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Section 4.4: Dijkstra’s Algorithm

Please read the introductory remarks in the book (pages 108–110).

Here we use slightly different notation, but in principle it’s exactly the same algorithm.
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Shortest paths with one start node:
Dijkstra’s algorithm

Definition 4.4.1

1. A weighted digraph is a triple G = (V,E, c),
where (V,E) is a digraph and c : E → R is a function.
c(v, w) can be interpreted as “cost” or “length” or “weight” of edge (v, w).

2. A directed walk p = (v0, v1, . . . , vk) in G has cost/length

c(p) =

k∑
i=1

c(vi−1, vi).
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Example: Nonnegative edge weights.
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c((s, a, b, c)) = 6, c((s, a, k, b, c)) = 5, d(s, c) = 5;
d(s, s) = 0;
d(s, e) = d(s, f) =∞.
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3. The (directed) distance of nodes v, w ∈ V is

d(v, w) := min{c(p) | p walk from v to w}

(=∞ if there is no such walk;

= −∞ if there are walks from v to w with negative costs of arbitrarily large absolute value.)

Obvious: d(v, v) ≤ 0. (Walk with no edge.)

Remark
All edge weights are ≥ 0 ⇒
d(v, w) = minimal length of a path from v to w.

(One can take an arbitrary walk from v to w and cut out cycles without increasing the cost.)
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Example: Nonnegative edge weights.
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c((s, a, b, c)) = 6, c((s, a, k, b, c)) = 5, d(s, c) = 5;
d(s, s) = 0;
d(s, e) = d(s, f) =∞.
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Dijkstra’s∗ Algorithm solves the problem

“Single-Source-Shortest-Paths”

(Shortest paths from one starting node)

Given: Weighted digraph G = (V,E, c) with nonnegative edge lengths
and start node s ∈ V .

Task: For each v ∈ V find distance d(s, v) and in case d(s, v) <∞ find a path from
s to v of length d(s, v).

∗ Pronunciation: “dike-stra”.

Edsger W. Dijkstra (1930–2002), Dutch computer scientist, pioneer of the “science of programming”.)
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(Sparkling) Idea:

An edge (v, w) is thought as a “one-way fuse” of length c(v, w).

Spark advances along a fuse with constant speed 1 [m/s] (or [km/h] or [miles/h]).

At time t0 = 0 we ignite node s.

All fuses that correspond to edges (s, v) start burning.

The next interesting event:
At time t = min{c(s, v) | (s, v) ∈ E} the spark reaches (at least) one other node v.
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We say: When the spark reaches v, all fuses that belong to edges (v, w) start to burn, without delay.

When a spark reaches v later, on another edge/fuse, nothing happens with v.

Numbers in nodes: When does the fire reach v, by current information?

A green edge into a node v that has not yet been reached indicates from which direction v will be

first reached. (These edges must be watched. This information can change.)

“Intuitively clear”: The fire reaches v exactly at time d(s, v).

Namely: The time span [0, d(s, v)] is exactly the time in which the fire can walk along a shortest

path from s to v, not faster, not slower.

Unfortunate: One cannot really carry out this algorithm. Afterwards the network is reduced to ashes.

So we simulate! This gives an algorithm.

Observation: Only the n points in time d(s, v), v ∈ V , are interesting. (If the fire reaches v again

after d(s, v), nothing happens.)

Thus our algorithms has at most n = |V | rounds.

In between the sparks walk along the fuses/edges without anything happening.

(In the book they say one can go to sleep and has to wake up only when an alarm rings.)
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W.l.o.g.: V = {1, . . . , n}.
The algorithm works in up to n rounds, one for each reachable node v.

Data structure:

V is split in two disjoint sets S and V − S.

(Nodes in S: already reached; nodes in V − S: not yet reached.)

Initialization: S ← ∅.
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Array dist[1..n] stores times.

For v ∈ S: dist[v]= d(s, v). (Time when fire has reached v.)

For v /∈ S: dist[v]= the point in time when fire will reach v
according to the information currently available

= min{dist[w] + c(w, v) | w ∈ S, (w, v) ∈ E}.
(If there is no edge (w, v) with w ∈ S, we have dist[v] =∞.)

Initialization: dist[s]← 0.

For all v 6= s: dist[v]←∞.
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Example: Orange: S.
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Red numbers in the nodes are the dist[ · ] values.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 4.4 10



Round:

Find some node u ∈ V − S that minimizes dist[v], v ∈ V − S (need not be unique).

Add u to S. (Edges out of u start burning.)

The current value dist[u] is “frozen” and will not change anymore.
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Example:
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What else has to be done?
On edge (u, v) could a node v ∈ V −S be reached that was not reachable
before, or v ∈ V − S can be reached faster.
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Example:
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What else has to be done?
On edge (u, v) could a node v ∈ V −S be reached that was not reachable
before, or v ∈ V − S can be reached faster.
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For such nodes v we must check if dist[u]+ c(u, v) < dist[v], and if so, update
the dist value:

dist[v]← min{dist[v], dist[u] + c(u, v)}.

(The spark now also walks along the edge (u, v).)

If dist[v] switches from ∞ to some finite value, we say that v is found in this
round.

The algorithm as described so far calculates the lengths of the shortest paths from
s to all other nodes (the times at which the fire reaches the nodes, or∞ if unreachable).
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Algorithm DijkstraDistances(G, s) // rough version

Input: weighted digraph G = (V,E, c) with c(e) ≥ 0, V = {1, . . . , n}, start node s
Output: lengths of the shortest paths from s to the nodes in G
Data structure: Array dist[1..n]

(1) S← ∅; // (1)–(3): Initialization

(2) dist[s]← 0;
(3) for v ∈ V − {s} do dist[v]←∞;

(4) while ∃u ∈ V − S: dist[u] <∞ do // a round, in which u is “scanned”

(5) u← one such node u with minimal dist[u];
(6) S← S ∪ {u};
(7) for v ∈ V − S with (u, v) ∈ E do
(8) dist[v]← min{dist[v], dist[u] + c(u, v)};
(9) return dist[1..n].
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Dijkstra’s algorithm, rough version, in action
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The input digraph.
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Dijkstra’s algorithm, rough version, in action
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After initialization.
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Dijkstra’s algorithm, rough version, in action

1

3 2 1

2

2
3

5

2 1

23

1

2 13

3

1

32

1

8

8 8

8

8 88

0

Scanning u = s. Nodes a, h, k are found.
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Dijkstra’s algorithm, rough version, in action
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u = l is chosen.
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Dijkstra’s algorithm, rough version, in action
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Scanning u = l. Two new nodes are found.
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Dijkstra’s algorithm, rough version, in action
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All v ∈ V − S satisfy dist[v] =∞: algorithm ends.
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Lemma 4.4.2 Algorithm DijkstraDistances outputs, in dist[1..n], the value
d(s, v), for all v ∈ V .

Proof :

If node u is considered in lines (5)–(8), we say that u is scanned.
(Actually, the edges out of u are scanned.)

If dist[v] is set to a value <∞ for the first time, in line (2) or (8),
we say that v is found.

We first deal with the simple case of the unreachable nodes.

By a simple induction, as in BFS, one can show that every node v that can be
reached from s on a path (or walk) will be found at some time and will be scanned
at some later time.

Nodes v not reachable from s will never be found, and they keep the value
dist[v]=∞.
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Now we show the following invariants, which are valid at the end of each round.

(I1) ∀v ∈ V : dist[v] <∞
⇒ there is a path from s to v of length at most dist[v].

(I2) ∀v ∈ S : dist[v] = d(s, v).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 4.4 16



Proof of (I1) by induction over rounds:

After initialization we have dist[v] <∞ only for v = s,
and there is a path from s to s of length 0.

Now consider a round in which u is scanned, and a node v. If dist[v] does not
change in the round, there is nothing to show. So assume dist[v] changes. This
implies v ∈ V − S.

dist[v] is changed to the new value dist[u] + c(u, v).

By induction hypothesis there is a path pu from s to u of length at most dist[u].
By extending pu by edge (u, v) we obtain a path from s to v of length at most
dist[v].
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Proof of (I2) by induction over rounds:

Basis: At the beginning S is empty. In the first round s is put into S, and there is
a path of length dist[s] = 0 from s to s (the path with no edge). On the other
hand we have d(s, s) = 0, since all edges have nonnegative weight, and walks with
cycles do not help.

Induction step: Consider a round in which u 6= s is scanned.

By (I1) there is a path from s to u of length at most dist[u].

We must show:
There is no path from s to u shorter than dist[u].

Let p = (s = v0, v1, . . . , vt = u) be an arbitrary path from s to u.

p starts in v0 = s ∈ S and ends in vt = u ∈ V − S, hence there is some r such that
s = v0, v1, . . . , vr−1 ∈ S and vr /∈ S.
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We consider the initial segment pr−1 = (v0, . . . , vr−1) of p.

By the induction hypothesis for vr−1 ∈ S we have d(s, vr−1) = dist[vr−1].

By the definition of the distance function we have d(s, vr−1) ≤ c(pr−1).

So: dist[vr−1]+ c(vr−1, vr) ≤ c(pr), for the initial segment pr = (v0, . . . , vr) of p.

By the general assumption all edge weights are nonnegative.
In particular: c(p) ≥ c(pr).

Thus:

(∗) c(p) ≥ dist[vr−1] + c(vr−1, vr).
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Furthermore:

(∗∗) dist[vr−1] + c(vr−1, vr) ≥ dist[vr].

Why is this so? We go back to the round in which vr−1 was scanned. In that round the algorithm

compared dist[vr−1] + c(vr−1, vr) and dist[vr], and (∗∗) is enforced. Afterwards dist[vr]

may change, but it can only decrease.

Finally we observe:

(∗ ∗ ∗) dist[vr] ≥ dist[u].

This is because the algorithm chooses a node in V − S with minimal dist[ . ]-value as u,

and vr is qualified for the competition.

Combining (∗), (∗∗), and (∗ ∗ ∗) gives c(p) ≥ dist[u]. �
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Actually, we do not only want to calculate distances d(s, v), but also find shortest
paths from s to all other nodes.

Idea: For each node v we record the edge (w, v) on which “the spark” has reached
node v.

If we start in v and walk back step by step according to this “predecessor”
information we get a shortest path.

Technically, for each node v /∈ S that has been found take down w = p(v) ∈ S with
(w, v) ∈ E and dist[v] = dist[w] + c(w, v). Whenever dist[v] is decreased,
update p(v).

Data structure: p[1..n].
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We modify the algorithm as follows:

(2+). . . p[s]← −2; // the root s is a special case: this value never changes

(3+) for v ∈ V − {s} do . . . p[v]← −1; // “undefined”

Update in later rounds:

(7) for v ∈ V − S with (u, v) ∈ E do
(8a) dd← dist[u] + c(u, v);
(8b) if dd < dist[v] then
(8c) dist[v]← dd;
(8d) p[v]← u;

The operation in lines (7)–(8d) is known as update(u) or relax(u).
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Algorithm DijkstraTree(G, s)
Input: weighted digraph G = (V,E, c) with c(e) ≥ 0, V = {1, . . . , n}, start node s
Output: length d(s, v) of the shortest paths, predecessor p(v) on shortest path

(1) S← ∅;
(2+) dist[s]← 0; p[s]← −2;
(3+) for v ∈ V − {s} do dist[v]←∞; p[v]← −1;

(4) while ∃u ∈ V − S: dist[u] <∞ do
(5) u← one such node u that minimizes dist[u];
(6) S← S ∪ {u};
(7) for v ∈ V − S with (u, v) ∈ E do
(8a) dd← dist[u] + c(u, v);
(8b) if dd < dist[v] then
(8c) dist[v]← dd;
(8d) p[v]← u;

(9+) return dist[1..n] and p[1..n].
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Since exactly the reachable nodes are found we have that p[v] 6= − 1
(“undefined”) holds at the end if and only if dist[v] <∞.

p[v] = −2 is true only for v = s.

Definition A path (s = v0, v1, . . . , vt) is called an S-path if all nodes excepting
maybe vt are in S.

Claim: In addition to (I1) and (I2) Dijkstra’s algorithm maintains the following
invariants:

(I3) If v ∈ S then p[v] 6= − 1 and if in addition v 6= s then p[v] is the second-
to-last node on a path from s to v that runs completely in S and has length
d(s, v).

(I4) If v /∈ S and dist[v] < ∞ then: p[v] ∈ S and p[v] the last S-node on an
S-path from s to v of shortest length dist[v].

Proof of (I3) and (I4): Induction on rounds. (Omitted.)
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Result:

When Dijkstra’s algorithms stops, iteratively following the p[v]-pointers starting
from w until s is reached will give a shortest path from s to w (in opposite
direction).

The p[v]-pointers cannot form a cycle, since in each round a new node u is attached
to S, and the edge (p[u], u) is fixed forever, the edges (p[v], v) form a tree with
root s, the so-called

shortest path tree.
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Example: A shortest-path tree.
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Implementation details:

In a round, how do we efficiently find u with smallest value dist[u]?

Very simple solution: In each round scan the dist-array to find the node v with
minimum value dist[v] among nodes in V − S.

Then each of the up to n rounds takes time Θ(n), and the total running time of
Dijkstra’s algorithm will be Θ(n2), quadratic.

For “dense” graphs, meaning graphs with a number of edges close to n2, this is
acceptable and actually not bad. If, however, we have a graph with |E| � |V |2,
quadratic running time is not good. One can do better.
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Efficient alternative: A clever data structure.

We maintain the set v ∈ V − S with values (“keys”) dist[v] <∞ in a

priority queue PQ.

A priority queue (for graph nodes) can be imagined to be a (variable) set of pairs
(v, k), v ∈ V , k ∈ R+

0 , with the following operations (i.e., methods):

• init(): Initializes PQ to the empty set.

• insert(v, k): Inserts a node v ∈ V plus a key k ∈ R+
0 .

• extractMin: Remove from PQ a pair (u, k) with minimum k, and return node u.

• isempty returns true if PQ is empty and false if PQ is not empty.

• decreaseKey(v, `): assumes that (v, k) is in PQ, with ` < k. (Otherwise illegal
use of this operation.) Replace (v, k) by (v, `) in PQ.
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Fact: One can implement a priority queue for graph nodes in such a way that

• init() takes time O(n).

• insert(v, k), extractMin, decreaseKey(v, `) take time O(log n).

• isempty takes time O(1).

The name of an implementation with these properties is
”
binary heap“.

It is described in Section 4.5 in the book.
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DijkstraFullWithPQ(G, s)
Input: weighted digraph G = (V,E, c) with c(e) ≥ 0, V = {1, . . . , n}, start node s;
Output: length d(s, v) of shortest paths, predecessor nodes p(v), for nodes v reachable from s
auxiliary data structures: PQ: a priority queue for nodes; p, dist: as before; inS[1..n]: boolean

(1) for v from 1 to n do
(2) dist[v] ←∞; inS[v]← false; p[v]← −1;
(3) PQ.init(); // set up empty priority queue

(4) dist[s]← 0; p[s]← −2; PQ.insert(s);
(5) while not PQ.isempty do
(6) u← PQ.extractMin(); inS[u]← true; // now “scan” u

(7) for node v with (u, v) ∈ E and not inS[v] do
(8) dd← dist[u] + c(u, v);
(9) if p[v] ≥ 0 and dd < dist[v] then
(10) PQ.decreaseKey(v,dd); p[v]← u; dist[v]← dd;
(11) if p[v] = −1 then // v not found before

(12) dist[v]← dd; p[v]← u; PQ.insert(v);// “find” v

(13) Output: dist[1..n] and p[1..n].
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Cost of Dijkstra’s algorithm, with PQ realized as binary heap:

Maximum number of entries in PQ: n− 1.

Initialization: O(n).

Let V ′ = set of reachable nodes, n′ = |V ′| ≤ m + 1.

There are ≤ n′ executions of the while loop (1 execution = “scanning” a node).

One loop execution costs time O(1) for loop organization plus O(logn) for extractMin plus the

time for looking at the edges out of u (in u). Each edge causes cost O(logn) (for insert or

for decreaseKey). The number of such edges is outdeg(u), so the total time for scanning u is

O((1 + outdeg(u)) logn).

Initialization plus summing over all reachable u gives time bound O(n + (n′ + m) logn) =

O(n + m logn).

Theorem 4.4.3 Dijkstra’s algorithm with a priority queue, implemented as a
binary heap, finds shortest paths from start node s in a weighted digraph with
nonnegative edge weights in time O(n + m log n).
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Variants of heaps with running times, Box at the end of 4.4.3

With simple scan to find minimum dist-value: O(n2).

With binary heap as priority queue: O(n + m log n).

With “Fibonacci heap” (which offers cheaper decreaseKey operations): O(m +
n log n).

With “d-ary heaps”, d = m/n: O(m · logn
log(m/n)).

This is O(n log n) for m = O(n) and it is O(m) for m = n1+ε, for any constant
ε > 0. This is almost as good as Fibonacci-Heaps.
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