
(M. Dietzfelbinger, 2020-01-09)

3.4 Notes about Kosaraju’s algorithm

Definition 3.4.1 (Strongly connected components). Let G = (V,E) be a directed
graph. For nodes v, w ∈ V define v w if there is a path that leads from v to w.
Define v ! w if v w and w v. Note that ! is an equivalence relation (refle-
xive, symmetric, transitive). The equivalence classes are called strongly connected
components (sccs) of G.

One easily sees that v ! w holds if and only if there is a cycle v = v0, v1, . . . , w =
vi, vi+1, . . . , vr = v that contains both v and w.

A graph G is called strongly connected if it has only one strongly connected compo-
nent, i. e., if v! w holds for all v, w ∈ V .

We need a fundamental lemma on DFS.

Lemma 3.4.2 (White Path Theorem). If we carry out DFS in any digraph, the
following holds: w is a descendant of v if and only if at the point in time when
explore(v) is called, there is a path of new (i. e., “white”) nodes from v to w.

(The proof was given in class.)

Corollary 3.4.3. When DFS(G) is run on G = (V,E), then for each strongly connec-
ted component C ⊆ V we have that all nodes of C are in one DFS tree. (However,
one tree may contain several strongly connected components.)

Proof : Consider C and let w be the first node in C that is discovered in the course
of the DFS. When explore(w) starts, all nodes in C are new. We have that each node
v in C is on a cycle with w, which means that all nodes on this cycle also belong to
C, and that the path from w to v along the cycle is a

”
white“ path when explore(w)

starts. By Lemma 3.4.2, v becomes a descendant of w. – Thus, all nodes in C are in
the same tree as w. �

Consider Algorithm 1, called Kosaraju’s algorithm. (An example is given in class.)

Theorem 3.4.4. Kosaraju’s algorithm outputs the strongly connected components of
G. Its running time is O(|V |+ |E|).

Proof : We don’t have to say much about the running time. DFS has running time
O(|V |+ |E|), and the reverse graph can be computed in time O(|V |+ |E|).
The only interesting point is correctness.

We first observe that G and GR have the same strongly connected components, since
the cycles in G correspond to the cycles in GR in reversed order.

1

Algorithm 1: scc(G) (Kosaraju’s algorithm)

// G = (V,E) is a digraph.
// Goal: Find the strongly connected components of G.
(1) Do DFS(G), finding post(v) for all nodes in G;
(2) Calculate GR, by reversing all edges of G;
(3) Do DFS(GR), where in the outer loop

nodes are checked in order of decreasing post numbers (from (1));
(4) output the node sets of the DFS trees from (3).

Corollary 3.4.3, applied to GR, now says that each scc is contained in one of the trees
built in part (3). So there are at most as many trees as scc’s. It remains to show
that each scc forms one tree by itself. For this, we show that each scc contains a root
node. Then there must be (at least) as many DFS trees as scc’s, which means that
each tree contains exactly one scc.

Lemma 3.4.5. Let C be an arbitrary scc of G, and let w be the node in C with the
largest post number. Then w is a tree root in the DFS in part (3) of the algorithm.

Proof : By the properties of DFS, w is a tree root in the DFS in GR if and only if
it is unreachable in GR from any node u that is checked before w in the outer loop
of the DFS. By the algorithm, exactly the nodes u with higher post numbers (from
(1)) than w are checked there. Thus, we must show that in GR w is unreachable from
nodes u with a higher post number (from (1)). Equivalently, we must show that no
node u with a higher post number than w is reachable from w in G, or:

Claim : If w = v0, v1, . . . , vt = u is a path in G, then post(u) ≤ post(w).

Proof of Claim: We may assume u 6= w. We consider the point in time in the first
DFS (1) in G when explore(w) is called. There are three cases:

Case 1: All nodes on the path w = v0, v1, . . . , vt = u are new. – By Lemma 3.4.2 (the
White Path Theorem) node u becomes a descendant of w, hence post(u) < post(w).

Case 2: One of the nodes vi on the path is active. – This means that the path of
currently active nodes runs through vi and ends at w (these edges are tree edges).
Together with the piece w = v0, v1, . . . , vi we get a cycle on which we have w and vi.
This means that w and vi are equivalent in the sense of being mutually reachable,
and hence vi ∈ C. However, explore(vi) is active when explore(w) starts, and hence
post(vi) > post(w). This contradicts the choice of w as the node with highest post
number in C. Hence this case cannot occur.

Case 3: One of the nodes vi on the path is finished, and no node is active. – By
the explore(vi) procedure, we must have that also vi+1 is finished, and vi+2, and so
on, and finally that vt = u must be finished when explore(w) starts. This implies
post(u) < post(w).

This finishes the proof of Theorem 3.4.4. �

2

