
WS 2020/21

Algorithms

Chapter 3.1
Graphs and directed graphs

Martin Dietzfelbinger

February 2021

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1

R

Q

C

F

K L

J M

S

Directed graph (Digraph)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 1

X

R

W C

B

A
E

G

M
OJ

(Undirected) Graph

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 2

Graphs and Digraphs are an ubiquitous (data) structure for modelling application
situations, inside and outside computer science.

They model:

• cities and interstate roads, crossings and innercity streets

• gates and wires on a chip

• components of a “system” and interconnections/relations

• states of a system and transitions

• flow diagrams in program design

• data flow diagrams for program analysis

• actions with incompatibility relation

• terminals of a transportation system, with capacities for transport

• people and social relations

• and many more.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 3

R

Q

C

F

K L

J M

S

Definition 3.1.1

A directed graph or digraph G

is a pair (V,E), where V is a finite set and
E is a subset of V × V = {(v, w) | v, w ∈ V }.
The elements of V are called nodes (or vertices),
the elements of E are called edges (or arcs).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 4

v

e

wv

Nodes are drawn as little circles,

edges as arrows.

If e = (v, w) is an edge (of G), then

v are w incident with e (v, w lie on e),

v and w are called adjacent,

w is also called a successor of v,

v is also called a predecessor of w.

v

An edge (v, v) is called a loop.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 5

...
...

v

...
...

v

The indegree of a node v
is the number of edges that enter v:
indeg(v) = |{e ∈ E | e = (u, v) for some u ∈ V }|.

The outdegree of a node v
is the number of edges that leave v:
outdeg(v) = |{e ∈ E | e = (v, w) for some w ∈ V }|.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 6

R

Q

C

F

K L

J M

S

Lemma 3.1.1 ∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |E|.

Proof : In both sums every edge is counted exactly once. �

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 7

R

Q

C

F

K L

J M

S

Definition 3.1.2

Let G = (V,E) be a digraph.

(a) A walk in G

is a sequence p = (v0, v1, . . . , vk) of nodes, where (vi−1, vi) ∈ E for 1 ≤ i ≤ k.

Equivalent: A sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of edges.

Examples: (C, K, R, S), (C, K, Q, K, F), (F, J, L, L, L, L).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 8

R

Q

C

F

K L

J M

S

(b) The length of (v0, v1, . . . , vk) is k (the number of edges, or number of hops).
(E.g.: (C, K, Q, K, F) has length 4.)

Walk (v) has no edge, hence its length is 0.

(c) We write v G w or v w, if there is a walk in G (v0, v1, . . . , vk) such that
v = v0 and w = vk (“a walk from v to w”).

Example: F M, Q L, S S, but not L F.

Observation The relation is reflexive and transitive.

((v) is a walk; walks can be concatenated.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 9

R

Q

C

F

K L

J M

S

Definition 3.1.3

A walk (v0, v1, . . . , vk) in in a digraph G is called a (simple) path, if v0, v1, . . . , vk
are distinct.

Example: (Q,K,R,F, J).

Observation If v w, then there is a path (v0, v1, . . . , vl) with v = v0 and w = vl
(a path “from v to w”).

(If walk (v0, v1, . . . , vk) contains u twice, replace

subsequence . . . , u, . . . , u, . . . by . . . , u, . . ., and repeat, if necessary.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 10

L

Q

C

F

K

R

J M

S

Definition 3.1.4

(a) A walk (v0, v1, . . . , vk) in a digraph G is called a cycle if k ≥ 1 and v0 = vk.

Remark: Each loop (v, v) ∈ E is a cycle of length 1.

Example: (K, Q, C, K), (L, L), (L, L, L), (Q, K, R, F, J, M, S, K, Q) are cycles.

Remark : Cycles that differ only by a cyclic shift, as (K,Q,C,K) and (Q,C,K,Q),
are regarded as the same cycle.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 11

L

Q

C

F

K

R

J M

S

(b) A cycle (v0, v1, . . . , vk−1, v0) is called simple if v0, . . . , vk−1 are different.

Example: (J, M, S, K, R, F, J), (K, C, Q, K), (L, L) are simple cycles.

Observation:
If digraph G contains a cycle, it also contains a simple cycle.
(If (v0, . . . , vk−1) contains node u twice, replace subsequence . . . , u, . . . , u, . . . by . . . , u, . . .,

repeat if necessary.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 12

R

Q

C

F

K L

J M

S

Definition 3.1.5

A digraph G is acyclic, if G does not contain a cycle. Otherwise G is called cyclic.

A very important class of graphs are the

directed acyclic graphs.

(Abbreviation: DAGs or dags.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 13

X

R

W C

B

A
E

G

M
OJ

Definition 3.1.6
An undirected graph, often also: a graph G
is a pair (V,E), where V is a finite set and

E is a subset of [V]2 = {{v, w} | v, w ∈ V, v 6= w} ist.

Notation: (v, w) for {v, w}.
In the picture: V = {A,B,C,E,G, J,M,O,R,W,X},

E = {(A,B), (A,C), (C,B), (A,E), (A,G), (G,E), (A, J), (A,O), (B, J),

(J,O), (J,G), (O,G), (G,M), (R,W)}.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 14

v

The elements of V are called nodes
(or vertices).
Nodes are drawn as little circles.

v
e

w

The elements of E are called edges.
Edges are drawn as (undirected) lines
(not necessarily straight).

Convention:
Edge {u, v} (= {v, u}) is written as (u, v).

(Only(!)) For edges of undirected graphs we have: (u, v) = (v, u).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 15

Definition 3.1.7

Let G = (V,E) be an undirected graph.

v
e

w

If e = (v, w) is an edge (of G), then

v and w are incident with e, v and w are adjacent; v is called a neighbor of w
and vice versa.

“Loops”, i.e. “edges” (v, v), normally are not admitted in undirected graphs.

deg() = 6

v

v

The degree of a node v is
deg(v) = |{e ∈ E | e = (v, w) for some w ∈ V }|.
Nodes v with degree 0 are called isolated (they have no
neighbors).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 16

Lemma 3.1.8 (“handshaking lemma”)

For a graph G = (V,E) we have the following:∑
v∈V

deg(v) = 2|E|.

Proof : Each edge (u, v) in E contributes 1 to deg(u) and 1 to deg(v). �

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 17

B D F

K L M S E

HG P

Q

Definition 3.1.9

Let G = (V,E) be a graph.
(a) A walk in G is a sequence (v0, v1, . . . , vk) of nodes,
i.e. elements of V , where (vi−1, vi) ∈ E for 1 ≤ i ≤ k.

Walks in the example graph: (L, D, F, D, B) (length 4), (L, F, D, L, M, S), (length 5).

(b) The length of a walk (v0, v1, . . . , vk) is the number of edges k.
(k = 0 is legal.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 18

B D F

K L M S E

HG P

Q

(c) A walk (v0, v1, . . . , vk) in a graph G is called a path if v0, v1, . . . , vk are distinct.

Path in example: (L, M, S, E, H), length 4.

walks, not paths: see previous slide.

Lemma 3.1.10

Let G be a graph. If there is a walk (v0, . . . , vk) with v0 = v and vk = w (“from v
to w”), then there is a path from v to w.

(Proof as for digraphs.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 19

Definition 3.1.11

Let G be a graph. If v, w ∈ V are connnected by a walk
p = (v0, v1, . . . , vk) with v0 = v and vk = w, we write v ∼G w or v ∼ w.

Lemma 3.1.12

The 2-ary relation ∼G on V is an equivalence relation, i.e. it is
reflexive: v ∼G v,
symmetric: v ∼G w ⇒ w ∼G v,
transitive: u ∼G v ∧ v ∼G w ⇒ u ∼G w.

Proof :

Reflexivity: (v) is a walk from v to v, length 0;

Symmetry: traverse any walk from v to w in opposite direction;

Transitivity: Can concatenate walks from u to v and from v to w to get walk from u to w. �

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 20

Definition 3.1.13

(a) The equivalence relation ∼G splits V into
equivalence classes, the (connected) components of G.

Example: Graph with four connected components {B, C, R, W}, {A, G, E, J, O}, {M, X}, {Z}:

M

X
W

R

A
E

G

O

ZC

B

J

(b) A graph G with only one connected component
(i.e.,in which u ∼G v for all u, v ∈ V), is called connected.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 21

1

2

3

4

5

6

7

8

9

10

Simple cycles: (6,1,2,9,10,3,4,5,6)

and (1,6,5,4,3,10,9,2,1)

Definition 3.1.14 A walk (v0, v1, . . . , vk) in an (undirected) graph G is called a
(simple) cycle if k ≥ 3 and v0 = vk and if in addition v0, v1, . . . , vk−1 are distinct.

The starting point of a cycle is irrelevant: (B, C, D, E, K, J, H, G, B) and

(K, J, H, G, B, C, D, E, K) are regarded as “the same cycle”.

Often also: Orientation is irrelevant, i.e. (B, C, D, E, K, J, H, G, B) and (B, G, H, J, K, E, D, C, B)

are regarded as “the same cycle”.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 22

Definition 3.1.15

(a) A graph G = (V,E) is acyclic if it does not have a cycle.

Example: An acyclic graph:

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 23

(b) A graph G is called a free tree or simply a tree
if it is connected and acyclic.

Example: A (free) tree with 20 nodes and 19 edges:

Remarks: The connected components of an acyclic graph are free trees. Acyclic graphs are also called

(free) forests.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 24

Data Structures for Digraphs and Graphs

A B

C D
E

1 2
3

45

1:
2:
3:
4:
5:

A
B

D
C

E

nodes:

Let G = (V,E) be a graph or a digraph (directed graph).

V is an arbitrary finite set. (Here: {A,B,C,D,E}.)
Arrange n = |V | nodes arbitrarily, e. g. as
V = {v1, . . . , vn} and represent them in an array:

nodes: array [1 . . n] of nodetype

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 25

A B

C D
E

1 2
3

45

1:
2:
3:
4:
5:

A
B

D
C

E

nodes:

The name vi of the node and other attributes (“labels”) are fields (attributes) in the
entries of the nodes array.

We assume the nodes are numbered 1, 2, . . . , n and there is a nodes array.

In this representation (i, j) is an edge if and only if in the original graph G the pair
(vi, vj) is an edge.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 26

Definition

If G = (V,E) is a graph or a digraph with node set V = {1, . . . , n} then the
adjacency matrix of G is the n× n matrix

A = AG = (aij)1≤i≤n,1≤j≤n

with

aij =

{
1, if (i, j) ∈ E

0, if (i, j) 6∈ E.

In most programming languages:
Matrix is realized as a 2-dimensional array A[1 . . n, 1 . . n] with entries from {0, 1}.
Obvious: Read or write access to aij in time O(1).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 27

Example: A Digraph.

1 2 3 4 5 6
1 0 1 0 1 0 0
2 0 0 1 0 1 1
3 1 0 1 0 1 1
4 1 1 0 0 0 0
5 1 0 0 0 0 1
6 1 0 0 1 0 0

=̂

1

5

6

4

3

2

Number of 1s in row i = outdeg(i);
Number of 1s in column j = indeg(j).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 28

Example: An undirected graph.

1 2 3 4 5 6
1 0 1 1 1 0 0
2 1 0 1 0 1 1
3 1 1 0 0 1 1
4 1 0 0 0 1 0
5 0 1 1 1 0 1
6 0 1 1 0 1 0

=̂

1 2

45

6 3

The adjaceny matrix of an undirected graph is symmetric.

Number of 1s in row/column i = deg(i).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 29

Observations

If an n-node graph (directed or undireccted) is represented by an adjacency matrix,
we have:

(a) storage space is Θ(n2) [bits];
(b) in O(1) time one can find (or change) aij;
(c) finding all successors, predecessors or neighbors of a node takes time Θ(n).

(row/column traversal; order: 1, . . . , n)

The storage space is rather large if |E| � n2 (“sparse” graphs).

Reducing the space: Store w bits of the matrix in one word of bit length w, as a bit
vector.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 30

Extension: Edges may be labeled also by elements of M (lengths, weights, costs, capacities, etc.).

Then we use an array with entries from M ∪ {−} or M ∪ {∞} (“−” resp. “∞” means: “does

not exist”)

Example:

1 2 3 4 5 6
1 − a − c − −
2 − − f − a d
3 a − d − b c
4 e a − − − −
5 f − − − − c
6 h − − d − −

=̂

a

a

c

ea

b
c

f
d

d c
a fh

d

5

6

4

3

21

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 31

Adjacency lists:

2 a 4 c

1 a 3 d

1 e

f3 5 a 6 d

b5 6 c

2 a

c6

4 d1 h

1 f

1:

2:

3:

4:

5:

6:

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 32

Adjacency lists:

For each node i there is a list Li, in which
• the successors of i (in digraphs) or
• the neighbors of i (in graphs)
are stored.
Realization: Li is (singly or doubly linked) linear list, with its head pointer in
nodes[i], for 1 ≤ i ≤ n.

Observations

(i) Length of Li: outdeg(i) in digraphs, deg(i) in graphs.

(ii) In graphs we have: i occurs in Lj ⇔ entry j occurs in Li.

(iii) The neighbors/successors of a node i are implicitly sorted by their order in list
Li.

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 33

Extensions of adjacency list structure:

1) Node labels: place in nodes array.

2) Edge labels: in extra fields (attributes) in the list items of the adjacency list.

3) In graphs: List entry j in Li can contain a pointer/reference to list entry for i in
Lj (the “reverse edge”).

4) In digraphs: In the representation of the reverse graph GR the adjacency list LR
i

for i for i contains the nodes j that are predecessors of i in G.

Exercise: Build representation of GR from the representation of G in time O(|V |+
|E|).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 34

Observation

If a graph or digraph G = (V,E) is represented by adjacency lists, we have:

(a) space O(|V |+ |E|) is used;

(b) traversing all edges can be done in time O(|V |+ |E|);

(c) traversing the adjacency list for node i takes time O(deg(i)) resp. O(outdeg(i));

(d) (only) if lists of predecessors (i. e. the representation of GR) is given, we can also
traverse the predecessors of node i in time O(indeg(i)).

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 35

Adjacency array:

neighbor:

start:

1 15

2 4 3 5 6 1 3 5 6 1 2 1 6 1 4

1 2 3 4 5 6 7

1 3 6 12 14 1610

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 36

Adjacency array representation:

Uses an array neighbor[1..m].

In neighbor the successors/neighbors of each of 1, . . . , n are listed, in this order.

More exactly: Let si = 1 +
∑

1≤j<i (out)deg(j), for 1 ≤ i ≤ n + 1.

Then in neighbor[si..si+1 − 1] we store the (indices of the) successors/neighbors
of node i.

For navigating conveniently there is another array start[1..n+1] with start[i] =
si, for 1 ≤ i ≤ n + 1.
(This array can also be part of nodes[1..n], which would then need an extra
position n + 1.)

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 37

The adjacency array representation is useful especially in cases where the
graph/digraph does not change over time.

Advantages:
• saves storage space (no list pointers).
• Faster access to the names of the successors/neighbors.

Reason: When accessing a position in the adjacency array a whole block is copied into the cache.

Exercise: Describe a method that from the adjacency array representation of a
digraph G constructs the adjacency array representation of the reverse graph GR, in
linear time.
FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1 38

