Algorithms

Chapter 3.1
Graphs and directed graphs

Martin Dietzfelbinger

February 2021

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

Directed graph (Digraph)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

(Undirected) Graph

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

Graphs and Digraphs are an ubiquitous (data) structure for modelling application
situations, inside and outside computer science.

They model:

e cities and interstate roads, crossings and innercity streets

e gates and wires on a chip

e components of a “system” and interconnections/relations

e states of a system and transitions

e flow diagrams in program design

e data flow diagrams for program analysis

e actions with incompatibility relation

e terminals of a transportation system, with capacities for transport
e people and social relations

e and many more.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 3

Definition 3.1.1
A directed graph or digraph GG

is a pair (V, E), where V is a finite set and
E is asubset of V x V = {(v,w) | v,w € V}.

The elements of V' are called nodes (or vertices),
the elements of F are called edges (or arcs).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

Nodes are drawn as little circles,

v w edges as arrows.

If e = (v, w) is an edge (of G), then

v are w incident with e (v, w lie on e),
v and w are called adjacent,

w is also called a successor of v,

v is also called a predecessor of w.

@v An edge (v, v) is called a loop.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

The indegree of a node v
is the number of edges that enter v:
indeg(v) =|{e € E | e = (u,v) for some u € V'}|.

The outdegree of a node v
Is the number of edges that leave v:
outdeg(v) = [{e € E | e = (v, w) for some w € V'}|.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

Lemma 3.1.1
Z indeg(v) = Z outdeg(v) = |F|.

veV veV
Proof: In both sums every edge is counted exactly once.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

Definition 3.1.2

Let G = (V, E) be a digraph.

(a) A walk in G

is a sequence p = (vg, V1, ..., vx) of nodes, where (v;_1,v;) € E for 1 < i < k.
Equivalent: A sequence (vg,v1), (v1,v2), ..., (vg_1, V) of edges.

Examples: (C,K,R,S), (C, K, Q, K, F), (F,J,L,L,L,L).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

(b) The length of (vg,v1,...,v) is k (the number of edges, or number of hops).
(E.g.: (C, K, Q, K, F) has length 4.)
Walk (v) has no edge, hence its length is 0.

(c) We write v ~»gw or v~ w, if there is a walk in G (vg,v1,...,v) such that
v = v and w = vi (“a walk from v to w”).

Example: F ~ M, Q ~» L, S ~» S, but not L ~~ F.
Observation The relation ~ is reflexive and transitive.

((v) is a walk; walks can be concatenated.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 9

Q) F J

>®\
Definition 3.1.3

A walk (vg,v1,...,v) in in a digraph G is called a (simple) path, if vy, v1,..., v
are distinct.
Example: (Q, K, R, F,J).

Observation If v ~» w, then there is a path (vg, v1,...,v;) with v = vy and w = y;
(a path “from v to w").

(If walk (vg, v1, ..., vy) contains u twice, replace
subsequence ..., U, ..., u,... by ... u,..., and repeat, if necessary.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 10

Definition 3.1.4
(a) A walk (vg,v1,...,v) in a digraph G is called a cycle if £ > 1 and vy = vg.
Remark: Each loop (v, v) € E is a cycle of length 1.

Example: (K, Q,C,K), (L,L), (L,L,L), (Q, K, R, F,J, M, S, K, Q) are cycles.

Remark: Cycles that differ only by a cyclic shift, as (K, Q,C,K) and (Q,C,K,Q),
are regarded as the same cycle.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 11

N2

(b) A cycle (vg,v1,...,05_1,00) is called simple if vy, ..., v;_1 are different

Example: (J, M, S, K, R, F,J), (K, C, Q,K), (L,L) are simple cycles.

Observation:
If digraph G contains a cycle, it also contains a simple cycle.
(If (vg,...,vk_1) contains node u twice, replace subsequence ..., u,...,u,... by ...

repeat if necessary.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

12

Definition 3.1.5
A digraph G is acyclic, if G does not contain a cycle. Otherwise G is called cyclic.
A very important class of graphs are the

directed acyclic graphs.

(Abbreviation: DAGs or dags.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 13

Definition 3.1.6

An undirected graph, often also: a graph G

is a pair (V, E), where V is a finite set and

E is a subset of [V = {{v,w} | v,w € V,v # w} ist.

Notation: (v, w) for {v,w}.

In the picture: V = {A,B,C,E,G,J,M, O, R, W, X},

E={(A,B),(A,C),(C,B),(AE),(A,G),(G,E), (A,J),(A,0),(B,J),
(J,0),J,G), (0,G), (G,M), (R, W)}.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

14

Q The elements of V' are called nodes
(or vertices).

Nodes are drawn as little circles.

U w
< Q The elements of E/ are called edges.
Edges are drawn as (undirected) lines

(not necessarily straight).

Convention:
Edge {u,v} (= {v,u}) is written as (u, v).

(Only(!)) For edges of undirected graphs we have: (u,v) = (v, u).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

15

Definition 3.1.7

Y w

O——0O

let G = (V,E) be an undirected graph.
If e = (v, w) is an edge (of (), then

v and w are incident with e, v and w are adjacent; v is called a neighbor of w
and vice versa.

“Loops”, i.e. “edges”’ (v, v), normally are not admitted in undirected graphs.

%A/Q The degree of a node v is
O O s

v deg(v) =[{e € E | e = (v,w) for some w € V'}|.
Nodes v with degree 0 are called isolated (they have no
deg(v) =6 neighbors).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 16

Lemma 3.1.8 (“handshaking lemma”)

For a graph G = (V, E') we have the following:

Proof: Each edge (u,v) in E contributes 1 to deg(u) and 1 to deg(v).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

17

O o= ®

Definition 3.1.9

Let G = (V, E) be a graph.
(a) A walk in G is a sequence (vg, v1, ..., V) of nodes,
i.e. elements of V', where (v;_1,v;) € E for1 <i<k.

Walks in the example graph: (L, D, F, D, B) (length 4), (L, F, D, L, M, S), (length 5).

(b) The length of a walk (vg,v1,...,vx) is the number of edges k.
(k = 0 is legal.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

18

ﬁﬁ
o——0—0 e ©

(c) A walk (vg,v1,...,vx) in a graph G is called a path if vy, v1, ..., v, are distinct.

Path in example: (L, M, S, E, H), length 4.
walks, not paths: see previous slide.

Lemma 3.1.10

Let G be a graph. If there is a walk (v, ..., vx) with vg = v and vy = w (“from v
to w"), then there is a path from v to w.

(Proof as for digraphs.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 19

Definition 3.1.11

Let G be a graph. If v,w € V are connnected by a walk
p = (vg,v1,...,Vk) With vg = v and v = w, we write v ~gw or v~ w.

Lemma 3.1.12

The 2-ary relation ~x on V' is an equivalence relation, i.e. it is
reflexive: v ~¢ v,

symmetric: v ~g W = w ~qg v,

transitive: u ~g VAV ~og W = U ~g W.

Proof :

Reflexivity: (v) is a walk from v to v, length O;

Symmetry: traverse any walk from v to w in opposite direction;
Transitivity: Can concatenate walks from u to v and from v to w to get walk from u to w.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

20

Definition 3.1.13

(a) The equivalence relation ~¢ splits V' into
equivalence classes, the (connected) components of G.

Example: Graph with four connected components {B, C,R, W}, {A,G,E, J, O}, {M, X}, {Z}:
© ® @
O T &
(B) ©
(R
@ ©

(b) A graph G with only one connected component
(i.e.,in which u ~g v for all u,v € V), is called connected.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

21

Simple cycles: (6,1,2,9,10,3,4,5,6)
and (1,6,5,4,3,10,9,2,1)

Definition 3.1.14 A walk (vg,v1,...,vg) in an (undirected) graph G is called a
(simple) cycle if kK > 3 and vy = vi and if in addition vy, v1,...,v,_1 are distinct.
The starting point of a cycle is irrelevant: (B,C,D,E,K,J,H,G,B) and
(K,J,H,G,B,C, D, E, K) are regarded as "the same cycle".

Often also: Orientation is irrelevant, i.e. (B, C,D,E,K,J,H,G,B) and (B, G,H, J,K,E, D, C, B)
are regarded as “the same cycle”.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 22

Definition 3.1.15
(a) A graph G = (V, E) is acyclic if it does not have a cycle.
Example: An acyclic graph:

SRk

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

23

(b) A graph G is called a free tree or simply a tree
if it is connected and acyclic.

Example: A (free) tree with 20 nodes and 19 edges:

Remarks: The connected components of an acyclic graph are free trees. Acyclic graphs are also called
(free) forests.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 24

Data Structures for Digraphs and Graphs

nodes:

A —B (L2
G‘@ 6‘@ <

Oom|m| >

Let G = (V,) be a graph or a digraph (directed graph).
V is an arbitrary finite set. (Here: {A,B,C,D,E}.)

Arrange n = |V| nodes arbitrarily, e. g. as
V ={wv1,...,v,} and represent them in an array:

nodes: array [1..n] of nodetype

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

25

nodes:

‘e
()

@)
adwNBR
O|0|m®| >

The name v; of the node and other attributes (“labels”) are fields (attributes) in the
entries of the nodes array.

We assume the nodes are numbered 1,2,...,n and there is a nodes array.

In this representation (7, j) is an edge if and only if in the original graph G the pair
(vi,v5) is an edge.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 26

Definition

If G = (V,FE) is a graph or a digraph with node set V = {1,...,n} then the
adjacency matrix of G is the n x n matrix

A=A = (aij)1<i<n,1<j<n

with

In most programming languages:
Matrix is realized as a 2-dimensional array A[1..n,1..n] with entries from {0, 1}.

Obvious: Read or write access to a;; in time O(1).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 27

Example: A Digraph.

1 2 3 4 5 6 1
1/]0 1 01 0 O
210 0 1 0 1 1 %
3/!1 01 01 1 = s
411 1 0 0 0 O -
5/1 0 0 0 0 1
6|1 0 0 1 0 O

Number of 1s in row i = outdeg(i);
Number of 1s in column j = indeg(7).

FG KTuEA, TU llmenau

Algorithms — WS 2020/21 — Chapter 3.1

28

Example: An undirected graph.

1 2 3 4 5 6 1
110 1 1 1 0 0
>11 0 1 0 1 1
31110 0 1 1 -~ 6
411 0 0 0 1 0
510 1 1 1 0 1
610 1 1 0 1 0 -

The adjaceny matrix of an undirected graph is symmetric.

Number of 1s in row/column ¢ = deg(%).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

29

Observations

If an n-node graph (directed or undireccted) is represented by an adjacency matrix,
we have:

(a) storage space is ©(n?) [bits];

(b) in O(1) time one can find (or change) a;;;

(c) finding all successors, predecessors or neighbors of a node takes time ©O(n).
(row/column traversal; order: 1,...,n)

The storage space is rather large if |E| < n? (“sparse” graphs).

Reducing the space: Store w bits of the matrix in one word of bit length w, as a bit
vector.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 30

Extension: Edges may be labeled also by elements of M (lengths, weights, costs, capacities, etc.).

Then we use an array with entries from M U {—} or M U {oo} (“—" resp. "co" means: “does
not exist”)
Example:
1 2 3 4 5 6

l1{-— a — ¢ — -—

2| - — f — a d

3la — d — b c =

41 e a — — - -

5/f - — — — ¢

6|h — — d — -

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 31

Adjacency lists:

6‘C‘/

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1

32

Adjacency lists:

For each node 7 there is a list L;, in which

e the successors of ¢ (in digraphs) or

e the neighbors of i (in graphs)

are stored.

Realization: L; is (singly or doubly linked) linear list, with its head pointer in
nodes[z], for 1 <1 < n.

Observations
(i) Length of L;: outdeg(%) in digraphs, deg(i) in graphs.
(i) In graphs we have: i occurs in L; < entry j occurs in L;.

(iii) The neighbors/successors of a node ¢ are implicitly sorted by their order in list
L;.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 33

Extensions of adjacency list structure:
1) Node labels: place in nodes array.
2) Edge labels: in extra fields (attributes) in the list items of the adjacency list.

3) In graphs: List entry j in L; can contain a pointer/reference to list entry for 7 in
L; (the “reverse edge”).

4) In digraphs: In the representation of the reverse graph G® the adjacency list LR
for ¢ for ¢ contains the nodes j that are predecessors of i in GG.

Exercise: Build representation of GR from the representation of G in time O(|V| +
[E).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 34

Observation

If a graph or digraph G = (V, E) is represented by adjacency lists, we have:

(a) space O(|V |+ |E]) is used;

(b) traversing all edges can be done in time O(|V| + |E]);

(c) traversing the adjacency list for node i takes time O(deg(%)) resp. O(outdeg(7));

(d) (only) if lists of predecessors (i. e. the representation of GR) is given, we can also
traverse the predecessors of node ¢ in time O(indeg(7)).

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 35

Adjacency array:

nei ghbor : 6|11|4 |

N\~

start: 16I
1 2 3 4 5 6 7

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 36

Adjacency array representation:

Uses an array neighbor[1..m].

In neighbor the successors/neighbors of each of 1,...,n are listed, in this order.
More exactly: Let s; =1+), (out)deg(j), for 1 <i <n+ 1.

Then in neighbor[s;..s;11 — 1] we store the (indices of the) successors/neighbors
of node .

For navigating conveniently there is another array start [1..n+1] with start[:i] =
s;, forl1 << n+1.

(This array can also be part of nodes[1..n], which would then need an extra
position n + 1.)

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 37

The adjacency array representation is useful especially in cases where the
graph/digraph does not change over time.

Advantages:
e saves storage space (no list pointers).
e Faster access to the names of the successors/neighbors.

Reason: When accessing a position in the adjacency array a whole block is copied into the cache.

Exercise: Describe a method that from the adjacency array representation of a
digraph G constructs the adjacency array representation of the reverse graph GR, in
linear time.

FG KTuEA, TU limenau Algorithms — WS 2020/21 — Chapter 3.1 38

