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Directed graph (Digraph)
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(Undirected) Graph
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Graphs and Digraphs are an ubiquitous (data) structure for modelling application
situations, inside and outside computer science.

They model:

• cities and interstate roads, crossings and innercity streets

• gates and wires on a chip

• components of a “system” and interconnections/relations

• states of a system and transitions

• flow diagrams in program design

• data flow diagrams for program analysis

• actions with incompatibility relation

• terminals of a transportation system, with capacities for transport

• people and social relations

• and many more.
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Definition 3.1.1

A directed graph or digraph G

is a pair (V,E), where V is a finite set and
E is a subset of V × V = {(v, w) | v, w ∈ V }.
The elements of V are called nodes (or vertices),
the elements of E are called edges (or arcs).
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Nodes are drawn as little circles,

edges as arrows.

If e = (v, w) is an edge (of G), then

v are w incident with e (v, w lie on e),

v and w are called adjacent,

w is also called a successor of v,

v is also called a predecessor of w.

v

An edge (v, v) is called a loop.
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The indegree of a node v
is the number of edges that enter v:
indeg(v) = |{e ∈ E | e = (u, v) for some u ∈ V }|.

The outdegree of a node v
is the number of edges that leave v:
outdeg(v) = |{e ∈ E | e = (v, w) for some w ∈ V }|.
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Lemma 3.1.1 ∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |E|.

Proof : In both sums every edge is counted exactly once. �
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Definition 3.1.2

Let G = (V,E) be a digraph.

(a) A walk in G

is a sequence p = (v0, v1, . . . , vk) of nodes, where (vi−1, vi) ∈ E for 1 ≤ i ≤ k.

Equivalent: A sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of edges.

Examples: (C, K, R, S), (C, K, Q, K, F), (F, J, L, L, L, L).
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(b) The length of (v0, v1, . . . , vk) is k (the number of edges, or number of hops).
(E.g.: (C, K, Q, K, F) has length 4.)

Walk (v) has no edge, hence its length is 0.

(c) We write v G w or v w, if there is a walk in G (v0, v1, . . . , vk) such that
v = v0 and w = vk (“a walk from v to w”).

Example: F  M, Q  L, S  S, but not L  F.

Observation The relation  is reflexive and transitive.

((v) is a walk; walks can be concatenated.)
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Definition 3.1.3

A walk (v0, v1, . . . , vk) in in a digraph G is called a (simple) path, if v0, v1, . . . , vk
are distinct.

Example: (Q,K,R,F, J).

Observation If v  w, then there is a path (v0, v1, . . . , vl) with v = v0 and w = vl
(a path “from v to w”).

(If walk (v0, v1, . . . , vk) contains u twice, replace

subsequence . . . , u, . . . , u, . . . by . . . , u, . . ., and repeat, if necessary.)
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Definition 3.1.4

(a) A walk (v0, v1, . . . , vk) in a digraph G is called a cycle if k ≥ 1 and v0 = vk.

Remark: Each loop (v, v) ∈ E is a cycle of length 1.

Example: (K, Q, C, K), (L, L), (L, L, L), (Q, K, R, F, J, M, S, K, Q) are cycles.

Remark : Cycles that differ only by a cyclic shift, as (K,Q,C,K) and (Q,C,K,Q),
are regarded as the same cycle.
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(b) A cycle (v0, v1, . . . , vk−1, v0) is called simple if v0, . . . , vk−1 are different.

Example: (J, M, S, K, R, F, J), (K, C, Q, K), (L, L) are simple cycles.

Observation:
If digraph G contains a cycle, it also contains a simple cycle.
(If (v0, . . . , vk−1) contains node u twice, replace subsequence . . . , u, . . . , u, . . . by . . . , u, . . .,

repeat if necessary.)
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Definition 3.1.5

A digraph G is acyclic, if G does not contain a cycle. Otherwise G is called cyclic.

A very important class of graphs are the

directed acyclic graphs.

(Abbreviation: DAGs or dags.)
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Definition 3.1.6
An undirected graph, often also: a graph G
is a pair (V,E), where V is a finite set and

E is a subset of [V ]2 = {{v, w} | v, w ∈ V, v 6= w} ist.

Notation: (v, w) for {v, w}.
In the picture: V = {A,B,C,E,G, J,M,O,R,W,X},

E = {(A,B), (A,C), (C,B), (A,E), (A,G), (G,E), (A, J), (A,O), (B, J),

(J,O), (J,G), (O,G), (G,M), (R,W)}.
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v

The elements of V are called nodes
(or vertices).
Nodes are drawn as little circles.

v
e

w

The elements of E are called edges.
Edges are drawn as (undirected) lines
(not necessarily straight).

Convention:
Edge {u, v} (= {v, u}) is written as (u, v).

(Only(!)) For edges of undirected graphs we have: (u, v) = (v, u).
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Definition 3.1.7

Let G = (V,E) be an undirected graph.

v
e

w

If e = (v, w) is an edge (of G), then

v and w are incident with e, v and w are adjacent; v is called a neighbor of w
and vice versa.

“Loops”, i.e. “edges” (v, v), normally are not admitted in undirected graphs.

deg(   ) = 6

v

v

The degree of a node v is
deg(v) = |{e ∈ E | e = (v, w) for some w ∈ V }|.
Nodes v with degree 0 are called isolated (they have no
neighbors).
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Lemma 3.1.8 (“handshaking lemma”)

For a graph G = (V,E) we have the following:∑
v∈V

deg(v) = 2|E|.

Proof : Each edge (u, v) in E contributes 1 to deg(u) and 1 to deg(v). �
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Definition 3.1.9

Let G = (V,E) be a graph.
(a) A walk in G is a sequence (v0, v1, . . . , vk) of nodes,
i.e. elements of V , where (vi−1, vi) ∈ E for 1 ≤ i ≤ k.

Walks in the example graph: (L, D, F, D, B) (length 4), (L, F, D, L, M, S), (length 5).

(b) The length of a walk (v0, v1, . . . , vk) is the number of edges k.
(k = 0 is legal.)
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(c) A walk (v0, v1, . . . , vk) in a graph G is called a path if v0, v1, . . . , vk are distinct.

Path in example: (L, M, S, E, H), length 4.

walks, not paths: see previous slide.

Lemma 3.1.10

Let G be a graph. If there is a walk (v0, . . . , vk) with v0 = v and vk = w (“from v
to w”), then there is a path from v to w.

(Proof as for digraphs.)
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Definition 3.1.11

Let G be a graph. If v, w ∈ V are connnected by a walk
p = (v0, v1, . . . , vk) with v0 = v and vk = w, we write v ∼G w or v ∼ w.

Lemma 3.1.12

The 2-ary relation ∼G on V is an equivalence relation, i.e. it is
reflexive: v ∼G v,
symmetric: v ∼G w ⇒ w ∼G v,
transitive: u ∼G v ∧ v ∼G w ⇒ u ∼G w.

Proof :

Reflexivity: (v) is a walk from v to v, length 0;

Symmetry: traverse any walk from v to w in opposite direction;

Transitivity: Can concatenate walks from u to v and from v to w to get walk from u to w. �
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Definition 3.1.13

(a) The equivalence relation ∼G splits V into
equivalence classes, the (connected) components of G.

Example: Graph with four connected components {B, C, R, W}, {A, G, E, J, O}, {M, X}, {Z}:

M

X
W

R

A
E

G

O

ZC

B

J

(b) A graph G with only one connected component
(i.e.,in which u ∼G v for all u, v ∈ V ), is called connected.
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Simple cycles: (6,1,2,9,10,3,4,5,6)

and  (1,6,5,4,3,10,9,2,1)

Definition 3.1.14 A walk (v0, v1, . . . , vk) in an (undirected) graph G is called a
(simple) cycle if k ≥ 3 and v0 = vk and if in addition v0, v1, . . . , vk−1 are distinct.

The starting point of a cycle is irrelevant: (B, C, D, E, K, J, H, G, B) and

(K, J, H, G, B, C, D, E, K) are regarded as “the same cycle”.

Often also: Orientation is irrelevant, i.e. (B, C, D, E, K, J, H, G, B) and (B, G, H, J, K, E, D, C, B)

are regarded as “the same cycle”.
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Definition 3.1.15

(a) A graph G = (V,E) is acyclic if it does not have a cycle.

Example: An acyclic graph:
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(b) A graph G is called a free tree or simply a tree
if it is connected and acyclic.

Example: A (free) tree with 20 nodes and 19 edges:

Remarks: The connected components of an acyclic graph are free trees. Acyclic graphs are also called

(free) forests.
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Data Structures for Digraphs and Graphs

A B

C D
E

1 2
3

45

1:
2:
3:
4:
5:

A
B

D
C

E

nodes:

Let G = (V,E) be a graph or a digraph (directed graph).

V is an arbitrary finite set. (Here: {A,B,C,D,E}.)
Arrange n = |V | nodes arbitrarily, e. g. as
V = {v1, . . . , vn} and represent them in an array:

nodes: array [1 . . n] of nodetype
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1:
2:
3:
4:
5:

A
B

D
C

E

nodes:

The name vi of the node and other attributes (“labels”) are fields (attributes) in the
entries of the nodes array.

We assume the nodes are numbered 1, 2, . . . , n and there is a nodes array.

In this representation (i, j) is an edge if and only if in the original graph G the pair
(vi, vj) is an edge.
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Definition

If G = (V,E) is a graph or a digraph with node set V = {1, . . . , n} then the
adjacency matrix of G is the n× n matrix

A = AG = (aij)1≤i≤n,1≤j≤n

with

aij =

{
1, if (i, j) ∈ E

0, if (i, j) 6∈ E.

In most programming languages:
Matrix is realized as a 2-dimensional array A[1 . . n, 1 . . n] with entries from {0, 1}.
Obvious: Read or write access to aij in time O(1).
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Example: A Digraph.

1 2 3 4 5 6
1 0 1 0 1 0 0
2 0 0 1 0 1 1
3 1 0 1 0 1 1
4 1 1 0 0 0 0
5 1 0 0 0 0 1
6 1 0 0 1 0 0

=̂

1

5

6

4

3

2

Number of 1s in row i = outdeg(i);
Number of 1s in column j = indeg(j).
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Example: An undirected graph.

1 2 3 4 5 6
1 0 1 1 1 0 0
2 1 0 1 0 1 1
3 1 1 0 0 1 1
4 1 0 0 0 1 0
5 0 1 1 1 0 1
6 0 1 1 0 1 0

=̂

1 2

45

6 3

The adjaceny matrix of an undirected graph is symmetric.

Number of 1s in row/column i = deg(i).
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Observations

If an n-node graph (directed or undireccted) is represented by an adjacency matrix,
we have:

(a) storage space is Θ(n2) [bits];
(b) in O(1) time one can find (or change) aij;
(c) finding all successors, predecessors or neighbors of a node takes time Θ(n).

(row/column traversal; order: 1, . . . , n)

The storage space is rather large if |E| � n2 (“sparse” graphs).

Reducing the space: Store w bits of the matrix in one word of bit length w, as a bit
vector.
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Extension: Edges may be labeled also by elements of M (lengths, weights, costs, capacities, etc.).

Then we use an array with entries from M ∪ {−} or M ∪ {∞} (“−” resp. “∞” means: “does

not exist”)

Example:

1 2 3 4 5 6
1 − a − c − −
2 − − f − a d
3 a − d − b c
4 e a − − − −
5 f − − − − c
6 h − − d − −

=̂

a

a

c

ea

b
c

f
d

d c
a fh

d

5

6

4

3

21
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Adjacency lists:

2 a 4 c

1 a 3 d

1 e

f3 5 a 6 d

b5 6 c

2 a

c6

4 d1 h

1 f

1:

2:

3:

4:

5:

6:
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Adjacency lists:

For each node i there is a list Li, in which
• the successors of i (in digraphs) or
• the neighbors of i (in graphs)
are stored.
Realization: Li is (singly or doubly linked) linear list, with its head pointer in
nodes[i], for 1 ≤ i ≤ n.

Observations

(i) Length of Li: outdeg(i) in digraphs, deg(i) in graphs.

(ii) In graphs we have: i occurs in Lj ⇔ entry j occurs in Li.

(iii) The neighbors/successors of a node i are implicitly sorted by their order in list
Li.
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Extensions of adjacency list structure:

1) Node labels: place in nodes array.

2) Edge labels: in extra fields (attributes) in the list items of the adjacency list.

3) In graphs: List entry j in Li can contain a pointer/reference to list entry for i in
Lj (the “reverse edge”).

4) In digraphs: In the representation of the reverse graph GR the adjacency list LR
i

for i for i contains the nodes j that are predecessors of i in G.

Exercise: Build representation of GR from the representation of G in time O(|V |+
|E|).
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Observation

If a graph or digraph G = (V,E) is represented by adjacency lists, we have:

(a) space O(|V |+ |E|) is used;

(b) traversing all edges can be done in time O(|V |+ |E|);

(c) traversing the adjacency list for node i takes time O(deg(i)) resp. O(outdeg(i));

(d) (only) if lists of predecessors (i. e. the representation of GR) is given, we can also
traverse the predecessors of node i in time O(indeg(i)).
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Adjacency array:

neighbor:

start:

1 15

2 4 3 5 6 1 3 5 6 1 2 1 6 1 4

1 2 3 4 5 6 7

1 3 6 12 14 1610
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Adjacency array representation:

Uses an array neighbor[1..m].

In neighbor the successors/neighbors of each of 1, . . . , n are listed, in this order.

More exactly: Let si = 1 +
∑

1≤j<i (out)deg(j), for 1 ≤ i ≤ n + 1.

Then in neighbor[si..si+1 − 1] we store the (indices of the) successors/neighbors
of node i.

For navigating conveniently there is another array start[1..n+1] with start[i] =
si, for 1 ≤ i ≤ n + 1.
(This array can also be part of nodes[1..n], which would then need an extra
position n + 1.)
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The adjacency array representation is useful especially in cases where the
graph/digraph does not change over time.

Advantages:
• saves storage space (no list pointers).
• Faster access to the names of the successors/neighbors.

Reason: When accessing a position in the adjacency array a whole block is copied into the cache.

Exercise: Describe a method that from the adjacency array representation of a
digraph G constructs the adjacency array representation of the reverse graph GR, in
linear time.
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