

Algorithms Chapter 3.1 Graphs and directed graphs

Martin Dietzfelbinger

February 2021

FG KTuEA, TU Ilmenau Algorithms – WS 2020/21 – Chapter 3.1

Directed graph (Digraph)

(Undirected) Graph

Graphs and **Digraphs** are an ubiquitous (data) structure for modelling application situations, inside and outside computer science.

They model:

- cities and interstate roads, crossings and innercity streets
- gates and wires on a chip
- components of a "system" and interconnections/relations
- states of a system and transitions
- flow diagrams in program design
- data flow diagrams for program analysis
- actions with incompatibility relation
- terminals of a transportation system, with capacities for transport
- people and social relations
- and many more.

A directed graph or digraph ${\cal G}$

is a pair (V, E), where V is a finite set and E is a subset of $V \times V = \{(v, w) \mid v, w \in V\}$.

The elements of V are called **nodes** (or **vertices**), the elements of E are called **edges** (or **arcs**).

v is also called a **predecessor** of w.

An edge (v, v) is called a **loop**.

The indegree of a node vis the number of edges that enter v: indeg $(v) = |\{e \in E \mid e = (u, v) \text{ for some } u \in V\}|.$

The **outdegree** of a node vis the number of edges that leave v: **outdeg** $(v) = |\{e \in E \mid e = (v, w) \text{ for some } w \in V\}|.$

Lemma 3.1.1 $\sum_{v \in V} \operatorname{indeg}(v) = \sum_{v \in V} \operatorname{outdeg}(v) = |E|.$

Proof: In both sums every edge is counted exactly once.

Let G = (V, E) be a digraph. (a) A walk in G

is a sequence $p = (v_0, v_1, \ldots, v_k)$ of nodes, where $(v_{i-1}, v_i) \in E$ for $1 \le i \le k$. Equivalent: A sequence $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ of edges. Examples: (C, K, R, S), (C, K, Q, K, F), (F, J, L, L, L, L).

(b) The length of (v_0, v_1, \ldots, v_k) is k (the number of edges, or number of hops). (E.g.: (C, K, Q, K, F) has length 4.) Walk (v) has no edge, hence its length is 0.

(c) We write $v \rightsquigarrow_G w$ or $v \rightsquigarrow w$, if there is a walk in $G(v_0, v_1, \ldots, v_k)$ such that $v = v_0$ and $w = v_k$ ("a walk from v to w").

Example: $F \rightsquigarrow M$, $Q \rightsquigarrow L$, $S \rightsquigarrow S$, but **not** $L \rightsquigarrow F$.

Observation The relation \rightsquigarrow is **reflexive** and **transitive**.

(v) is a walk; walks can be **concatenated**.)

A walk (v_0, v_1, \ldots, v_k) in in a digraph G is called a (simple) path, if v_0, v_1, \ldots, v_k are distinct.

Example: (Q, K, R, F, J).

Observation If $v \rightsquigarrow w$, then there is a path (v_0, v_1, \ldots, v_l) with $v = v_0$ and $w = v_l$ (a path "from v to w").

(If walk (v_0, v_1, \ldots, v_k) contains u twice, replace subsequence $\ldots, u, \ldots, u, \ldots$ by \ldots, u, \ldots , and repeat, if necessary.)

(a) A walk (v_0, v_1, \ldots, v_k) in a digraph G is called a cycle if $k \ge 1$ and $v_0 = v_k$. Remark: Each loop $(v, v) \in E$ is a cycle of length 1.

Example: (K, Q, C, K), (L, L), (L, L), (Q, K, R, F, J, M, S, K, Q) are cycles.

Remark: Cycles that differ only by a cyclic shift, as (K, Q, C, K) and (Q, C, K, Q), are regarded as the same cycle.

(b) A cycle $(v_0, v_1, \ldots, v_{k-1}, v_0)$ is called **simple** if v_0, \ldots, v_{k-1} are different. *Example*: (J, M, S, K, R, F, J), (K, C, Q, K), (L, L) are simple cycles.

Observation:

If digraph G contains a cycle, it also contains a simple cycle. (If (v_0, \ldots, v_{k-1}) contains node u twice, replace subsequence $\ldots, u, \ldots, u, \ldots$ by \ldots, u, \ldots , repeat if necessary.)

A digraph G is **acyclic**, if G does not contain a cycle. Otherwise G is called **cyclic**. A very important class of graphs are the

directed acyclic graphs.

(Abbreviation: **DAG**s or **dag**s.)

An undirected graph, often also: a graph Gis a pair (V, E), where V is a finite set and E is a subset of $[V]_2 = \{\{v, w\} \mid v, w \in V, v \neq w\}$ ist. Notation: (v, w) for $\{v, w\}$. In the picture: $V = \{A, B, C, E, G, J, M, O, R, W, X\}$, $E = \{(A, B), (A, C), (C, B), (A, E), (A, G), (G, E), (A, J), (A, O), (B, J), (B, J), (A, C), (C, B), (A, E), (A, G), (C, E), (A, J), (A, O), (B, J), (C, C)\}$

 $(J, O), (J, G), (O, G), (G, M), (R, W) \}.$

The elements of V are called **nodes** (or **vertices**). Nodes are drawn as little circles.

The elements of E are called **edges**. Edges are drawn as (undirected) lines (not necessarily straight).

Convention:

υ

Edge $\{u, v\}$ (= $\{v, u\}$) is written as (u, v). (Only(!)) For edges of undirected graphs we have: (u, v) = (v, u).

Let G = (V, E) be an undirected graph. If e = (v, w) is an edge (of G), then

v and w are **incident** with e, v and w are **adjacent**; v is called a **neighbor** of w and *vice versa*.

"Loops", i.e. "edges" (v, v), normally are not admitted in undirected graphs.

The degree of a node v is $deg(v) = |\{e \in E \mid e = (v, w) \text{ for some } w \in V\}|.$ Nodes v with degree 0 are called isolated (they have no neighbors).

Lemma 3.1.8 ("handshaking lemma")

For a graph G = (V, E) we have the following:

$$\sum_{v \in V} \deg(v) = 2|E|.$$

Proof: Each edge (u, v) in E contributes 1 to deg(u) and 1 to deg(v).

Let G = (V, E) be a graph. (a) A walk in G is a sequence (v_0, v_1, \ldots, v_k) of nodes, i.e. elements of V, where $(v_{i-1}, v_i) \in E$ for $1 \le i \le k$.

Walks in the example graph: (L, D, F, D, B) (length 4), (L, F, D, L, M, S), (length 5).

(b) The length of a walk (v_0, v_1, \ldots, v_k) is the number of edges k. (k = 0 is legal.)

(c) A walk (v_0, v_1, \ldots, v_k) in a graph G is called a **path** if v_0, v_1, \ldots, v_k are distinct. Path in example: (L, M, S, E, H), length 4. walks, not paths: see previous slide.

Lemma 3.1.10

Let G be a graph. If there is a walk (v_0, \ldots, v_k) with $v_0 = v$ and $v_k = w$ ("from v to w"), then there is a path from v to w.

(*Proof* as for digraphs.)

Let G be a graph. If $v, w \in V$ are connected by a walk $p = (v_0, v_1, \dots, v_k)$ with $v_0 = v$ and $v_k = w$, we write $v \sim_G w$ or $v \sim w$.

Lemma 3.1.12

The 2-ary relation \sim_G on V is an **equivalence relation**, i.e. it is **reflexive**: $v \sim_G v$, **symmetric**: $v \sim_G w \Rightarrow w \sim_G v$, **transitive**: $u \sim_G v \wedge v \sim_G w \Rightarrow u \sim_G w$. *Proof*: Reflexivity: (v) is a walk from v to v, length 0; Symmetry: traverse any walk from v to w in opposite direction; Transitivity: Can concatenate walks from u to v and from v to w to get walk from u to w.

(a) The equivalence relation \sim_G splits V into equivalence classes, the (connected) components of G.

Example: Graph with four connected components $\{B, C, R, W\}$, $\{A, G, E, J, O\}$, $\{M, X\}$, $\{Z\}$:

(b) A graph G with only one connected component (i.e., in which $u \sim_G v$ for all $u, v \in V$), is called **connected**.

Simple cycles: (6,1,2,9,10,3,4,5,6) and (1,6,5,4,3,10,9,2,1)

Definition 3.1.14 A walk (v_0, v_1, \ldots, v_k) in an (undirected) graph G is called a (simple) cycle if $k \ge 3$ and $v_0 = v_k$ and if in addition $v_0, v_1, \ldots, v_{k-1}$ are distinct.

The starting point of a cycle is irrelevant: (B, C, D, E, K, J, H, G, B) and (K, J, H, G, B, C, D, E, K) are regarded as "the same cycle". Often also: Orientation is irrelevant, i.e. (B, C, D, E, K, J, H, G, B) and (B, G, H, J, K, E, D, C, B) are regarded as "the same cycle".

(a) A graph G = (V, E) is acyclic if it does not have a cycle.

Example: An acyclic graph:

(b) A graph G is called a **free tree** or simply a **tree** if it is connected and acyclic.

Example: A (free) tree with 20 nodes and 19 edges:

Remarks: The connected components of an acyclic graph are free trees. Acyclic graphs are also called **(free) forests**.

Data Structures for Digraphs and Graphs

Let G = (V, E) be a graph or a digraph (*directed graph*). V is an arbitrary finite set. (Here: {A,B,C,D,E}.) Arrange n = |V| nodes arbitrarily, e.g. as $V = \{v_1, \ldots, v_n\}$ and represent them in an array: nodes: array $[1 \ldots n]$ of nodetype

The name v_i of the node and other attributes ("labels") are fields (attributes) in the entries of the nodes array.

We assume the nodes are numbered $1, 2, \ldots, n$ and there is a nodes array.

In this representation (i, j) is an edge if and only if in the original graph G the pair (v_i, v_j) is an edge.

Definition

If G = (V, E) is a graph or a digraph with node set $V = \{1, ..., n\}$ then the **adjacency matrix** of G is the $n \times n$ matrix

$$A = A_G = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$$

with

$$a_{ij} = \begin{cases} 1, & \text{if } (i,j) \in E \\ 0, & \text{if } (i,j) \notin E. \end{cases}$$

In most programming languages:

Matrix is realized as a 2-dimensional array A[1..n, 1..n] with entries from $\{0, 1\}$. Obvious: Read or write access to a_{ij} in time O(1). Example: A Digraph.

Number of 1s in row i = outdeg(i); Number of 1s in column j = indeg(j). Example: An undirected graph.

The adjaceny matrix of an undirected **graph** is **symmetric**. Number of 1s in row/column i = deg(i).

Observations

If an *n*-node graph (directed or undireccted) is represented by an **adjacency matrix**, we have:

- (a) storage space is $\Theta(n^2)$ [bits];
- (b) in O(1) time one can find (or change) a_{ij} ;
- (c) finding **all** successors, predecessors or neighbors of a node takes time $\Theta(n)$. (row/column traversal; order: $1, \ldots, n$)

The storage space is rather large if $|E| \ll n^2$ ("sparse" graphs).

Reducing the space: Store w bits of the matrix in one word of bit length w, as a *bit vector*.

Extension: Edges may be labeled also by elements of M (lengths, weights, costs, capacities, etc.). Then we use an array with entries from $M \cup \{-\}$ or $M \cup \{\infty\}$ ("-" resp. " ∞ " means: "does not exist")

Example:

	1	2	3	4	5	6	1_{\odot} \odot^2
1	—	а	_	С	_	_	
2	—	—	f		а	d	h c a f
3	а	—	d	—	b	С	$\hat{=} 6 \bigcirc c \bigcirc c \bigcirc 3$
4	е	а	—	—	—	—	d a e a d
5	f	—	—	—	—	С	b b
6	h	—	—	d	—	—	5 4

Adjacency lists:

Adjacency lists:

For each node i there is a list L_i , in which

- \bullet the successors of i (in digraphs) or
- the *neighbors of i* (in graphs) are stored.

Realization: L_i is (singly or doubly linked) linear list, with its head pointer in nodes [i], for $1 \le i \le n$.

Observations

(i) Length of L_i : outdeg(i) in digraphs, deg(i) in graphs.

(ii) In graphs we have: i occurs in $L_j \Leftrightarrow$ entry j occurs in L_i .

(iii) The neighbors/successors of a node i are **implicitly sorted** by their **order** in list L_i .

Extensions of adjacency list structure:

- 1) Node labels: place in nodes array.
- 2) Edge labels: in extra fields (attributes) in the list items of the adjacency list.
- 3) In graphs: List entry j in L_i can contain a pointer/reference to list entry for i in L_j (the "reverse edge").
- 4) In **digraphs**: In the representation of the **reverse graph** G^{R} the adjacency list L_i^{R} for *i* for *i* contains the nodes *j* that are *predecessors* of *i* in *G*.
- **Exercise:** Build representation of G^{R} from the representation of G in time O(|V| + |E|).

Observation

- If a graph or digraph G = (V, E) is represented by adjacency lists, we have:
- (a) space O(|V| + |E|) is used;
- (b) traversing all edges can be done in time O(|V| + |E|);
- (c) traversing the adjacency list for node i takes time $O(\deg(i))$ resp. $O(\operatorname{outdeg}(i))$;
- (d) (only) if lists of predecessors (i.e. the representation of G^{R}) is given, we can also traverse the predecessors of node i in time $O(\operatorname{indeg}(i))$.

Adjacency array:

Adjacency array representation:

Uses an array neighbor [1..m].

In neighbor the successors/neighbors of each of $1, \ldots, n$ are listed, in this order.

More exactly: Let $s_i = 1 + \sum_{1 \le j < i} (\text{out}) \text{deg}(j)$, for $1 \le i \le n+1$.

Then in neighbor $[s_i...s_{i+1} - 1]$ we store the (indices of the) successors/neighbors of node *i*.

For navigating conveniently there is another array start [1..n+1] with start $[i] = s_i$, for $1 \le i \le n+1$. (This array can also be part of nodes [1..n], which would then need an extra position n+1.) The **adjacency array representation** is useful especially in cases where the graph/digraph does not change over time.

Advantages:

- saves storage space (no list pointers).
- Faster access to the names of the successors/neighbors.

Reason: When accessing a position in the adjacency array a whole block is copied into the cache.

Exercise: Describe a method that from the adjacency array representation of a digraph G constructs the adjacency array representation of the reverse graph G^{R} , in linear time.