
Chapter 2

Divide-and-conquer algorithms

A computational problem P takes an input (“instance”) x from a set I of inputs and
transforms x into a result r from a set O. Formally, one can describe such a problem
as a function f : I → O. A divide-and-conquer algorithm A solves a problem P on an
instance x of size n = |x| either directly (if n is small enough) or by using recursive
calls for smaller instances (if n is larger).

The general structure of a divide-and-conquer algorithm is as follows. We want to
solve a computational problem P on inputs x.

(0) Triviality test: If |x| ≤ n0, then solve problem P for x by a “direct” or “simple”
method; return the result r.

(Here n0 is some constant. It takes constant time to solve the problem on a “trivial”
instance of size ≤ n0.)

(1) Divide/Split: From x calculate a many smaller problem instances x1, . . . , xa.

(2) Recursion: Make a recursive calls (to the algorithm) to solve P on the instances
x1, . . . , xa. Results: r1, . . . , ra.

(3) Combine: From x, x1, . . . , xa, r1, . . . , ra calculate solution r that solves P for x.

In this chapter, we will study several examples of algorithms that are based on this
idea. The first of these algorithms shows that we can indeed multiply two n-bit
integers faster than in time O(n2). (Compare the school method in Section 1.1.2.)

2.1 Faster integer multiplication: Karatsuba’s algorithm

Assume we want to multiply two n-bit integers x and y. This means that the input
is the pair (x, y). As its size |(x, y)| we take n. For simplicity assume n is a power of
2.

1

2 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

(0) Triviality test: If n = 1, then the bits x and y can be multiplied by one boolean
operation1: r := x ∧ y.

Now assume n > 1.

(1) Divide/Split: Split the binary representation of x into the left half xL and the
right half xR:

x = xL xR = xL · 2n/2 + xR.

Split the binary representation of y into left half yL and right half yR:

y = yL yR = yL · 2n/2 + yR.

Example: For x = 101011002 and y = 101101012 (binary notation for 172 and 181) we get

x = 10102 · 24 + 11002 = 10 · 16 + 12 and y = 10112 · 24 + 01012 = 11 · 16 + 5.

Then

x · y = xL · yL · 2n +
(
xL · yR + xR · yL

)
· 2n/2 + xR · yR . (2.1)

We see four instances of multiplications of n/2-bit integers (in the boxes).

(2) Recursion: The four instances from (1) are solved recursively. From the four
recursive calls we obtain the products

r1 = xL · yL, r2 = xL · yR, r3 = xR · yL, r4 = xR · yR.

(3) Combine: Now we can calculate

x · y = r1 · 2n + (r2 + r3) · 2n/2 + r4,

which involves only adding four 2n-bit numbers, hence this costs time O(n). (Note
that multiplication by powers of 2 is for free or costs at most linear time, since it
amounts to appending zeroes, i.e., a shift.)

Let T (n) be the cost (running time or number of binary operations) for this algorithm
when applied to two n-bit numbers. (To be precise, T (n) is the maximum time needed
for any instance of size n.) We get, for some constants g and c:

T (n) ≤
{

g for n = 1
4 · T (n/2) + c · n for n > 1.

(2.2)

This is because the cost for n = 1 is constant and for n > 1 the cost for multiplying
two n-bit numbers is the sum of the cost of triviality test, splitting and combining

1When implementing the algorithm, one takes as n0 a bigger number, like 16 or 32. Such small
numbers are multiplied by the hardware. However, also see Remark (c) at the end of this section.

2.1. FASTER INTEGER MULTIPLICATION: KARATSUBA’S ALGORITHM 3

(which is O(n) since splitting is almost free and combining costs time O(n)) and of
four recursive calls with numbers half the size. Each of these costs T (n/2).

An equality like (2.2) is called a recurrence relation for T (n). We will see below a
general method for solving such recurrence relations, i.e., for finding a closed formula
that is an upper bound on T (n). This general method will give T (n) = O(n2).

Now this is the same as the time we get from the school method for multiplication.
How disappointing!

In the example one sees that the “divide-and-conquer” idea in itself is not necessarily
enough to get a better running time than by the obvious and straightforward algo-
rithms. For multiplication one needs another idea. The purpose of this idea must
be to reduce the number of recursive calls in an instance from four to three. The
book describes “Gauss’ trick” for multiplying two complex numbers by carrying out
only three multiplications of reals instead of the obvious four. We head directly to
Karatsuba’s trick for integer multiplication, which is similar to Gauss’ trick.

Trick: Write

(xL − xR) · (yL − yR) = xL · yL + xR · yR − (xL · yR + xR · yL).

This implies

xL · yR + xR · yL = xL · yL + xR · yR − (xL − xR) · (yL − yR).

So if we calculate the three products

P1 = xL · yL , P2 = xR · yR , P ′
3 = (xL − xR) · (yL − yR) ,

we can calculate the number xL · yR + xR · yL needed in (2.1) as P1 +P2−P ′
3 just by

additions and subtractions.

With this trick we finally get Karatsuba’s algorithm.

Since the algorithm can process only nonnegative numbers, we have to be a little
careful with the signs of the factors2 xL − xR and yL − yR. We let sx be the sign (1
for nonnegative and −1 for negative) of xL − xR and sy the sign of yL − yR, and let

P3 = |xL − xR| · |yL − yR|.

Then P ′
3 = sxsy · P3, hence xL · yR + xR · yL = P1 + P2 − sxsy · P3, and we get

x · y = P1 · 2n + (P1 + P2 − sxsy · P3) · 2n/2 + P2.

For pseudocode see Algorithm 1.
2In many books, in particular in our book, one does not subtract, but add xL and xR, and yL

and yR. Then there are no sign problems, but there are overflow problems, since xL + xR may have
n/2 + 1 bits. We avoid this by subtracting: The absolute values |xL − xR| and |yL − yR| always can
be written with n/2 bits.

4 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

Algorithm 1: Karatsuba multiplication

1 function multiplyK(x, y)
2 Input: Two n-bit integers x, y ≥ 0, where n is a power of 2
3 Output: The product x · y in binary.
4 Method:
5 // Triviality test:
6 if n = 1 then return x ∧ y
7 // Divide/Split: Prepare smaller inputs:
8 xL ← leftmost n

2 bits of x; xR ← rightmost n
2 bits of x;

9 yL ← leftmost n
2 bits of y; yR ← rightmost n

2 bits of y;
10 // 3 recursive calls:
11 P1 ← multiplyK(xL, yL);
12 P2 ← multiplyK(xR, yR);
13 P3 ← multiplyK(|xL − xR|, |yL − yR|);
14 // Combine:
15 sx ← sign(xL − xR); sy ← sign(yL − yR);

16 return P1 · 2n + (P1 + P2 − sx · sy · P3) · 2n/2 + P2

Example: x = 101011002, y = 101101012. The length is n = 8.

xL = 10102, xR = 11002, yL = 10112, yR = 01012, binary numbers of length 4.

x = 10102 · 24 + 11002 = 10 · 16 + 12, y = 10112 · 24 + 01012 = 11 · 16 + 5.

Differences: xL−xR = 10102−11002 = −2 = −00102 and yL−yR = 10112−01012 =
6 = 01102. Hence sx = −1 and sy = 1.

Three subinstances, with results (provided by the recursive calls) in binary:

P1 = 10102 · 10112 = 10 · 11 = 110 = 011011102,

P2 = 11002 · 01012 = 12 · 5 = 60 = 001111002,

P3 = 00102 · 01102 = 2 · 6 = 12 = 000011002.

It follows the combination step:

x · y = 011011102 · 28 + (011011102 + 001111002 − (−1) · 1 · 000011002) · 24 + 001111002

= 011011102 · 28 + (011011102 + 001111002 + 000011002) · 24 + 001111002.

This can be calculated by shifting and adding3 five binary numbers:

3It is a mere coincidence that there is no subtraction. We have (−1)sxsy = 1.

2.1. FASTER INTEGER MULTIPLICATION: KARATSUBA’S ALGORITHM 5

01101110
01101110
00111100
00001100

+ 00111100

0111100110011100

The result is 01111001100111002 = 31132 = 172 · 181, which is the correct product.

Analysis of the algorithm: Now we estimate the running time TK(n) of Karatsuba’s
algorithm. Since there are only three recursive calls, the recurrence relation (2.2)
turns into

TK(n) ≤
{

g for n = 1
3 · TK(n/2) + c · n for n > 1.

(2.3)

(The combination cost c · n is a little higher than in the naive algorithm with four
subinstances.) To find a closed expression for TK(n), we proceed as follows. Let n =
2L, hence L = log2 n. We keep substituting (2.2).

TK(n) ≤ 3TK(n/2) + cn

≤ 3(3TK(n/4) + c(n/2)) + cn

= 32TK(n/2
2) + 3cn/2 + cn

≤ 32(3TK(n/2
3) + c(n/22)) + 3cn/2 + cn

= 33TK(n/2
3) + cn((3/2)2 + 3/2 + 1)

...

≤ 3iTK(n/2
i) + cn ·

∑
0≤j<i

(
3

2

)j

...

≤ 3LTK(n/2
L) + cn ·

∑
0≤j<L

(
3

2

)j

. (2.4)

Regarding the first term in (2.4) we see that TK(n/2
L) = TK(n/n) = TK(1) ≤ g. The

second term is determined by the geometric series

∑
0≤j<L

(
3

2

)j

=
(32)

L − 1
3
2 − 1

< 2

(
3

2

)L

=
2 · 3L

2L
=

2 · 3L

n
.

So we can estimate:

TK(n) ≤ 3Lg + cn · 2 · 3
L

n
= 3L(g + 2c).

6 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

And what is 3L? We calculate

3L = 3log2 n = (2log2 3)log2 n = 2(log2 3)(log2 n) = 2(log2 n)(log2 3) = (2log2 n)log2 3 = nlog2 3.

Hence
TK(n) = O(nlog2 3).

Note that log2 3 = 1.5849 · · · < 2, so the running time of Karatsuba’s algorithm is
much smaller than that of the school method, at least for large n.

Theorem 2.1.1
Karatsuba’s algorithm multiplies two n-bit numbers in time O(n1.59).

Remarks: (a) Multiplication algorithms with running times of O(n1+ε) for arbitrary
ε > 0 have been developed after Karatsuba’s algorithm was published in 1962, and the
algorithm by Schönhage and Strassen with running time O(n log n log log n) appeared
in 1971. Some improvements were made in the 2000s, and only in 2019 a multiplication
algorithm with running time O(n log n) was presented by David Harvey and Joris van
der Hoeven. Unfortunately, the latter one is not (yet?) practical.
(b) One can use Karatsuba’s algorithm also for n that is not a power of 2. For the
program see Fig. 2.1 in the book. The running time bound is the same.
(c) When using Karatsuba’s algorithm, the recursion should be stopped at some larger
n0, where one should switch to the school method, i.e., Algorithm 2 in Section 1.1.2.
The resulting“hybrid”algorithm is faster than the school method already for numbers
with length n around 1000.

2.2 Recurrence relations and the master theorem

Read again the introductory segment of Chapter 2, where divide-and-conquer algo-
rithms are described in general. In the present section we want to develop a method
for estimating the running time of a big class of algorithms that follow this paradigm
(not all, unfortunately).

Consider some divide-and-conquer algorithm A. Let T (n) := TA(n) be the worst
case running time of A on inputs of size n. Clearly, T (1) = O(1). If n > 1, then
T (n) is composed of the time required for steps (0) through (3) in the scheme. We
assume that the triviality test (find out if |x| ≤ n0 or not), the splitting step and the
combining step together take polynomial time, meaning time O(nd) for some constant
d. Further, we assume that the number a of subinstances formed in the dividing step
does not depend on n but is always the same, and that the size of the subinstances
is at most ⌈n/b⌉ for a constant b > 1. (Karatsuba’s algorithm is an example for an
algorithm that satisfies these assumptions with a = 3, b = 2, d = 1.) The time in
the recursion step can then be estimated as follows: We have a recursive calls on

2.2. RECURRENCE RELATIONS AND THE MASTER THEOREM 7

instances of size ⌈n/b⌉. The time for all these taken together is a · T (⌈n/b⌉). Taking
all contributions together, we arrive at the following system of inequalities:

T (n) ≤

{
g, if n = 1, for some constant g,

a · T
(⌈

n
b

⌉)
+ c · nd, if n > 1, for some constant c.

(2.5)

Such a system is called a recurrence relation. We always assume4 that a > 0, b > 1,
and d ≥ 0.

2.2.1 Visualizing the running time

Figure 2.1 depicts the time spent by a divide-and-conquer algorithm on a (large)
instance x of size n, as described in the previous section. For simplicity we assume
that n is a power of b, so we can omit rounding. Let n = bL, or L = logb n. Every node
in the tree corresponds to a problem instance for which there is a (direct or indirect)
recursive call when algorithm A is run on instance x. The node label is the running
time of a particular subinstance, ignoring recursion. (In fact that is the c ·nd-running
time in (2.5) which accounts for dividing and combining.) For example, on level 0 the
size of the instance is n, and we use time c · nd (ignoring recursion), on level 1 the
size of an instance is n/b, and we use time c · (n/b)d per node (ignoring recursion)
and so on. The time per node on level i, for 0 ≤ i ≤ L is c · (n/bi)d, since by (2.5) the
instance size shrinks by a factor of b from level to level. How many nodes do we have
on the different levels? Level 0 just consists of a single node, which corresponds to
the actual instance to be solved. The instance on level 0 is split into a subinstances,
which make up the a nodes on level 1. The ai instances on level i, for 0 ≤ i < L, are
split into a subinstances each, hence there are a ·ai = ai+1 subinstances on level i+1.
This continues until the Case “n = 1” in (2.5) is reached, with aL nodes on level L.

2.2.2 The master theorem

In this section we will estimate T (n), which is given by (2.5), in O-notation.

4Although our illustration uses that a is an integer and that n = bL for an integer b, these are
inessential assumptions. By more careful considerations one can show that the result we are about
to prove holds for arbitrary real numbers a > 0, b > 1, and d ≥ 0.

8 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

c · nd

c ·
(
n
b

)d

c ·
(

n
b2

)d
...

g

...

. . . c ·
(

n
b2

)d
...

...

. . . c ·
(
n
b

)d

c ·
(

n
b2

)d
...

...

. . . c ·
(

n
b2

)d
...

...

g L

...

2

1

0

level #
instances

1

a

a2

...

aL
n

bL
= 1

...

n

b2

n

b

n

size of
instance

Figure 2.1: The recursion tree for a DaC-Algorithm whose running time satisfies (2.5).

Theorem 2.2.1 Master theorem
Assume that for arbitrary fixed integers a > 0, b > 1 and real d ≥ 0 the function
T (n) obeys the recurrence relation

T (n) ≤

{
g, if n = 1, for some constant g,

a · T
(⌈

n
b

⌉)
+ c · nd, if n > 1, for some constant c.

Then

T (n) =

O(nd), if d > logb a,

O(nd log n), if d = logb a,

O(nlogb a), if d < logb a.

(2.6)

Proof of Theorem 2.2.1. We will see shortly that the proof mainly consists in evalu-
ating a geometric series. So recall the formula:

∑
0≤i<L

qi =

1−qL

1−q < 1
1−q , if 0 < q < 1,

L, if q = 1,
qL−1
q−1 , if q > 1.

(2.7)

We only consider the case that n is a power of b. (The theorem is also true for
arbitrary values of n, but the proof is a little more technical.)

2.2. RECURRENCE RELATIONS AND THE MASTER THEOREM 9

Consider the recursion tree in Figure 2.1. The size of every problem instance on level
i is n/bi (we can omit ⌈·⌉, because n is a power of b). The recursion stops on level
L = logb n. On level i there are ai sub-instances of size n/bi each. By Case “n > 1”
in (2.5), the time for all these subinstances on level i, 0 ≤ i < L, taken together,
ignoring recursion, is

ai · c · (n/bi)d = c · nd · (a/bd)i = c · nd · qi, (2.8)

where q := a/bd. Note that q is a constant. The time for level L is at most aL · g (by
Case “n = 1” in the recurrence). We obtain the following upper bound on the total
time by summing all these contributions over all levels 0 ≤ i ≤ L:

T (n) ≤ c · nd ·
∑

0≤i<L

qi + aL · g. (2.9)

We first calculate aL, using simple exponentiation rules:

aL = (blogb a)logb n = b(logb a)(logb n) = b(logb n)(logb a) = (blogb n)logb a = nlogb a. (2.10)

(Note how natural it is that the exponent logb a appears when one transforms aL, the
number of leaves, to an expression to the base n.)

Now we use (2.7) to bound the geometric series SL :=
∑

0≤i<L qi in (2.9) from above.
There are three cases, corresponding to the three cases for the evaluation of the
geometric series.

Case 1: q < 1. – By the definition of q this means a < bd, or logb a < d. By (2.7) we
have that SL ≤ 1

1−q , and (2.9) turns into

T (n) ≤ c · nd

1− q
+O(nlogb a) = O(nd) +O(nlogb a) = O(nd).

In this case the split/combine cost of the original instance of size n dominates the
time for the whole recursion.

Case 2: q = 1. – By the definition of q this means a = bd, or logb a = d. By (2.7) we
have SL = L = logb n, and (2.9) turns into

T (n) ≤ cnd · logb n+O(nlogb a) = O(nd log n).

In this case each recursion level contributes the same to the total cost, since the
variable parts in the number ai of instances and the costs cnd/(bd)i of the instances
cancel each other.

10 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

Case 3: q > 1. – By the definition of q this means a > bd, or logb a > d. By (2.7) we

have SL ≤ qL

q−1 . Now qL = aL/bdL = aL/(bL)d = aL/nd, and so (2.9) turns into

T (n) ≤ c · nd · a
L

nd
+O(nlogb a) = O(aL) +O(nlogb a) = O(nlogb a).

In this case the recursion levels become more expensive as they become deeper; ac-
tually, the bottom level i = L dominates the running time, up to a constant factor.

□

Let us return for a moment to the two algorithms for multiplying integers that we
considered in the previous section. The first one (without Gauss’ trick) led to the
recurrence (2.2). Thus we have a = 4, b = 2, d = 1. Since log2 4 = 2 > 1 = d, this
gets us into Case 3, and the running time of this algorithm is O(n2), as claimed in
Section 2.1. Karatsuba’s algorithm led to the recurrence (2.3). Now we have a = 3,
b = 2, d = 1. Since log2 3 = 1.5849 · · · > 1 = d, we are in Case 3 as well, and
the running time is O(nlog2 3). This is the same result that we obtained by a direct
calculation in Section 2.1.

Example: Binary search. Binary search is a fast search procedure that assumes that
we have an array A[1..n] filled with keys A[i], 1 ≤ i ≤ n, which are sorted, i.e., we
have A[i] < A[j] if i < j. Given a search key x, we are to determine if x occurs
in the array. Assuming that n ≥ 1, we compare x with an element in the middle
of the array, namely we let m = ⌈n2 ⌉ and compare x with A[m]. If x < A[m], we
recursively search in A[1..m − 1]. (This is o.k., since x is not in position m, and it
cannot be in positions m+1, . . . , n because of the ordering.) If x = A[m], the search
ends successfully. If x > A[m], we recursively search in A[m+ 1..n].

If one wants to implement this idea, one quickly notices that one needs a recursive
function rsearch(ℓ, r) that checks whether x is contained in A[ℓ..r], for 1 ≤ ℓ ≤ n+1
and 0 ≤ r ≤ n. This function works as follows: (0) Triviality test: If r < ℓ, the array in
question is empty and the answer is “no”. (1) Splitting, (2) Recursion, (3) Combining:
Otherwise we calculate m = ℓ+ ⌊12(r− ℓ)⌋, and consider three cases. If x < A[m], we
return the result of the recursive call rsearch(ℓ,m− 1). If x = A[m], we return “yes”.
If x > A[m], we return the result of the recursive call rsearch(m + 1, r). To search
for x in A[1..n] we call rsearch(1, n). (It is an easy exercise to write up pseudocode
for this.)

Clearly, Binary search is a divide-and-conquer algorithm. The triviality test costs
time O(1). Splitting consists of the computation of m and the comparison of x with
A[m]. The length of the array for which the recursive call happens is at most half
that of A[ℓ..r]. Combining consists just in passing on the result, and it takes time
O(1).

If T (n) denotes the maximum time for carrying out rsearch(A[ℓ..r]) for a subarray

2.3. MERGESORT 11

of length n = r − ℓ+ 1, we get the following recurrence:

T (n) ≤

{
g, if n ≤ 1, for some constant g,

T
(
⌊n2 ⌋

)
+ c, if n > 1, for some constant c.

At the first glance this does not look like what we expect in the master theorem.
Where is a? Where is d? But note that T

(
⌊n2 ⌋

)
= 1 ·T

(
⌊n2 ⌋

)
and c = c ·n0. So a = 1,

b = 2, and d = 0 are the right choices. We compare:

logb a = log2 1 = 0 = d.

This means we are in Case 2 in the master theorem, and our recurrence equation
implies T (n) = O(nd log n) = O(n0 log n) = O(log n).

Summing up: Binary search in an array of length n has running time O(log n).

2.3 Mergesort

The sorting problem is the following: Given is a sequence (a1, . . . , an) of objects,
each equipped with a key from an ordered set (numbers, strings in lexicographic
order, or the like). The task is to rearrange the objects so that the keys are in
increasing (or, more generally, nondecreasing order). If the sequence of objects is
((5, e), (17, e), (12, g), (2, m), (28, o), (8, r), (35, r), (22, s), (42, t)), where the first com-
ponent in a pair is the key, the result of sorting is

((2, m), (5, e), (8, r), (12, g), (17, e), (22, s), (28, o), (35, r), (42, t)).

Note that the nonkey parts of the objects are just dragged along with the keys. We
omit these parts in examples, so that the previous example would just look like this:
If we sort (5, 17, 12, 2, 28, 8, 35, 22, 42), the result is (2, 5, 8, 12, 17, 22, 28, 35, 42).

Mergesort is a sorting algorithm that follows the divide-and-conquer paradigm. We
follow our scheme: Input: S, a sequence of n objects.

Triviality test: If n ≤ 1, then just return the input.5

Split/divide: Split S into two disjoint sequences S1, S2, as evenly as possible.

Recursion: Sort S1 by recursion, result R1; sort S2 by recursion, result R2.

Combine: “Merge” the two sorted sequences R1 and R2 into one sorted sequence R;
return R as the result.

5In real implementations, one would use a simple direct sorting method if n ≤ n0 for some constant
n0 like n0 = 8.

12 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

How do we split? This depends on the way the sequence S is given. If S is written in
a subarray A[ℓ, r], with ℓ < r, we calculate m = ⌊(ℓ+ r)/2⌋ = ℓ+ ⌊(r− ℓ)/2⌋ and let
S1 be A[ℓ,m] and S2 be A[m+1, r]. If S is given as a linked list L, we split L into two
sublists L1 and L2 of (almost) equal lengths by running through L and alternatingly
placing entries into L1 and L2.

Recursion takes care of itself, we need not discuss it at all. (That is the elegance of
thinking about divide-and-conquer algorithms!)

How do we combine? The idea is to take objects one after the other from the two
sorted sequences R1 and R2 in an interleaved fashion, so that always the smallest key
still available is chosen, which then is transported to the end of sequence R we are
building up. This idea can be expressed as follows as a recursive procedure: If R1 is
empty, return R2. If R2 is empty, return R1. Otherwise look at the first keys x1 in R1

and x2 in R2. If x1 ≤ x2 then let R′
1 be R1 without x1; recursively merge R′

1 and R2;
prepend x1 to the result. If x1 > x2 then let R′

2 be R2 without x2; recursively merge
R1 and R′

2; prepend x2 to the result. This procedure is expressed in pseudocode in
the function merge in the book (page 51). The big advantage of this formulation is
that it is obviously correct, since the chosen key (x1 or x2) must be the smallest of
all.

We describe the algorithm more concretely, namely as the task of merging two in-
creasing sequences stored in nonempty subarrays A[ℓ..m] and A[m + 1..r], where
the result is written in the subarray B[ℓ..r]. There we work with three pointers: i
in A[ℓ..m], j in A[m + 1..r], and k in B[ℓ..r], which mark the beginning of the
rest R1, the beginning of the rest R2, and the end of the output sequence R. So we
keep comparing A[i] with A[j], copying the smaller one to B[k], and increasing the
“used” pointer values, until we reach the end of one of the two input sequences. (For
an illustration see Figure 2.2). Then the rest of the other sequence is just copied.

Algorithm 2: procedure merge(A[ℓ..r],m, B[ℓ..r])

1 Input: 1 ≤ ℓ ≤ m < r ≤ n, A[ℓ..m] and A[m+ 1..r]are sorted subarrays.
2 Output: B[ℓ..r]: output (sub)array, must be disjoint from A[ℓ..m].
3 i← ℓ; j← m+ 1; k← ℓ; // pointers to the beginning of the arrays
4 while i ≤ m and j ≤ r do
5 if A[i] ≤ A[j] then B[k]← A[i]; i++; k++
6 else B[k]← A[j]; j++; k++
7 // i = m+ 1 or j = r + 1: one of the input subarrays is exhausted
8 // the rest is just copying
9 while i ≤ m do B[k]← A[i]; i++; k++

10 while j ≤ r do B[k]← A[j]; j++; k++
11 return

The process of transportation is illustrated in Figure 2.2.

2.3. MERGESORT 13

l m r

3 3221 3 5 6 75

2 3 5 6 7 1 2 3 3 5

A:

B:

l r

Figure 2.2: merge: Two sorted subsequences A[ℓ..m] and A[m+ 1..r] are combined
into one sorted sequence B[ℓ..r]. The order of copying is from left to right in B[ℓ..r].
Blue arrows show where objects are copied without comparison.

For correctness, one might be tempted to say that it is “clear” that it works. For students
that would like to see a more precise argument, here is a sketch of a real proof. Following the
recursive idea of the book, one can argue by induction on the total length of the remaining
sequences A[i..m] and A[j..r], where i contains i and j contains j. The induction claim
is that if one starts in this situation, with m − i + r − j + 2 entries still to process, and k

containing k = i+ j −m− 1, these elements will be written in sorted order to the subarray
B[k..r]. This is shown by induction. If i = m + 1, the rest A[j..r] will just be copied (line
10). If j = r + 1, the rest A[i..m] will be copied (line 9). Otherwise the minimum of A[i]
and A[j] is copied to B[k], which is the smallest since the two input sequences are sorted,
and the two “used” indices are increased (lines 5 and 6). The procedure continues with rests
that are shorter by one than before. The induction hypothesis says that the elements in these
rests are written to B[k + 1..r] in increasing order.

Now assume an array A[1..n] is given as a global variable. Similarly given is an
auxiliary array B[1..n]. We write up a procedure that recursively sorts the subarray
A[ℓ..r] of A[1..n]. This yields Algorithm 3.

The correctness of this algorithm is easily proved by induction on r−ℓ+1, the number
of elements in the subarray. What about running time? It is clear that merge(ℓ, r)
has running time O(r − ℓ + 1) (length of the subarray) and makes at most r − ℓ
key comparisons. Let TMS(n) be the maximum time needed for any call procedure
rmsort(ℓ, r), where n = r − ℓ+ 1. We get the following recurrence:

TMS(n) ≤

{
g, if n = 1, for some constant g,

2 · TMS

(⌈
n
2

⌉)
+ c · n, if n > 1, for some constant c.

The constant g is for the cost of checking that ℓ = r and doing nothing. The additive
term cn is for the cost of merging. We have two recursive calls with subarrays of
length ⌈n/2⌉ and ⌊n/2⌋. Looking to the master theorem, we see that we have a = 2,

14 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

Algorithm 3: procedure rmsort(ℓ, r)

1 Input: A[ℓ..r] with 1 ≤ ℓ ≤ r ≤ n is a nonempty subarray of A[1..n]
2 Output: A[ℓ..r] contains the same objects as before, sorted in increasing

order
3 if r > ℓ then // r ≤ ℓ is the trivial case, nothing to do
4 m← ℓ+ ⌊(r − ℓ)/2⌋
5 rmsort(ℓ,m) // 1st recursive call
6 rmsort(m+ 1, r) // 2nd recursive call
7 merge(A[ℓ..r],m, B[ℓ..r]) // combine step, result in B[ℓ..r]
8 copy B[ℓ..r] into A[ℓ..r]
9 return

b = 2, and d = 1. Since d = 1 = log2 2 = logb a, we are in Case 2, and the closed
solution is TMS(n) ≤ O(nd log n) = O(n log n).

In order to sort the whole array, call the recursive procedure for input (1, n). This
yields Algorithm 4.

Algorithm 4: procedure mergesort(A[1..n])

1 Input: A[1..n]
2 Output: A[1..n] contains the same objects as before, sorted in increasing

order
3 Data structure: B[1..n], auxiliary array
4 if n > 1 then rmsort(1, n)
5 return

Remark : It is possible to show that on an input of length n, mergesort never makes
more than n log n comparisons (note the absence of any multiplicative constants).

We sum up our observations regarding mergesort.

Theorem 2.3.1
Algorithm mergesort sorts a sequence of n elements in time O(n log n). The number
of comparisons is smaller than n log n. The algorithm needs extra space O(n).

2.4 Medians (or: The selection problem)

Make sure you read pages 53–55 in the book!

Examples:
(a) Given is the sequence [7, 15, 11, 9, 3]. Find the fourth smallest entry (“the entry

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 15

with rank k = 4”)! Entries 7, 9, 3 are smaller than 11, entry 15 is bigger than 11, so
11 is the fourth smallest entry.
(b) Given is the sequence [7, 15, 11, 9, 7, 3, 7]. Find the third smallest entry (“the entry
with rank k = 3”). Entries 7, 7, 3, 7 are ≤ 7, and 15, 11, 9 are bigger than 7. So 7 is
the answer.

The selection problem is the following: Given is an array A[1..n] with entries
a1, . . . , an from some ordered set (repetitions are allowed; in the examples, the entries
will be numbers), as well as a number k from {1, . . . , n}. We want to find the kth
smallest entry in the array, or, technically, the element of rank k. This is an entry
ai such that aj ≤ ai for at least k many indices j and aj > ai for at most n − k
indices j.

Using the concept of sorting, we could alternatively say that if b1 ≤ · · · ≤ bn is
a1, . . . , an in sorted order, then bk is the element of rank k. But for selection one does
not need to sort.

Special cases: With k = 1 we are looking for the minimum . With k = n we are
looking for the maximum . With k = ⌈n/2⌉ we are looking for the median of
the sequence a1, . . . , an, the element “in the middle”.6 The role of the median as
an important statistical parameter in a sequence of measurements is explained in
the book. (It can be considered a “typical” measurement, which is more robust with
respect to outliers than the average.)

The obvious method to calculate the entry of rank k is to sort the input sequence
a1, . . . , an. This takes time Θ(n log n) with Mergesort (worst case). We aim at a
procedure that takes linear time (“in expectation”).

The idea, based on divide-and-conquer, is the following. It has great similarities with
Quicksort (see Section 2.4x to follow), but also some differences, in particular we
must use three-way-partitioning.

(0) Triviality test: If n ≤ n0, just sort the array A[1..n] by some simple procedure
like mergesort and read off the result A[k].

Assume now that n > n0.

(1) Split/Divide: We choose a position s in {1, . . . , n} at random, and call the entry
x := A[s] the splitter or pivot . Then we compare all other entries of the array
with x (at the cost of n− 1 comparisons and O(n) running time), and find out which
entries are smaller than x, equal to x, and larger than x. The smaller entries go to
subarray AL, the larger entries to subarray AR, the entries equal to x to subarray
Ax. Actually, we rearrange the elements in A so that AL, Ax, AR just sit next to each
other:

AL = A[1..p1 − 1], Ax = A[p1..p2], AR = A[p2 + 1..n].

6In statistics, one often has a (long) sequence a1, . . . , an of measurements in R, and one needs the
“α-quantile”, which is the element of rank ⌈αn⌉, for 0 < α ≤ 1.

16 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

Example: Assume A[1..n] = [7, 15, 6, 11, 8, 9, 2, 7, 10, 3, 6] and s = 3, hence x =
A[3] = 6. Then (e.g.)

AL = A[1..2] = [3, 2], Ax = A[3..4] = [6, 6], AR = A[5..1] = [7, 9, 15, 11, 10, 8, 7].

Note that the order inside the subarrays is arbitrary; it depends on the details of the
procedure we use to split.

(2) Recursion: Now we need recursive calls. What are the subproblems? Actually,
there is at most one subproblem. If k < p1, we get the solution by calling the algorithm
recursively on AL = A[1..p1 − 1], with k. If p1 ≤ k ≤ p2, we are done and can output
A[k]. If p2 < k, we recursively look for the element of rank k′ = k−p2 in the subarray
AR = A[p2 + 1..n].

In the example: If k = 2, we use recursion for [3, 2] and k = 2; if k = 4, we output
A[k] = 6; if k = 9, we use recursion for [7, 9, 15, 11, 10, 8, 7] and the new value
k′ = 9− 4 = 5.

(3) Combine: There is nothing to do.

To simplify the program text, we do not generate new arrays for recursive calls, but
rather pass the limits of the “current subarray” as arguments. This means the input
for a recursive call consists of two indices ℓ and r with 1 ≤ ℓ ≤ r ≤ n such that
ℓ ≤ k ≤ r. (This is what we did in mergesort.) In the procedure a splitter x = A[s]
is chosen, by randomly choosing s in [ℓ, r] = {ℓ, . . . , r}. Then the subarray A[ℓ..r] is
split into three parts

AL = A[ℓ..p1 − 1], Ax = A[p1..p2], AR = A[p2 + 1..r].

If k < p1, we call the procedure recursively on AL, if p1 ≤ k ≤ p2, we output A[k], if
p2 < k, we call the procedure recursively on AR. The method is given in pseudocode
in Algorithm 5.

The details of the “partitioning” done in lines 9–13 of rqselect are not important. We
just have to know that it takes r − ℓ comparisons and time O(r − ℓ). It can even be
arranged that this procedure takes only constant extra space.

In order to solve the selection problem for A[1..n] and k we call rqselect(1, n, k), see
Algorithm 6. It is almost obvious that the procedure gives the correct output.7 The
only question is how long it takes. (Only) For this analysis we make the assumption
that the entries a1, . . . , an are different. Note that this means that we always have
p1 = p2, in all calls to rqselect.

It is possible to carry out an analysis similar to the one we will do for Quicksort, see
Section 2.4x to follow. The result is that at most 4n comparisons are used and that

7If you want to prove it, use induction on recursive calls. The induction hypothesis is: All elements
in A[1..ℓ − 1] are smaller than all elements in A[ℓ..r], and all elements in A[ℓ..r] are smaller than
all elements in A[r + 1..n], and ℓ ≤ k ≤ r.

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 17

Algorithm 5: recursive Quickselect(ℓ, r, k)

1 function rqselect(ℓ, r, k)
2 Input: Numbers ℓ, r, k, 1 ≤ ℓ ≤ k ≤ r ≤ n, global array A[1..n]
3 Output: The element of rank k − ℓ+ 1 in A[ℓ..r].
4 // Triviality check:
5 if r − ℓ ≤ n0 then sort A[ℓ..r]; return A[k].
6 // Split:
7 Pick s at random from {ℓ, . . . , r};
8 x← A[s];
9 rearrange A[ℓ..r] so that
10 entries in A[ℓ..p1 − 1] are smaller than x,
11 entries in A[p1..p2] are equal to x,
12 entries in A[p2 + 1..r] are bigger than x,
13 for some ℓ ≤ p1 ≤ p2 ≤ r;
14 // possibly one recursive call:
15 Case k < p1: return rqselect(ℓ, p1 − 1, k);
16 Case p1 ≤ k ≤ p2: return A[k];
17 Case p2 < k: return rqselect(p2 + 1, r, k).

Algorithm 6: Quickselect(A[1..n], k)

1 function quickselect(A[1..n], k)
2 Input: Array A[1..n] of objects on which an order is defined, number k,

1 ≤ k ≤ n
3 Output: The element of rank k in A[1..n].
4 Method: call the recursive procedure for the whole array:
5 return rqselect(1, n, k).

18 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

the expected running time is O(n). We prefer to give a more direct analysis here, in
which we can utilize the master theorem. The result is the following.

Theorem 2.4.1
The expected running time of quickselect(A[1..n], k) is O(n).

Remarks: Quickselect is very fast in practice, and a careful implementation of this
algorithm should be (and is being) used for all reasonable statistical computations of
quantiles of a sequence of measurements. Don’t sort for this purpose! (Excepting if
the number of elements is very small, or if many quantiles of the same sequence are
needed.)

How does one prove the result stated in Thm. 2.4.1? To get a rough idea of what is
going on, we first consider a totally unrealistic situation, namely that the randomly
chosen element x happens to be the median of the current subarray all the time,
i.e., that p1 = p2 = ⌈(r − ℓ + 1)/2⌉ in all recursive calls. In this case we get the
following recurrence for the running time T (n) of rqselect(ℓ, r, k) with subarray length
n = r − ℓ+ 1:

T (n) =

{
O(n log n) for n ≤ n0

T (⌊n/2⌋) +O(n) for n > n0.
(2.11)

To make things simple, we assume n0 = 1. (But don’t implement quickselect with
this choice!) Then we can apply the master theorem with a = 1, b = 2, d = 1. Since
logb a = log2 1 = 0 < 1 = d, we are in Case 1, and get T (n) = O(n1) = O(n). This
is a nice result, and it actually gives the best case for Quickselect. Unfortunately, we
used the unrealistic assumption that the splitter always is the median, and this is by
no means true.

Now we look at the real situation. Again we assume all entries in A[1..n] are different.
We say the “partitioning” done for A[ℓ..r] in lines 9–13 is bad if the splitter is among
the smallest ⌊14(r − ℓ + 1)⌋ entries or the largest ⌊14(r − ℓ + 1⌋) entries in A[ℓ..r].
Otherwise we call the partitioning “good”.

Example: A[ℓ..r] = [5, 3, 7, 6, 9, 2, 8, 1, 12, 4, 10]. Then r − ℓ + 1 = 11, and ⌊14(r −
ℓ + 1)⌋ = ⌊11/4⌋ = 2. Splitters 1, 2, 10, 12 give bad partitionings, splitter 2 for
example leads to the very unbalanced partitioning AL = [1], Ax = [2], AR =
[5, 3, 7, 6, 9, 8, 12, 4, 10]. The other elements as splitters lead to good partitionings.

If the partitioning is good, at least ⌊14(r − ℓ + 1)⌋ + 1 > 1
4(r − ℓ + 1) of the entries

are in the subarray that is not considered in the recursive call, which means that the
length of the subarray for which the procedure is called recursively is ≤ 3

4(r− ℓ+1).
Since exactly 2⌊14(r− ℓ+1)⌋ ≤ 1

2(r− ℓ+1) elements as splitters out of r− ℓ+1 many
lead to a bad partitioning, the probability that the partitioning is good is at least 1

2 .

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 19

Fact. Assume we toss a coin repeatedly until heads appears.
(a) If the coin is fair (probability 1

2 for heads and for tails), the expected number of
rounds until heads appears for the first time is 2.
(b) If the the coin is biased so that the probability for heads is at least 1

2 , the expected
number of rounds until heads appears is ≤ 2.

This implies that if we start with A[ℓ..r], call rqselect(ℓ, r, k) and carry out recursive
calls until a good partitioning happens, the expected number of recursive calls will
be at most 2. Since the size of the subarrays dealt with here is r− ℓ+1 and smaller,
the expected time for all this will be O(r − ℓ+ 1).

Let T (n) denote the maximum expected8 time spent for rqselect(ℓ, r, k), if we start
with a subarray A[ℓ..r] of length n or smaller. We get the following recurrence.

T (n) ≤
{

O(1) for n = 1
1 · T (⌊34n⌋) +O(n) for n > 1.

(2.12)

Note: The “O(n)” in the case n > 1 is the expected computation time from the
first call rqselect(ℓ, r, k) (with n = r − ℓ + 1) up to and including to the first call
rqselect(ℓ′, r′, k) where the partitioning is good.

As mentioned in Section 2.2, the master theorem also holds if b > 1 is not an integer.
We read off parameters a = 1, b = 4

3 , d = 1, and with logb 1 = 0 < 1 = d we see that
we are in Case 1, which gives T (n) = O(nd) = O(n). This is Theorem 2.4.1. □

2.4x “The UNIX sort command” (Box on page 56)

Quicksort is another divide-and-conquer algorithm for sorting. Its main features are:
It is fast in practice, in particular for sorting small items. It is randomized – the al-
gorithm repeatedly chooses random numbers. Its expected running time is O(n log n).
(Do not worry about its worst-case running time of O(n2). When implemented prop-
erly, this bad case has a probability so small that it will never occur.)

We want to sort an array A[1..n]. For simplicity we assume the entries are natural
numbers, and that all input numbers are different. (See below for a comment about
dealing with inputs with equal numbers.)

Quicksort is formulated as a recursive procedure rqsort (“recursive quicksort”) with
parameters ℓ and r, 1 ≤ ℓ, r ≤ n. The purpose of the call rqsort(ℓ, r) is to sort the
subarray A[ℓ..r] (and never touch A[1..ℓ− 1] and A[r + 1..n]).

It follows the divide-and-conquer paradigm.

8Of course this leads to an application of the master theorem this was not intended for. Fortunately
the formulation of the master theorem is so general it can also be applied here.

20 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

(0) Triviality test: If r ≤ ℓ then the subarray to be sorted is empty or has only one en-
try. We do nothing. (Note: This is obviously correct. Actually, in the implementation,
we arrange things so that rqsort(ℓ, r) is not called at all if r ≤ ℓ.)

(1) Splitting: This is called“partitioning” in Quicksort. – Choose uniformly at random
an index s from the set [ℓ, r] = {ℓ, ℓ+1, . . . , r}. Entry x = A[s] is called the “splitter”
or “partitioning element” or “pivot”. Put entries smaller than x to the left, entries
larger than x to the to the right, and x in between. More technical: The entries in
A[ℓ..r] are rearranged so that for some p ∈ [ℓ, r] we have:

A[ℓ], . . . , A[p− 1] < x, and A[p] = x, and AA[p+ 1], . . . , A[r] > x.

Example: A[4..10] = [5, 3, 8, 2, 10, 6, 5]. The random experiment gives s = 6, so x =
A[6] = 8 is the splitter. We rearrange (“partition”), and a possible result is A[4..10] =
[5, 3, 2, 6, 5, 8, 10] with p = 9 the new position of the splitter x = 8.

(2) Recursion: We call rqsort recursively on subarrays A[ℓ..p− 1] and A[p+ 1..r].

Remark : Actually, in the program, one checks whether ℓ < p − 1 and ℓ + 1 < r,
respectively, and carries out the respective recursive call only if it is necessary. This
saves time since it avoids useless recursive calls.

(3) Combining: Do nothing.

Remark : We insert here the correctness proof, which is done by induction on the size
r− ℓ+1 of the subarray to be sorted. We know that the algorithm works correctly in
the base case r ≤ ℓ. If ℓ < r we have that by the induction hypothesis the recursive
calls give the correct result. So A[ℓ..p− 1] and A[p+ 1..r] are sorted and all entries
in A[ℓ..p − 1] are smaller than x = A[p] and all entries in A[p + 1..r] are greater
than x = A[p]. But then the whole subarray A[ℓ..r] is sorted.

In order to sort A[1..n] we check if n ≤ 1 (in which case we do nothing), and in case
n > 1 we call rqsort(1, n).

We can now formulate the algorithm in pseudocode. We do not discuss the partition-
ing procedure in detail, since it is a little intricate, but we are not interested in the
details here. One can formulate it in such a way that no superfluous key comparisons
are made, only (1) extra space is used, time O(r − ℓ) and exactly r − ℓ comparisons
are made. (All entries in the subarray excepting x are compared with x.)

Correctness is settled already. We analyze the running time.

The running time of a call rqsort(ℓ, r) is Θ(r− ℓ), if one excludes the recursive calls;
the number of comparisons in the partition procedure for (ℓ, r, p) is exactly r − ℓ.

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 21

Algorithm 7: partition(ℓ, r, p)

1 // Can be called for 1 ≤ ℓ ≤ r ≤ n.
2 // Rearranges subarray A[ℓ..r], for “splitter” x := A[ℓ].
3 // Variable p is a return value, contains p at the end, ℓ ≤ p ≤ r.
4 // x in A[p] and A[ℓ], . . . , A[p− 1] ≤ x and x < A[p+ 1r], . . . , A[r].
5 // Cost, if ℓ < r: exactly r − ℓ key comparisons; time Θ(r − ℓ).

Algorithm 8: rqsort(ℓ, r)

1 // “randomized quicksort”, a recursive procedure.
2 // Can be called for 1 ≤ ℓ < r ≤ n, sorts A[ℓ..r].
3 pick s at random from {ℓ, ℓ+ 1, . . . , r}
4 interchange A[ℓ] and A[s]
5 partition(ℓ, r, p)
6 if ℓ < p− 1 then rqsort(ℓ, p− 1)
7 if p+ 1 < r then rqsort(p+ 1, r)

The total running time is

∑
1≤ℓ<r≤n

rqsort(ℓ,r) is called

Θ(r − ℓ) = Θ

 ∑
1≤ℓ<r≤n

rqsort(ℓ,r) is called

(r − ℓ)

 = Θ(C),

where

C =
∑

1≤ℓ<r≤n
rqsort(ℓ,r) is called

(r − ℓ)

is the total number of comparisons carried out in the whole algorithm. (We used the
summation rule for O notation.)

See Fig. 2.3 for an illustration of all the calls to rqsort that may happen. The total
number of comparisons is the sum of the lengths (minus 1) of all appearing subarrays
that have length > 1.

The first observation is the following. It may happen that in each call of rqsort the
splitter is the smallest or the largest entry in the subarray. In this case there will be
n− 1 calls to rqsort, with r − ℓ = n− 1, then n− 2, then n− 3, . . . , then 2, then 1.

Algorithm 9: rquicksort(A[1..n])

1 // “randomized Quicksort”, sorts an array A[1..n]).
2 if n > 1 then rqsort(1, n)

22 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

56 8

976

9 12 144

4 6 9

5

11

2

13111412

7

4821

1311141215

15

59326148

148 1312 1110 976 54 31 2

11

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

����

��
��
��
��

Figure 2.3: Quicksort action as a tree. Each array of length > 1 stands for a call to
rqsort; the cost is the length of the array. Splitters are pink.

The overall number of comparisons is
∑n−1

i=1 i = n(n−1)/2 = Θ(n2). This means that
in the worst case the running time of Quicksort is Θ(n2).

What is the best case? If in each situation the splitter splits the interval (of length
r − ℓ + 1) into two parts of length about (r − ℓ + 1)/2, we get the same recurrence
relation for the running time of rqsort on subarrays of length m as in Mergesort:
T (1) is a constant, and for m > 1 we have T (m) ≤ 2T (m/2) + O(m). The solution
is T (m) = O(m logm) by the master theorem. Hence the call rquicksort on n entries
will take time Θ(n log n) in the best case.

We will now find out what the behavior of quicksort is in expectation. This means
the following: The many random experiments done in choosing the splitters create
a probability space, and the trees like in Fig. 2.3 vary according to the outcomes of
these random experiments. The number C of comparisons then is a random variable,
depending on the random choices of the algorithm. We set out to determine E(C),
the expectation of C. (Since the running time of the algorithm is proportional to C,
the expected running time is proportional to E(C).)

We analyze E(C) for the case where all entries are distinct. Let b1 < · · · < bn be
the input elements in A[1..n] in ascending order. (For the figures it is assumed that
the entries in A[1..15] actually are 1, . . . , 15. This is o.k., since the algorithm only
compares numbers and does not care about the actual numbers. So in the figures we
have bi = i, for i = 1, . . . , 15.)

Define random variables, for 1 ≤ i < j ≤ n, of course also over the probability space
created by the random choices of the algorithm:

Xij =

{
1, if bi, bj are compared,
0, otherwise.

(2.13)

Then C =
∑

1≤i<j≤nXij . (Indeed: Each comparison that takes place is counted as 1.)

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 23

764 8 951

4 123 155

112 1413 15

11 13 1412

11 12654

4 5

3

8

2 8 10 1176 141391

119

9

64

1498

76

2

21

12

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

����

��
��
��
��

Figure 2.4: Quicksort action as a tree. Look at the ideal situation where the input is
sorted (as (b1, . . . , b15) = (1, . . . , 15)). The probabilities are the same as in Fig. 2.3.

764

6

32 8 95

5

4 123 1552 8 10 1176 141391

7 86

4

4 5 9

1

�
�
�

�
�
�

�
�
�

�
�
�

Figure 2.5: Quicksort action as a tree, idealized. I4,6 = {b4, b5, b6} (here = {4, 5, 6}).
The probability that 4 and 6 are compared is 2

|{4,5,6}| =
2
3 .

11 1413

4 12

11

3 1552 8 10 1176 14139

14

1

12

13

15

12

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

Figure 2.6: Quicksort action as a tree, idealized. I11,14 = {11, 12, 13, 14}. The proba-
bility that 11 and 14 are compared is 2

|{11,12,13,14}| =
2
4 .

24 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

32 8 951

4 12

7

1552 8 10 1176 14139

4

1

6

3
�
�
�

�
�
�

�
�
�

�
�
�

Figure 2.7: Quicksort action as a tree, idealized. I3,8 = {3, 4, 5, 6, 7, 8}. The probability
that 3 and 8 are compared is 2

|{3,4,5,6,7,8}| =
2
6 .

Hence (linearity of expectations):

E(C) =
∑

1≤i<j≤n

E(Xij) =
∑

1≤i<j≤n

Pr(Xij = 1). (2.14)

We need to find the value of Pr(Xij = 1) = Pr(bi, bj are compared), for 1 ≤ i < j ≤
n.

For this, consider Iij = {bi, . . . , bj}. We observe this set in the course of the algo-
rithm with its repeated partitioning into subarrays of A[1..n]. (For illustration, see
Figures 2.4 to 2.7.9) At the beginning, all elements of Iij are in the original big ar-
ray A[1..n]. Now assume A[ℓ..r] contains all elements of Iij , and partition(ℓ, r, p) is
called. If the splitter x is smaller than bi or larger than bj , all elements of Iij go to the
same subinterval, and we keep on observing. Only when an element of Iij is chosen
as the splitter x, “something happens”. If x = bi or x = bj , the elements bi and bj are
compared, if x is some element in between bi and bj , the partitioning by x places bi in
the left subarray and bj in the right subarray, so they are never compared afterwards.

Since all elements of Iij have the same chance of being picked as splitter (no matter
what the current subarray looks like!):

Pr(Xij=1) = Pr(bi, bj are compared) =
|{bi, bj}|
|Iij |

=
2

j − i+ 1
.

9In the figures, the elements in the subarrays are drawn in increasing order. Since the splitter is
chosen at random, the order of the elements in the subarray does not matter.

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 25

Plugging this into (2.14) and computing yields

E(C) =
∑

1≤i<j≤n

2

j − i+ 1

≤
∑

1≤i<n

∑
i<j≤n

2

j − i+ 1

≤
∑

1≤i<n

∑
1≤k<n

2

k + 1

= 2(n− 1)(Hn − 1),

whereHn = 1+ 1
2+

1
3+· · ·+

1
n is the“n-th harmonic number”. It is not hard to see that

lnn < Hn < lnn+ 1, for n ≥ 2. (See Appendix.) Note that 2n lnn = (2 ln 2)n log2 n,
where 2 ln 2 = 1.38629....

Theorem 2.4.2
For randomized quicksort on n distinct input elements we have: The expected number
of comparisons is smaller than 1.39n log2 n; the expected running time is O(n log n).

Remarks:

� Quicksort is very fast in practice, hence it is heavily used, e.g. in the UNIX sort
command or in standard algorithms libraries with C++ or Java.

� One should not worry about the worst case of O(n2). A more precise analysis
shows that C is quite well concentrated around its mean and that with with
probability 1− o(n) we will have no more than cn log n comparisons, as n gets
large.

� Our algorithm formulation and the analysis assume that all entries are different.
The possibility of equal entries requires special care. For example, if all entries
are equal, and no care is taken, we could get quadratic running time. A standard
method for dealing with this issue is that in partitioning one splits the subarray
A[ℓ..r] into three parts, not two, with border points p1 ≤ p2 for the area taken
by copies of the splitter, instead of one position p.

A[ℓ], . . . A[p1 − 1] < x, and A[p1] = · · · = A[p2] = x, and
A[p2 + 1], . . . , A[r] > x.

Example: If A[4..17] = [3, 5, 1, 6, 3, 4, 9, 3, 4, 7, 5, 6, 5, 2], choosing s = 5 (or s =
14 or s = 16) will give splitter x = 5, and a possible result of partitioning is
[3, 1, 3, 4, 3, 4, 2, 5, 5, 5, 6, 9, 7, 6] with p1 = 11 and p2 = 13.

With this modification, the running time analysis also works well for the more
general case with repeated elements.

26 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

� Sometimes one sees versions of Quicksort in which the splitters are not randomly
chosen. Here one has to be careful with the (deterministic) choice of the position
s of the splitter. For example, taking s = ℓ will always result in poor (quadratic)
running times on inputs that are already sorted. The least one should do is to
take s = ⌊(ℓ+ r)/2⌋ as position of the splitter, or, better still, take the median
of the three elements A[ℓ], A[⌊(ℓ+ r)/2⌋], and A[r] as splitter.

A lower bound for sorting

(Gray box on pages 52 and 53 in the book.)

We consider our standard question: Can we sort faster than in O(n log n) time, which
is what we get with Mergesort (worst case) and Quicksort (expected case)? The
answer is no, for a certain kind of sorting algorithms.

We say an algorithm that handles items with keys from an ordered domain (integers,
real numbers, strings, etc.) is comparison based if the only operations it applies to

items is comparing two keys (with
?
<,

?
>,

?
=, and their negations

?
≤,

?
≥,

?
̸=). Apart from

that, items can be moved around and copied.10

Now let us assume we have a comparison-based algorithm A that sorts all n-tuples of
objects. This algorithm can be transformed into a comparison tree that captures all
the comparisons made by the algorithm, on all possible inputs. Actually, to get a clean
picture, we choose as inputs sequences (a1, 1), (a2, 2), . . . , (an, n), where a1, . . . , an are
1, . . . , n in one of the n! = 1 · 2 · 3 · . . . · n possible orders. This sequence of pairs is to
be sorted according to the first components a1, . . . , an, the second component is just
dragged along. The result is a sequence (1, s1), . . . , (n, sn).

Example: Input (6, 1), (5, 2), (2, 3), (4, 4), (1, 5), (3, 6) is transformed into output (1, 5),
(2, 3), (3, 6), (4, 4), (5, 2), (6, 1). Then (s1, . . . , s6) = (5, 3, 6, 4, 2, 1). Note that ai = j if
and only if sj = i, for 1 ≤ i, j ≤ 6.

To get the tree, we let algorithm A run until the first key comparison occurs. It is

ai
?⋄ aj for some comparison operator ⋄. Since all keys in the input are different, we

can ignore the possibility that ai = aj , which leaves us with comparators < and >. By

exchanging the cases if necessary, we can assume that the comparison is ai
?
< aj with

i < j. We create a root with inscription ai
?
< aj , and a right subtree that (recursively)

constructs the tree from the rest of the algorithm under the assumption that ai < aj
is true and a left subtree constructed under the assumption that ai < aj is wrong.
When the algorithm stops and gives output (1, s1), . . . , (n, sn), we create a leaf and

10What is forbidden in comparison-based algorithms is e.g. assuming that the keys are numbers,
so that they can be added or multiplied, or assuming keys are integers given as bitstrings, so that
one can extract the most significant bit or use the key as an index in an array.

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 27

label it with (s1, . . . , sn).

2 x3x1

2 3 1 2 1 3

3 1 23 2 1

1 2a < a

2 3

1 3a < a

1 3a < a

2 3a < a

a < a

no yes

In leaves: second components

1 2 31 3 2

x

no yes

yes
yes

yes

no no

no

Input items:

?

?

?

?

?

Figure 2.8: Sorting items x1 = (a1, 1), x2 = (a2, 2), x3 = (a3, 3) according to the first
component, with mergesort. We assume a1, a2, a3 are different, so we do not worry
about equal keys. All possible computations can be collected in a comparison tree
or sorting tree. In the leaves we note the order of the second components when the
algorithm stops.

In Figure 2.8 we have drawn the tree that results from running mergesort on three
inputs (x1, x2, x3) = ((a1, 1), (a2, 2), (a3, 3)). (The input is split into segments (x1, x2)
and x3. First a1 and a2 are compared. If a1 < a2, sequences (x1, x2) and x3 are merged,

which leads to comparison a1
?
< a3 and, if necessary, a2

?
< a3 in the right subtree. If

a1 > a2, then x1 and x2 are interchanged. Then (x2, x1) and x3 are merged, which

gives rise to the comparison a2
?
< a3 and, if necessary, a1

?
< a3, in the left subtree. We

get 3! = 6 leaves. Algorithm mergesort with 4 inputs will lead to a tree with 4! = 24
leaves.

Note that every computation of the algorithm gives rise to a path in the tree from
the root to a leaf. Different inputs induce paths to different leaves, since si = j if and
only if aj = i, for 1 ≤ i, j ≤ n. Thus there are exactly n! leaves.

It is very easy to see that if a binary tree has depth (length of a longest path from the
root to some leaf) d then it can have no more than 2d leaves. From this we get that
a tree with N leaves must have depth at least log2N . With N = n! we can conclude
from what we had before that the tree for A has a path of length at least log2(n!),
or that on some input

A makes at least log2(n!) comparisons.

28 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

Yes, fine, but what is log2(n!)? We note (for n ≥ 1):

nn

n!
<

∑
i≥0

ni

i!
= en,

hence n! > (n/e)n. Taking logarithms (to the base 2), we get

log(n!) > n log n− n(log e).

Note that log e is a constant of value ≈ 1.44269504.

Theorem 2.4.3
Let A be a comparison-based algorithm that sorts arbitrary n-tuples of objects.
Then we have:

(i) There is an input on which A makes at least log(n!) > n log(n) − 1.443n com-
parisons. Thus the running time of A is Ω(n log n).

(ii) If all n! permutations of {1, . . . , n} are equally likely, then the average number
of comparisons made by A is at least log(n!).

(iii) If A uses randomization (like Quicksort in Section 2.4x), there is an input on which
the expected number of comparisons made by A is at least log(n!).

Comparing this lower bound with the statement that Mergesort on n inputs never
makes more than n log n comparisons, one sees that the number of comparisons of
Mergesort is never more than 1.443n more than the minimum possible.

Remark : There are algorithms that can sort n (small) integers in O(n) time. They
use the integer keys as indices, thus are not comparison-based.

Appendix: Bounding Hn and n!

The harmonic numbers We defined Hn = 1 + 1
2 + 1

3 + · · · + 1
n . In order to obtain

an estimate for Hn in terms of more familiar quantities, we use an integration trick.
Since t 7→ 1/t is monotonically decreasing in [1,∞), we have, for all i ≥ 2:

1

i
≤

∫ i

i−1

dt

t
≤ 1

i− 1
.

We sum these inequalities over 2 ≤ i ≤ n and combine the integrals, to obtain:

Hn − 1 =

n∑
i=2

1

i
≤

∫ n

1

dt

t
≤

n∑
i=2

1

i− 1
= Hn−1 = Hn −

1

n
< Hn.

2.4. MEDIANS (OR: THE SELECTION PROBLEM) 29

The integral
∫ n
1

dt
t equals lnn. Hence:

Hn − 1 ≤ lnn ≤ Hn, for all n ≥ 1.

We say that Hn is a “discrete version” of the natural logarithm, which is really a very
fundamental function.

The following is not part of the mandatory material. Read it if you are interested.

The factorial function We defined n! = 1 · 2 · 3 · . . . · n. This is a very fast growing
function. Sometimes it is advantageous to have good estimates for n!, as in the proof
of the lower bound n log2 n− n log2 e for sorting.

One can easily obtain quite sharp bounds for n!, correct up to a small constant factor.
The trick is to compare the integral

∫ n
1 ln t dt with log(n!) =

∑
1≤i≤n ln i.

Upper bound: t 7→ ln t is a concave function, so if we take the linear interpolation
between (i−1, ln(i−1)) and (i, ln i), we are below ln t always. Integrating and summing
we get: ∑

2≤i≤n

ln(i− 1) + ln i

2
≤

∑
2≤i≤n

∫ i

i−1
ln t dt =

∫ n

1
ln t dt,

which (using ln 1 = 0) means

ln(n!) =
∑

1≤i≤n

ln i ≤
∫ n

1
ln t dt+

lnn

2
.

The antiderivative
∫
ln t dt is t(ln t − 1) + C, hence

∫ n
1 ln t dt = n(lnn − 1) + 1. By

exponentiating we obtain

n! ≤ en1/2
(n
e

)n
= e
√
n
(n
e

)n
< 2.7183

√
n
(n
e

)n
.

Lower bound: By concavity of t 7→ ln t we know it runs below its tangent in every
point. So ∫ i+ 1

2

i− 1
2

ln t dt ≤ ln i, for 1 < i < n,

and
∫ 3

2
1 ln t dt = 3

2(ln(
3
2) − 1) + 1 and

∫ n
n− 1

2
ln t dt ≤ 1

2 lnn. Putting this together we

get

n(lnn− 1) + 1 =

∫ n

1
ln t dt ≤ 3

2(ln(
3
2)− 1) + 1 + ln(n!)− 1

2
lnn,

hence

n(lnn− 1)− 3
2(ln(

3
2)− 1) +

1

2
lnn ≤ ln(n!).

Exponentiating we get

30 CHAPTER 2. DIVIDE-AND-CONQUER ALGORITHMS

2.4395
√
n
(n
e

)n
≤ n!.

These upper and lower bounds for the factorial function are already quite satisfying,
since they agree up to a constant factor.

“Stirling’s formula” determines the constant exactly and gives much more precise
bounds:

e
1

12n+1 ≤ n!√
2πn

(
n
e

)n ≤ e
1

12n .

Note that e
1

12n ≈ 1 + 1
12n → 1 for n→∞.

