
(M. Dietzfelbinger, 2018-12-05)

Remarks on

2.6 The Fast Fourier Transform

Note: You should refer to the presentation in the book as well.

2.6.1 Multiplying polynomials and an alternative representation

The purpose of Section 2.6 in the book is to develop a fast algorithm for multiplying
polynomials with one variable. What is a polynomial? What does it mean to multiply
polynomials?

Examples for polynomials:

A(x) = −3 + 4x2 + 5x3 and B(x) = −3− 3x2 + 7x5.

Goal: Multiply the polynomials, i.e., calculate:

A(x) · B(x) = (−3) · (−3) + (4 · (−3) + (−3) · (−3))x2 + (5 · (−3))x3

+ (4 · (−3))x4 + (5 · (−3) + ((−3) · 7)x5 + (4 · 7)x7 + (5 · 7)x8

= 9− 3x2 − 15x3 − 12x4 − 36x5 + 28x7 + 35x8.

The rule behind the calculation: Multiply out all terms, and collect coefficients with
the same power xk of x.

More generally, a polynomial A(x) (over Z, or Q, or R, or C) is a sum of finitely many
terms aixi with coefficients ai (from Z, Q, R, or C, respectively) and powers xi of the
variable x (which is just a symbol). In general formulas polynomial multiplication
reads as follows.

1

Given are two polynomials

A(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d and B(x) = b0 + b1x+ b2x
2 + · · ·+ bdx

d,

by their sequences (a0, . . . , ad) and (b0, . . . , bd) of coefficients.1 The product A(x)·B(x)
is the polynomial

C(x) = c0 + c1x+ c2x
2 + · · ·+ c2dx

2d,

where the coefficients c0, . . . , c2d are given by

ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0 =
∑

0≤i,j≤d
i+j=k

aibj , for 0 ≤ k ≤ 2d. (2.1)

(This is the sum of all products aibj of coefficients where the corresponding product
xixj equals xk.)

The task of polynomial multiplication is to calculate (c0, . . . , c2d) as in (2.1)
from (a0, . . . , ad) and (b0, . . . , bd).

Note that in this formulation no variable is mentioned anymore. One just transforms
two sequences of numbers into a new one. The sequence (c0, . . . , c2d) is called the
convolution of (a0, . . . , ad) and (b0, . . . , bd).

Please read page 59 in the book. There it is explained why polynomial multiplication is
extremely important in signal processing, an elementary and ubiquitous task in engineering,
and why d may be quite large, many thousands, in such engineering applications.

By the very definition of the polynomial product, it can be calculated in time2 O(d2).
For polynomials with many thousands of coefficients this is too slow, if the operation
is to be carried out frequently.

Goal: We wish to find an algorithm that multiplies polynomials in time O(d log d).

There is a fundamental trick to be used here, which tells us we should “reduce”
multiplication to evaluation and interpolation.

As a basis for this approach, one has to understand that a polynomial A(x) can be
described not only by its coefficients, but equally well by its values A(xi) at sufficiently
many given points xi.

1One should not worry if the degrees of A(x) and B(x), i.e., the highest powers xi with a nonzero
coefficient, are not the same in A(x) and B(x). Just add zero coefficients at the right to get two
coefficient sequences of equal length.

2We will always count an arithmetic operation on coefficients as one operation, and “time” es-
sentially means the number of these operations.

2

Example: The value of A(x) = −3+4x2+5x3 at x0 = 2: A(2) = −3+4·22+5·23 = 53.

Definition: If z is a number, then the value A(z) of the polynomial A(x) = a0 +
a1x+ a2x

2 + · · ·+ adx
d at z is the number a0 + a1z + a2z

2 + · · ·+ adz
d.

Recall the following: If A(x) = ax+ b is a linear polynomial, x0 and x1 are different,
and r0 = A(x0) and r1 = A(x1) are known, we can calculate the coefficients: a = r1−r0

x1−x0

and b = r0 − ax0. Also, if ax2 + bx+ c is a quadratic polynomial and we have values
r0 = A(x0), r1 = A(x1), r2 = A(x2), we can calculate the coefficients a, b, c.

The idea is that a polynomial of arbitrary degree is determined if its values at suffi-
ciently many points are known.

Fact : The following are two equivalent representations for a polynomialA(x) of degree
at most d, given d+ 1 distinct real numbers x0 . . . , xd (often called “sample points”):

(i) The vector (a0, . . . , ad) of coefficients.

(ii) d+ 1 values r0 = A(x0), r1 = A(x1), . . . , rd = A(xd).

The fact means that if one knows x0 . . . , xd and a0, . . . , ad, then one can calculate
A(x0), A(x1), . . . , A(xd) (this is clear), and if one knows x0 . . . , xd and r0, . . . , rd with
ri = A(xi) for 0 ≤ i ≤ d, then the coefficients a0, . . . , ad are uniquely determined and
one can even calculate them (this is maybe not quite so clear).

3

Idea of proof of claim: Given x0, . . . , xd, one looks at the Vandermonde matrix V (x0, . . . , xd),
which is a (d+ 1)× (d+ 1)-matrix:

V (x0, . . . , xd) =

1 x0 x20 x30 . . . xd0
1 x1 x21 x31 . . . xd1
...

...
...

...
. . .

...
1 xd x2d x3d . . . xdd

. (2.2)

Note that if A(x) = a0 + a1x+ · · ·+ adx
d and ri = A(xi) for i = 0, 1, . . . , d, then

V (x0, . . . , xd) ·

a0
a1
...
ad

=

r0
r1
...
rd

. (2.3)

It is well known, and taught in calculus and linear algebra classes that the determinant of
the Vandermonde matrix is det(V (x0, . . . , xd)) =

∏

0≤i<j≤d(xj −xi), which is nonzero if the
numbers x0, . . . , xd are different. Hence V (x0, . . . , xd) is regular, i.e., (2.3) can be used in
both directions: If a0, . . . , ad are given, we can calculate the values r0, . . . , rd; if r0, . . . , rd
are given, we can calculate a0, . . . , ad by solving a linear system.

The two computational tasks involved in this back-and-forth transformation are:

Evaluation: Calculate (ii) from (i).
Interpolation: Calculate (i) from (ii).

If we multiply two polynomials of degree at most d, the product will have degree at
most 2d. For doing interpolation with such a polynomial we need at least 2d+1 points.
We will choose some n > 2d and expand coefficient sequences and value sequences
of all concerned polynomials to length exactly n, by adding zeros as coefficients. The
degree, i.e., the highest power of x that appears, will be at most n − 1. It will be
convenient to assume n is a power of 2. This can be achieved with some n ≤ 4d.

Example: If A(x) = −3+4x2+5x3 and B(x) = −3−3x2+7x5, we have d ≥ 5, hence
2d ≥ 10, and we would choose n = 16 and coefficient sequences (−3, 0, 4, 5, 0, . . . , 0)
and (−3, 0,−3, 0, 0, 7, 0, . . . , 0) of length 16, and 16 points x0, . . . , x15.

4

If given algorithms for evaluation and interpolation, we can solve polynomial multi-
plication as follows.

(1) Fix some n > 2d and suitable (distinct) arguments x0, . . . , xn−1.

(2) Use evaluation to find y0 = A(x0), . . . , yn−1 = A(xn−1),
and z0 = B(x0), . . . , zn−1 = B(xn−1).

(3) Calculate u0 = y0 · z0, u1 = y1 · z1, . . . , un−1 = yn−1 · zn−1.

// (O(n) = O(d) time.) Then: C(x0) = u0, C(x1) = u1, . . . , C(xn−1) = un−1.

(4) Use interpolation to calculate the coefficients c0, c1, . . . , cn−1 of C(x)
from u0, u1, . . . , un−1.

Example: A(x) = x+ 1, B(x) = x+ 2.

(1) n = 4, and x0 = 0, x1 = 1, x2 = 2, x3 = 3.

(2) y0 = 1, y1 = 2, y2 = 3, y3 = 4, and z0 = 2, z1 = 3, z2 = 4, z3 = 5.

(3) u0 = 1 · 2 = 2, u1 = 2 · 3 = 6, u2 = 3 · 4 = 12, u3 = 4 · 5 = 20.

(4) Solve

1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

·

c0
c1
c2
c3

=

2
6
12
20

(2.4)

to find the solution
c0 = 2, c1 = 3, c2 = 1, c3 = 0.

(Check that this vector solves the equation, and that x2+3x+2 is the product.)

We will develop a fast algorithm for evaluation, for cleverly chosen points x0, . . . , xn−1.
(Actually, these will not be real numbers, but complex numbers.) This algorithm is
called the “fast Fourier transform (FFT)”. The fast algorithm for interpolation will
be an easy variation of the FFT.

5

2.6.2 Evaluation of a polynomial at several points: FFT

(Multiple) Evaluation of a polynomial means the following: We are given a polyno-
mial

A(x) = a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1

over the reals or the complex numbers (by its coefficient vector (a0, a1, . . . , an−2, an−1)),
and want to evaluate it at n points x0, x1, . . . , xn−1, i.e., we want to calculate

A(x0), A(x1), . . . , A(xn−1).

The vector (A(x0), A(x1), . . . , A(xn−1)) is called the value vector for argument vector
(x0, x1, . . . , xn−1).

Note that (A(x0), A(x1), . . . , A(xn−1))
T is the product V (x0, . . . , xn−1)·(a0, a1, . . . , an−1)

T

for the Vandermonde matrix from (2.2).

The naive way to calculate these n values by the Horner scheme

A(y) = ((· · · (((an−1 · y + an−2) · y + an−3) · y + an−4) · · ·) · y + a1) · y + a0,

for y = x0, . . . , xn−1 one after the other, would involve n(n − 1) multiplications and
n2 additions, and would require Θ(n2) time. The algorithm we shall develop will do it
much, much faster, if the points x0, x1, . . . , xn−1 are cleverly chosen. We shall choose
these points later. With these particular points the transformation

(a0, a1, . . . , an−2, an−1) 7→ (A(x0), A(x1), . . . , A(xn−1))

is called the “discrete Fourier transform”. The algorithm we are going to develop is
called “fast Fourier transform” or “FFT”. It follows the Divide-and-Conquer paradigm.

For simplicity, we assume from here on that n = 2k for some integer k ≥ 0.
(We can always add some coefficients with value 0, so that there are n coefficients,
for n a power of 2.)

Divide-and-Conquer says: (0) If the input is small, solve the problem directly. Oth-
erwise: (1) split, (2) use recursion, and (3) combine. Next we discuss the details.

(0) Triviality test: If n = 1, then A(x) = a0 is a constant polynomial and there is
only one input x0, so the result is A(x0) = a0. The time for this is O(1).

From here on assume n > 1.

6

(1) Splitting:The input is the polynomialA(x), given by its n coefficients a0, . . . , an−1.
Also, we have x0, x1, . . . , xn−1.

We want to form two subinstances of half the size. This means: Two polynomials with
degree n

2
− 1 each, and n

2
inputs x′

0, . . . , x
′
n/2−1.

For forming two polynomials there are many possibilities. We choose the following
specific way. (“e” is for “even”, and “o” is for “odd”.)

Ae(x) = a0 + a2x+ · · ·+ an−4x
n

2
−2 + an−2x

n

2
−1 , and

Ao(x) = a1 + a3x+ · · ·+ an−3x
n

2
−2 + an−1x

n

2
−1.

(2.5)

(Note that the exponent with the x is halved in each term.) Does it split the input?
Yes. If the original coefficient vector is (a0, a1, . . . , an−2, an−1), we get two polynomials
with coefficient vectors

(a0, a2, . . . , an−4, an−2) (even-numbered positions) and
(a1, a3, . . . , an−3, an−1) (odd-numbered positions).

(2.6)

Both polynomials have (about) half the degree of A(x), and coefficient vectors of
length n/2.

Example: Let A(x) = 3 + 5x + x2 + 6x3 − 4x4 − 2x6 + 9x7. The coefficient vector is
(3, 5, 1, 6,−4, 0,−2, 9). Then

Ae(x) = 3 + x− 4x2 − 2x3 and Ao(x) = 5 + 6x+ 9x3.

The two coefficient vectors for the recursion are (3, 1,−4,−2) and (5, 6, 0, 9).

The following fundamental formula connects A(x), Ae(x), and Ao(x):

A(x) = Ae(x
2) + x · Ao(x

2). (2.7)

One should check how this works. By substituting x2 in Ae(x) we get the even-
numbered coefficients with the correct powers of x; by substituting x2 in Ao(x) and
multiplying by x the same happens for the odd-numbered coefficients. In the example:
Ae(x

2) = 3 + x2 − 4x4 − 2x6 and x · Ao(x
2) = x · (5 + 6x2 + 9x6). If we multiply out

and add, we get

3 + x2 − 4x4 − 2x6 + 5x+ 6x3 + 9x7 = A(x).

7

If we can manage to calculate Ae(x
2
j) and Ao(x

2
j) by recursion, for 0 ≤ j < n, we

are fine, because then we can use (2.7) to calculate A(x0), A(x1), . . . , A(xn−1) in time
O(n). This looks as if we have to evaluate Ae and Ao at n points each. This doesn’t
fit, since by recursion we can handle only n/2 points. It seems we are stuck.

However, if we can arrange things so that x2
0, x

2
1, . . . , x

2
n−1 are not n different points,

but only n/2 many, it will work. So here’s big trick number one of FFT: We will
make sure that the n different points x0, x1, . . . , xn−1 come in “plus-minus pairs”:

xn/2 = −x0, xn/2+1 = −x1, . . . , xn−1 = −xn/2−1. (2.8)

Then
x2
n/2 = x2

0, x
2
n/2+1 = x2

1, . . . , x
2
n−1 = x2

n/2−1,

and x2
0, x

2
1, . . . , x

2
n−1 are only n/2 different numbers!

Example: The eight input points could be (1, 2, 3, 4,−1,−2,−3,−4). The vector of
squares is (1, 4, 9, 16, 1, 4, 9, 16), containing only four different numbers.

So we assume for the moment that the n input numbers are arranged in plus-minus
pairs as in (2.8).

Then splitting, recursion, and combining works as follows:

Splitting: Form coefficient vectors for Ae(x) and Ao(x), as given in (2.6), and form
sample point vector (x′

0, x
′
1, . . . , x

′
n/2−1) = (x2

0, x
2
1, . . . , x

2
n/2−1).

Recursion: Solve the FFT problem on the inputs Ae(x) with (x′
0, x

′
1, . . . , x

′
n/2−1) and

Ao(x) with (x′
0, x

′
1, . . . , x

′
n/2−1) recursively. This gives two value vectors

(s0, . . . , sn/2−1) = (Ae(x
2
0), Ae(x

2
1), . . . , Ae(x

2
n/2−1)) and

(t0, . . . , tn/2−1) = (Ao(x
2
0), Ao(x

2
1), . . . , Ao(x

2
n/2−1)).

(2.9)

Combining: Using (2.7) and (2.8) we can determine the result from (2.9) as follows:

A(xj) = Ae(x
2
j) + xj · Ao(x

2
j) = sj + xjtj , for 0 ≤ j < n/2;

A(xn/2+j) = Ae(x
2
j)− xj · Ao(x

2
j) = sj − xjtj , for 0 ≤ j < n/2.

Note that only n/2 multiplications and n additions are needed in the combining step.

The time analysis is simple, using the master theorem. If T (n) is the running time
for inputs of size n, we have the recurrence

T (n) =

{

1 , if n = 1;
2 · T

(

n
2

)

+O(n) , if n > 1.

8

The master theorem, second case, gives the solution T (n) = O(n logn). (The para-
meters: a = b = 2, d = 1.)

A problem yet to be solved is how we can make sure that we always have plus-minus
pairs, on each level of the recursion. For this, we have to choose the sample points
x0, x1, . . . , xn−1 in a very clever way. But how? If, say, on the outermost level, we start
out with sample points 1, 2, . . . , n/2−1,−1,−2, . . . ,−(n/2−1), then on the next level
of recursion we have the n/2−1 numbers 1, 2, 4, 9, . . . , (n/2−1)2, all positive, and no
plus-minus pairs anymore. It is quite clear that with real numbers as arguments we
can never succeed, since squares of nonzero numbers are positive, and can never form
plus-minus pairs. So we have to look beyond real numbers. Here’s big trick number
two of FFT: use complex numbers.

A brief introduction into the aspects of the geometry and arithmetic of complex
numbers that we need is given in the book (page 63) and not repeated here.

The central concept is that of an nth root of unity. This is a complex number z
with the property that zn = 1. One can show that there are exactly n such numbers,
and that they all have absolute value 1, which means that in the complex plane they
sit on the unit circle. Actually, one can describe them very precisely. Given n = 2k,
we define (with i the imaginary unit)3:

ω := e2πi/n = cos(2π/n) + i · sin(2π/n).

Geometrically seen, this is the point in the complex plane that one reaches if one
starts from 1 and walks counterclockwise along the unit circle for an angle of 2π/n
(which is a fraction of 1/n of the full circle). This is an nth root of unity, since
(e2πi/n)n = e2πi = cos(2π) + i · sin(2π) = 1.

3The Greek letter “ω” is read as “omega”.

9

2π
n

2π
n
+ π

4π
n

ω

ω2

0 1−1

i

−i

Our sample points are the n powers of ω:

x0 = ω0 = 1, x1 = ω1 = ω, x2 = ω2, . . . , xn−1 = ωn−1.

By the properties of multiplication in the complex numbers (“multiply absolute values,
add angles”) these points sit on the unit circle, at regular distances (see picture).
Arithmetically, we calculate (ωj)n = (ωn)j = 1j = 1 to see that these numbers are
exactly the nth roots of unity.4

We observe that these sample points do form plus-minus pairs. The reason is that

ωn/2 = e(2πi/n)·n/2 = eπi = cos(π) + i · sin(π) = −1,

the point an angle of π (i.e., halfway) around the unit circle. For 0 ≤ j < n/2 we get

xn/2+j = ωn/2+j = ωn/2 · ωj = −ωj = −xj ,

the point exactly opposite xj = ωj on the unit circle.

What else do we have to check? If we form the sequence (x′
0, x

′
1, . . . , x

′
n/2−1) =

(x2
0, x

2
1, . . . , x

2
n/2−1) of sample points in the splitting step, this should again be a se-

quence of roots of unity. Fortunately, this is the case. The point ω′ = ω2 = e(2πi/n)·2 =

4An nth root of unity z with the property that z0 = 1, z1 = z, z2, . . . , zn−1 are the n different
roots of unity is called a primitive nth root of unity. One can show that z = ωj is a primitive nth
root of unity if and only if j is odd.

10

e2πi/(n/2) is the (n/2)th root of unity we need to generate all the other ones, and

x′
j = x2

j = (ωj)2 = (ω2)j = ω′j

is its jth power, for 0 ≤ j < n/2. So the shorter sequence of sample points formed in
the splitting step is exactly of the type we need to get the recursion going. Note that
it picks every second point from the sequence (x0, x1, . . . , xn−1).

16 arguments

2π
n

2π
n
+ π

4π
n

ω

0 1−1

i

−i

recursion: 8 arguments

4π
n

4π
n
+ π

ω2

0 1−1

i

−i

Now everything fits. In each level of the recursion the vector of sample points is a
sequence of roots of unity, which come in plus-minus pairs.

In a very streamlined version of the algorithm we carry along the coefficient vector
and only the relevant primitive root of unity. The sample points used in the combining
step are calculated only when they are needed. (In the book this algorithm is given
in Fig. 2.9 on page 68.)

11

Algorithm 2.1 (FFT—Fast Fourier Transform).
Input: (a0, . . . , an−1): coefficients; ω: primitive nth root of unity;

// Evaluate polynomial A(x) with coefficients (a0, . . . , an−1)
at points 1, ω, ω2, . . . , ωn−1

Method: // Divide-and-Conquer
// Triviality test:

1 if n = 1 then return (a0);
// Split in two pieces and use recursion:

2 (s0, . . . , sn/2−1) := FFT((a0, a2, . . . , an−2), ω
2);

3 (t0, . . . , tn/2−1) := FFT((a1, a3, . . . , an−1), ω
2);

// Combine results:
4 y := 1; // y runs through values 1, ω, ω2, . . . , ωn/2−1

5 for j from 0 by 1 to n/2− 1 do
6 t := y · tj ;
7 rj := sj + t;
8 rn/2+j := sj − t;
9 y := y · ω;
10 return (r0, . . . , rn−1) // value vector

From the pseudocode one sees that in the splitting and the combining steps only very
simple operations are needed. Splitting is just picking out coefficients in a certain
order; combining needs n multiplications (including the computation of the powers
of ω) and n additions/subtractions.

Exercise: Given a coefficient vector (a0, . . . , an−1), show how to rearrange this se-
quence so that throughout the recursion the divide step is always just cutting the
vector in the middle. (Example: If n = 8, the order should be (a0, a4, a2, a6, a1, a5,
a3, a7).) Can you explain why this is called the “bit reversal ordering”?

12

2.6.3 Interpolation

Interpolation is the inverse of multiple evaluation. Given is a sequence (r0, r1, . . . , rn−1)
of values a polynomial A(x) takes at input points x0, x1, . . . , xn−1; we want to find
the coefficient vector (a0, a1, . . . , an−1) of A(x).

Recall from Section 2.6.1 the relation between coefficient vectors and value vectors
for sample points x0, . . . , xn−1 in terms of the Vandermonde matrix

V (x0, . . . , xn−1) =

x0
0 x1

0 . . . xn−1
0

x0
1 x1

1 . . . xn−1
1

...
...

x0
n−1 x1

n−1 . . . xn−1
n−1

,

namely

A(x0)
A(x1)

...
A(xn−1)

= V (x0, . . . , xn−1) ·

a0
a1
...

an−1

.

As said in Section 2.6.1, the matrix V (x0, . . . , xn−1) is regular. So for general sam-
ple points x0, . . . , xn−1 evaluation is matrix-vector multiplication and interpolation
amounts to solving a linear system. Matrix-vector multiplication in general takes
Θ(n2) operations, as does solving the linear system for this particular matrix. In nu-
merical analysis, one gets to know formulas that solve the interpolation problem in
time O(n2) without calculating the inverse matrix.

Luckily, for our special vector (x0, x1, x2, . . . , xn−1) = (1, ω, ω2, . . . , ωn−1) for ω a prim-
itive nth root of unity these things can be done faster. Let M(ω) be the Vandermonde
matrix V (1, ω, ω2, . . . , ωn−1) of this special sequence. In general:

M(ω) =

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω2·2 . . . ω2·(n−1)

...
...

...
1 ωn−1 ω(n−1)·2 . . . ω(n−1)(n−1)

,

the entry in row i, column j being (ωi)j = ωij. Since (ωi)j = (ωj)i, this is a symmetric
matrix.

13

We get that in our special case FFT(a0, . . . , an−1) = (r0, . . . , rn−1) can be written as
follows:

r0
r1
...

rn−1

= M(ω) ·

a0
a1
...

an−1

. (2.10)

So FFT carries out matrix-vector multiplication for this particular matrix in time
O(n logn).

We next note that the inverse M(ω)−1 ofM(ω) can be written down immediately. For
this, we consider ω̄ := ωn−1 = ω−1, which is both the multiplicative inverse and the
complex conjugate of ω. Geometrically, ω̄ is the point in the complex plane reached
when one starts at 1 and walks clockwise on the unit circle for an angle of 2π/n. We
consider the product M(ω) ·M(ω̄). For the entry in row i, column j of this matrix
there are two possibilities:

If i = j, then this entry is
∑

0≤k<n

ωik · ω̄ki =
∑

0≤k<n

ωik · ω−ki =
∑

0≤k<n

1 = n.

If i 6= j, then this entry is

∑

0≤k<n

ωik · ω̄kj =
∑

0≤k<n

ωik · ω−kj =
∑

0≤k<n

(ωi−j)k =
(ωi−j)n − 1

ωi−j − 1
= 0.

(We used the formula for geometric series, and the fact that ωi−j 6= 1, but (ωi−j)n =
(ωn)i−j = 1.) So M(ω) ·M(ω̄) is a diagonal matrix with n’s on the diagonal.

This implies: M(ω)−1 = (1/n) ·M(ω̄), and (2.10) turns into

a0
a1
...

an−1

= (1/n) ·M(ω̄) ·

r0
r1
...

rn−1

. (2.11)

If we manage to multiplyM(ω̄) fast with (r0, r1, . . . , rn−1)
T, we can solve interpolation

fast. Now (2.10) says that FFT is just a way to carry out matrix-vector multiplication
for the special matrix M(ω). If one checks what makes FFT work for this special
matrix, one sees that one does not use more information about ω than the following:

14

(i) ωn = 1.

(ii) 1, ω, ω2, . . . , ωn−1 are all distinct.

Everything else follows from (i) and (ii): ωn/2 = −1, and ω′ = ω2 has properties (i)
and (ii) for parameter n/2. Conditions (i) and (ii) are also satisfied by ω̄. This means
that a call FFT((r0, r1, . . . , rn−1), ω̄) will calculate M(ω̄) · (r0, r1, . . . , rn−1)

T, and we
have

a0
a1
...

an−1

=
1

n
· FFT((r0, r1, . . . , rn−1), ω̄).

So we can apply the FFT algorithm with a tiny modification for interpolation as
well, and just as FFT with ω this takes time O(n logn). Using FFT for doing inter-
polation is trick number three needed for doing polynomial multiplication in time
O(n logn).

Remark. If we now go back to Section 2.6.1, where we described polynomial multi-
plication by evaluation and interpolation, we find that we can carry out all steps in
O(n logn) time. Step (1) (fixing x0, . . . , xn−1) takes virtually no time. Steps (2) and
(4) take time O(n logn). Step (3) (pointwise multiplication) takes linear time.

Theorem 2.1. Two polynomials A(x) and B(x) of degree up to d, given by their
coefficient vectors, can be multiplied in time O(d log d).

15

