WS 2020/21

Algorithms

Chapter 3.1

Graphs and directed graphs

Martin Dietzfelbinger

February 2021

Directed graph (Digraph)

(X)
(Undirected) Graph

Graphs and Digraphs are an ubiquitous (data) structure for modelling application situations, inside and outside computer science.
They model:

- cities and interstate roads, crossings and innercity streets
- gates and wires on a chip
- components of a "system" and interconnections/relations
- states of a system and transitions
- flow diagrams in program design
- data flow diagrams for program analysis
- actions with incompatibility relation
- terminals of a transportation system, with capacities for transport
- people and social relations
- and many more.

Definition 3.1.1

A directed graph or digraph G
is a pair (V, E), where V is a finite set and E is a subset of $V \times V=\{(v, w) \mid v, w \in V\}$.
The elements of V are called nodes (or vertices), the elements of E are called edges (or arcs).

Nodes are drawn as little circles,

edges as arrows.

If $e=(v, w)$ is an edge (of G), then v are w incident with $e(v, w$ lie on e),
v and w are called adjacent,
w is also called a successor of v,
v is also called a predecessor of w.

An edge (v, v) is called a loop.

The indegree of a node v
is the number of edges that enter v :
$\operatorname{indeg}(v)=\mid\{e \in E \mid e=(u, v)$ for some $u \in V\} \mid$.

The outdegree of a node v
is the number of edges that leave v :
$\operatorname{outdeg}(v)=\mid\{e \in E \mid e=(v, w)$ for some $w \in V\} \mid$.

Lemma 3.1.1

$$
\sum_{v \in V} \operatorname{indeg}(v)=\sum_{v \in V} \operatorname{outdeg}(v)=|E| .
$$

Proof: In both sums every edge is counted exactly once.

Definition 3.1.2

Let $G=(V, E)$ be a digraph.
(a) A walk in G
is a sequence $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ of nodes, where $\left(v_{i-1}, v_{i}\right) \in E$ for $1 \leq i \leq k$.
Equivalent: A sequence $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ of edges.
Examples: (C, K, R, S), (C, K, Q, K, F), (F, J, L, L, L, L).

(b) The length of $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is k (the number of edges, or number of hops). (E.g.: (C, K, Q, K, F) has length 4.)

Walk (v) has no edge, hence its length is 0 .
(c) We write $\boldsymbol{v} \rightsquigarrow_{\boldsymbol{G}} \boldsymbol{w}$ or $\boldsymbol{v} \rightsquigarrow \boldsymbol{w}$, if there is a walk in $G\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v=v_{0}$ and $w=v_{k}$ ("a walk from \boldsymbol{v} to \boldsymbol{w} ").
Example: $\mathrm{F} \rightsquigarrow \mathrm{M}, \mathrm{Q} \rightsquigarrow \mathrm{L}, \mathrm{S} \rightsquigarrow \mathrm{S}$, but not $\mathrm{L} \rightsquigarrow \mathrm{F}$.
Observation The relation \rightsquigarrow is reflexive and transitive.
$((v)$ is a walk; walks can be concatenated.)

Definition 3.1.3

A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ in in a digraph G is called a (simple) path, if $v_{0}, v_{1}, \ldots, v_{k}$ are distinct.

Example: (Q, K, R, F, J).

Observation If $v \rightsquigarrow w$, then there is a path $\left(v_{0}, v_{1}, \ldots, v_{l}\right)$ with $v=v_{0}$ and $w=v_{l}$ (a path "from v to w ").
(If walk ($v_{0}, v_{1}, \ldots, v_{k}$) contains u twice, replace
subsequence $\ldots, u, \ldots, u, \ldots$ by \ldots, u, \ldots, and repeat, if necessary.)

Definition 3.1.4

(a) A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ in a digraph G is called a cycle if $k \geq 1$ and $v_{0}=v_{k}$.

Remark: Each loop $(v, v) \in E$ is a cycle of length 1 .
Example: (K, Q, C, K), (L, L), (L, L, L), (Q, K, R, F, J, M, S, K, Q) are cycles.
Remark: Cycles that differ only by a cyclic shift, as (K, Q, C, K) and (Q, C, K, Q), are regarded as the same cycle.

(b) A cycle $\left(v_{0}, v_{1}, \ldots, v_{k-1}, v_{0}\right)$ is called simple if v_{0}, \ldots, v_{k-1} are different. Example: (J, M, S, K, R, F, J), (K, C, Q, K), (L, L) are simple cycles.

Observation:

If digraph G contains a cycle, it also contains a simple cycle. (If (v_{0}, \ldots, v_{k-1}) contains node u twice, replace subsequence $\ldots, u, \ldots, u, \ldots$ by \ldots, u, \ldots, repeat if necessary.)

Definition 3.1.5

A digraph G is acyclic, if G does not contain a cycle. Otherwise G is called cyclic. A very important class of graphs are the directed acyclic graphs.
(Abbreviation: DAGs or dags.)

Definition 3.1.6

An undirected graph, often also: a graph G
is a pair (V, E), where V is a finite set and
E is a subset of $[V]_{2}=\{\{v, w\} \mid v, w \in V, v \neq w\}$ ist.
Notation: (v, w) for $\{v, w\}$.
In the picture: $V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{G}, \mathrm{J}, \mathrm{M}, \mathrm{O}, \mathrm{R}, \mathrm{W}, \mathrm{X}\}$,

$$
\begin{gathered}
E=\{(\mathrm{A}, \mathrm{~B}),(\mathrm{A}, \mathrm{C}),(\mathrm{C}, \mathrm{~B}),(\mathrm{A}, \mathrm{E}),(\mathrm{A}, \mathrm{G}),(\mathrm{G}, \mathrm{E}),(\mathrm{A}, \mathrm{~J}),(\mathrm{A}, \mathrm{O}),(\mathrm{B}, \mathrm{~J}), \\
(\mathrm{J}, \mathrm{O}),(\mathrm{J}, \mathrm{G}),(\mathrm{O}, \mathrm{G}),(\mathrm{G}, \mathrm{M}),(\mathrm{R}, \mathrm{~W})\} .
\end{gathered}
$$

The elements of V are called nodes (or vertices).
Nodes are drawn as little circles.

The elements of E are called edges. Edges are drawn as (undirected) lines (not necessarily straight).

Convention:

Edge $\{u, v\}(=\{v, u\})$ is written as (u, v).
(Only(!)) For edges of undirected graphs we have: $(u, v)=(v, u)$.

Definition 3.1.7

Let $G=(V, E)$ be an undirected graph.

If $e=(v, w)$ is an edge (of G), then
v and w are incident with e, v and w are adjacent; v is called a neighbor of w and vice versa.
"Loops", i.e. "edges" (v, v), normally are not admitted in undirected graphs.

The degree of a node v is $\operatorname{deg}(v)=\mid\{e \in E \mid e=(v, w)$ for some $w \in V\} \mid$. Nodes v with degree 0 are called isolated (they have no neighbors).

Lemma 3.1.8 ("handshaking lemma")

For a graph $G=(V, E)$ we have the following:

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof: Each edge (u, v) in E contributes 1 to $\operatorname{deg}(u)$ and 1 to $\operatorname{deg}(v)$.

Definition 3.1.9

Let $G=(V, E)$ be a graph.
(a) A walk in G is a sequence $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ of nodes,
i.e. elements of V, where $\left(v_{i-1}, v_{i}\right) \in E$ for $1 \leq i \leq k$.

Walks in the example graph: (L, D, F, D, B) (length 4), (L, F, D, L, M, S), (length 5).
(b) The length of a walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is the number of edges k.
($k=0$ is legal.)

(c) A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ in a graph G is called a path if $v_{0}, v_{1}, \ldots, v_{k}$ are distinct. Path in example: (L, M, S, E, H), length 4. walks, not paths: see previous slide.

Lemma 3.1.10

Let G be a graph. If there is a walk $\left(v_{0}, \ldots, v_{k}\right)$ with $v_{0}=v$ and $v_{k}=w$ ("from v to $w^{\prime \prime}$), then there is a path from v to w.
(Proof as for digraphs.)

Definition 3.1.11

Let G be a graph. If $v, w \in V$ are connnected by a walk $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ with $v_{0}=v$ and $v_{k}=w$, we write $\quad \boldsymbol{v} \sim_{G} \boldsymbol{w}$ or $\boldsymbol{v} \sim \boldsymbol{w}$.

Lemma 3.1.12

The 2-ary relation \sim_{G} on V is an equivalence relation, i.e. it is reflexive: $v \sim_{G} v$,
symmetric: $v \sim_{G} w \Rightarrow w \sim_{G} v$,
transitive: $u \sim_{G} v \wedge v \sim_{G} w \Rightarrow u \sim_{G} w$.
Proof:
Reflexivity: (v) is a walk from v to v, length 0 ;
Symmetry: traverse any walk from v to w in opposite direction;
Transitivity: Can concatenate walks from u to v and from v to w to get walk from u to w.

Definition 3.1.13

(a) The equivalence relation \sim_{G} splits V into equivalence classes, the (connected) components of G.

Example: Graph with four connected components $\{\mathrm{B}, \mathrm{C}, \mathrm{R}, \mathrm{W}\},\{\mathrm{A}, \mathrm{G}, \mathrm{E}, \mathrm{J}, \mathrm{O}\},\{\mathrm{M}, \mathrm{X}\},\{\mathrm{Z}\}$:

(b) A graph G with only one connected component (i.e., in which $u \sim_{G} v$ for all $u, v \in V$), is called connected.

Simple cycles: (6,1,2,9,10,3,4,5,6) and ($1,6,5,4,3,10,9,2,1$)
Definition 3.1.14
A walk $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ in an (undirected) graph G is called a (simple) cycle if $k \geq 3$ and $v_{0}=v_{k}$ and if in addition $v_{0}, v_{1}, \ldots, v_{k-1}$ are distinct. The starting point of a cycle is irrelevant: (B, C, D, E, K, J, H, G, B) and (K, J, H, G, B, C, D, E, K) are regarded as "the same cycle".
Often also: Orientation is irrelevant, i.e. (B, C, D, E, K, J, H, G, B) and (B, G, H, J, K, E, D, C, B) are regarded as "the same cycle".

Definition 3.1.15

(a) A graph $G=(V, E)$ is acyclic if it does not have a cycle.

Example: An acyclic graph:

(b) A graph G is called a free tree or simply a tree if it is connected and acyclic.

Example: A (free) tree with 20 nodes and 19 edges:

Remarks: The connected components of an acyclic graph are free trees. Acyclic graphs are also called (free) forests.

Data Structures for Digraphs and Graphs

nodes:

$1:$	A
$2:$	B
$3:$	E
$4:$	D
$5:$	C

Let $G=(V, E)$ be a graph or a digraph (directed graph).
V is an arbitrary finite set. (Here: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$.)
Arrange $n=|V|$ nodes arbitrarily, e.g. as
$V=\left\{v_{1}, \ldots, v_{n}\right\}$ and represent them in an array:
nodes: array [1..n] of nodetype

The name v_{i} of the node and other attributes ("labels") are fields (attributes) in the entries of the nodes array.
We assume the nodes are numbered $1,2, \ldots, n$ and there is a nodes array.
In this representation (i, j) is an edge if and only if in the original graph G the pair $\left(v_{i}, v_{j}\right)$ is an edge.

Definition

If $G=(V, E)$ is a graph or a digraph with node set $V=\{1, \ldots, n\}$ then the adjacency matrix of G is the $n \times n$ matrix

$$
A=A_{G}=\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq n}
$$

with

$$
a_{i j}= \begin{cases}1, & \text { if }(i, j) \in E \\ 0, & \text { if }(i, j) \notin E .\end{cases}
$$

In most programming languages:
Matrix is realized as a 2-dimensional array $\mathrm{A}[1 \ldots n, 1 \ldots n]$ with entries from $\{0,1\}$.
Obvious: Read or write access to $a_{i j}$ in time $O(1)$.

Example: A Digraph.

Number of 1 s in row $i=$ outdeg (i);
Number of 1 s in column $j=\operatorname{indeg}(j)$.

Example: An undirected graph.

	1	2	3	4	5	6
1	0	1	1	1	0	0
2	1	0	1	0	1	1
3	1	1	0	0	1	1
4	1	0	0	0	1	0
5	0	1	1	1	0	1
6	0	1	1	0	1	0

The adjaceny matrix of an undirected graph is symmetric.
Number of 1 s in row/column $i=\operatorname{deg}(i)$.

Observations

If an n-node graph (directed or undireccted) is represented by an adjacency matrix, we have:
(a) storage space is $\Theta\left(n^{2}\right)$ [bits];
(b) in $O(1)$ time one can find (or change) $a_{i j}$;
(c) finding all successors, predecessors or neighbors of a node takes time $\Theta(n)$. (row/column traversal; order: $1, \ldots, n$)
The storage space is rather large if $|E| \ll n^{2}$ ("sparse" graphs).
Reducing the space: Store w bits of the matrix in one word of bit length w, as a bit vector.

Extension: Edges may be labeled also by elements of M (lengths, weights, costs, capacities, etc.). Then we use an array with entries from $M \cup\{-\}$ or $M \cup\{\infty\}$ ("-" resp. " ∞ " means: "does not exist")

Example:

	1	2	3	4	5	6
1	-	a	-	c	-	-
2	-	-	f	-	a	d
3	a	-	d	-	b	c
4	e	a	-	-	-	-
5	f	-	-	-	-	c
6	h	-	-	d	-	-

Adjacency lists:

Adjacency lists:

For each node i there is a list L_{i}, in which

- the successors of i (in digraphs) or
- the neighbors of i (in graphs)
are stored.
Realization: L_{i} is (singly or doubly linked) linear list, with its head pointer in nodes [i], for $1 \leq i \leq n$.

Observations

(i) Length of L_{i} : outdeg (i) in digraphs, $\operatorname{deg}(i)$ in graphs.
(ii) In graphs we have: i occurs in $L_{j} \Leftrightarrow$ entry j occurs in L_{i}.
(iii) The neighbors/successors of a node i are implicitly sorted by their order in list L_{i}.

Extensions of adjacency list structure:

1) Node labels: place in nodes array.
2) Edge labels: in extra fields (attributes) in the list items of the adjacency list.
3) In graphs: List entry j in L_{i} can contain a pointer/reference to list entry for i in L_{j} (the "reverse edge").
4) In digraphs: In the representation of the reverse graph G^{R} the adjacency list L_{i}^{R} for i for i contains the nodes j that are predecessors of i in G.
Exercise: Build representation of G^{R} from the representation of G in time $O(|V|+$ $|E|$).

Observation

If a graph or digraph $G=(V, E)$ is represented by adjacency lists, we have:
(a) space $O(|V|+|E|)$ is used;
(b) traversing all edges can be done in time $O(|V|+|E|)$;
(c) traversing the adjacency list for node i takes time $O(\operatorname{deg}(i))$ resp. O (outdeg (i));
(d) (only) if lists of predecessors (i. e. the representation of G^{R}) is given, we can also traverse the predecessors of node i in time $O(\operatorname{indeg}(i))$.

Adjacency array:

Adjacency array representation:

Uses an array neighbor [1..m].
In neighbor the successors/neighbors of each of $1, \ldots, n$ are listed, in this order.
More exactly: Let $s_{i}=1+\sum_{1 \leq j<i}($ out $) \operatorname{deg}(j)$, for $1 \leq i \leq n+1$.
Then in neighbor [$s_{i} . . s_{i+1}-1$] we store the (indices of the) successors/neighbors of node i.

For navigating conveniently there is another array start[1..n+1] with start [i] = s_{i}, for $1 \leq i \leq n+1$.
(This array can also be part of nodes[1..n], which would then need an extra position $n+1$.)

The adjacency array representation is useful especially in cases where the graph/digraph does not change over time.

Advantages:

- saves storage space (no list pointers).
- Faster access to the names of the successors/neighbors.

Reason: When accessing a position in the adjacency array a whole block is copied into the cache.

Exercise: Describe a method that from the adjacency array representation of a digraph G constructs the adjacency array representation of the reverse graph G^{R}, in linear time.

