see, e.g., https://stackoverflow.com/questions/2267146/what-is-the-fastest-
factorization-algorithm. The asymptotically fastest algorithm, the “general number field sieve”,
has a running time bound of exp(c · n1/3(logn)2/3), for a constant c < 2, for large n. Here exp(x)
means ex.
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door) to the “man-in-the-middle attack”. The “man in the middle”, Oscar, is an ad-
versary with stronger abilities than our eavesdropper Eve. He can intercept messages
and replace them by messages of his own choice. So he would listen in, intercept an
encrypted message y = E(x, (e,N)) from Alice to Bob, replace it by y′ = E(x′, (e,N))
for a plaintext x′ of his own choice and make Bob believe the message y′ is from Alice
(inserting a forged sender address, which is not very hard). In the worst case, Oscar
can even include in the message a public key (e′, N ′) of his own choosing and induce
Bob to respond using this key for encryption. In this case he could even read the
answer! In order to avoid these problems, one needs other cryptographic primitives
like authentication, where the identity of the sender of a message can be checked.

Warning: If you ever implement your own cryptosystem for serious
use, have it checked by an expert, or get training to become an
expert yourself before.


