WS 2021/22

Algorithms

Chapter 4.4

Dijkstra's algorithm

Martin Dietzfelbinger

February 2022

Section 4.4: Dijkstra's Algorithm

Please read the introductory remarks in the book (pages 108-110).
Here we use slightly different notation, but in principle it's exactly the same algorithm.

Shortest paths with one start node: Dijkstra's algorithm

Definition 4.4.1

1. A weighted digraph is a triple $G=(V, E, c)$, where (V, E) is a digraph and $c: E \rightarrow \mathbb{R}$ is a function. $c(v, w)$ can be interpreted as "cost" or "length" or "weight" of edge (v, w).
2. A directed walk $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ in G has cost/length

$$
c(p)=\sum_{i=1}^{k} c\left(v_{i-1}, v_{i}\right)
$$

Example: Nonnegative edge weights.

$c((s, a, b, c))=6, \quad c((s, a, k, b, c))=5, \quad d(s, c)=5 ;$
$d(s, s)=0$;
$d(s, e)=d(s, f)=\infty$.
3. The (directed) distance of nodes $v, w \in V$ is

$$
d(v, w):=\min \{c(p) \mid p \text { walk from } v \text { to } w\}
$$

($=\infty$ if there is no such walk;
$=-\infty$ if there are walks from v to w with negative costs of arbitrarily large absolute value.)
Obvious: $d(v, v) \leq 0$. (Walk with no edge.)

Remark

All edge weights are $\geq 0 \Rightarrow$
$d(v, w)=$ minimal length of a path from v to w.
(One can take an arbitrary walk from v to w and cut out cycles without increasing the cost.)

Example: Nonnegative edge weights.

$c((s, a, b, c))=6, \quad c((s, a, k, b, c))=5, \quad d(s, c)=5 ;$
$d(s, s)=0$;
$d(s, e)=d(s, f)=\infty$.

Dijkstra's* Algorithm solves the problem
"Single-Source-Shortest-Paths"
(Shortest paths from one starting node)
Given: Weighted digraph $G=(V, E, c)$ with nonnegative edge lengths and start node $s \in V$.

Task: For each $v \in V$ find distance $d(s, v)$ and in case $d(s, v)<\infty$ find a path from s to v of length $d(s, v)$.

* Pronunciation: "dike-stra".

Edsger W. Dijkstra (1930-2002), Dutch computer scientist, pioneer of the "science of programming" .)

(Sparkling) Idea:

An edge (v, w) is thought as a "one-way fuse" of length $c(v, w)$.
Spark advances along a fuse with constant speed $1[\mathrm{~m} / \mathrm{s}]$ (or $[\mathrm{km} / \mathrm{h}]$ or [miles $/ \mathrm{h}]$).
At time $t_{0}=0$ we ignite node s.
All fuses that correspond to edges (s, v) start burning.
The next interesting event:
At time $t=\min \{c(s, v) \mid(s, v) \in E\}$ the spark reaches (at least) one other node v.

We say: When the spark reaches v, all fuses that belong to edges (v, w) start to burn, without delay. When a spark reaches v later, on another edge/fuse, nothing happens with v.
Numbers in nodes: When does the fire reach v, by current information?
A green edge into a node v that has not yet been reached indicates from which direction v will be first reached. (These edges must be watched. This information can change.)
"Intuitively clear": The fire reaches v exactly at time $d(s, v)$.
Namely: The time span $[0, d(s, v)]$ is exactly the time in which the fire can walk along a shortest path from s to v, not faster, not slower.

Unfortunate: One cannot really carry out this algorithm. Afterwards the network is reduced to ashes. So we simulate! This gives an algorithm.

Observation: Only the n points in time $d(s, v), v \in V$, are interesting. (If the fire reaches v again after $d(s, v)$, nothing happens.)
Thus our algorithms has at most $n=|V|$ rounds.
In between the sparks walk along the fuses/edges without anything happening.
(In the book they say one can go to sleep and has to wake up only when an alarm rings.)
W.I.o.g.: $V=\{1, \ldots, n\}$.

The algorithm works in up to n rounds, one for each reachable node v.

Data structure:

V is split in two disjoint sets S and $V-S$.
(Nodes in S : already reached; nodes in $V-S$: not yet reached.)
Initialization: $S \leftarrow \emptyset$.

Array dist[1..n] stores times.
For $v \in S: \operatorname{dist}[v]=d(s, v)$. (Time when fire has reached v.)
For $v \notin S$: dist $[v]=$ the point in time when fire will reach v according to the information currently available

$$
=\min \{\operatorname{dist}[w]+c(w, v) \mid w \in S,(w, v) \in E\}
$$

(If there is no edge (w, v) with $w \in S$, we have dist $[v]=\infty$.)
Initialization: dist $[s] \leftarrow 0$.
For all $v \neq s$: dist $[v] \leftarrow \infty$.

Example: Orange: S.

Red numbers in the nodes are the dist [•] values.

Round:

Find some node $u \in V-S$ that minimizes dist [$v], v \in V-S$ (need not be unique).
Add u to S. (Edges out of u start burning.)
The current value dist $[u]$ is "frozen" and will not change anymore.

Example:

What else has to be done?

Example:

What else has to be done?
On edge (u, v) could a node $v \in V-S$ be reached that was not reachable before, or $v \in V-S$ can be reached faster.

For such nodes v we must check if dist $[u]+c(u, v)<\operatorname{dist}[v]$, and if so, update the dist value:

$$
\operatorname{dist}[v] \leftarrow \min \{\operatorname{dist}[v], \operatorname{dist}[u]+c(u, v)\}
$$

(The spark now also walks along the edge (u, v).)
If dist $[v]$ switches from ∞ to some finite value, we say that v is found in this round.

The algorithm as described so far calculates the lengths of the shortest paths from s to all other nodes (the times at which the fire reaches the nodes, or ∞ if unreachable).

Algorithm DijkstraDistances (G, s) // rough version
Input: weighted digraph $G=(V, E, c)$ with $c(e) \geq 0, V=\{1, \ldots, n\}$, start node s Output: lengths of the shortest paths from s to the nodes in G
Data structure: Array dist[1..n]
(1) $S \leftarrow \emptyset$;
// (1)-(3): Initialization
(2) dist $[\mathrm{s}] \leftarrow 0$;
(3) for $\mathrm{v} \in V-\{\mathrm{s}\}$ do dist $[\mathrm{v}] \leftarrow \infty$;
(4) while $\exists u \in V-S$: dist $[u]<\infty$ do // a round, in which u is "scanned"
(5) $\quad \mathrm{u} \leftarrow$ one such node u with minimal dist $[u]$;
(6) $S \leftarrow S \cup\{u\}$;
(7) for $v \in V-S$ with $(u, v) \in E$ do
(8) $\operatorname{dist}[\mathrm{v}] \leftarrow \min \{$ dist $[\mathrm{v}]$, dist $[\mathrm{u}]+c(\mathrm{u}, \mathrm{v})\}$;
(9) return dist [1..n].

Dijkstra's algorithm, rough version, in action

The input digraph.

Dijkstra's algorithm, rough version, in action

After initialization.

Dijkstra's algorithm, rough version, in action

Scanning $u=s$. Nodes a, h, k are found.

Dijkstra's algorithm, rough version, in action

$u=l$ is chosen.

Dijkstra's algorithm, rough version, in action

Scanning $u=l$. Two new nodes are found.

Dijkstra's algorithm, rough version, in action

All $v \in V-S$ satisfy dist $[v]=\infty$: algorithm ends.

Lemma 4.4.2 Algorithm DijkstraDistances outputs, in dist[1..n], the value $d(s, v)$, for all $v \in V$.
Proof:
If node u is considered in lines (5)-(8), we say that u is scanned.
(Actually, the edges out of u are scanned.)
If dist $[v]$ is set to a value $<\infty$ for the first time, in line (2) or (8), we say that v is found.

We first deal with the simple case of the unreachable nodes.
By a simple induction, as in BFS, one can show that every node v that can be reached from s on a path (or walk) will be found at some time and will be scanned at some later time.

Nodes v not reachable from s will never be found, and they keep the value dist $[v]=\infty$.

Now we show the following invariants, which are valid at the end of each round.
(I1) $\forall v \in V: \operatorname{dist}[v]<\infty$
\Rightarrow there is a path from s to v of length at most dist $[v]$.
(I2) $\forall v \in S: \quad \operatorname{dist}[v]=d(s, v)$.

Proof of (11) by induction over rounds:
After initialization we have dist $[v]<\infty$ only for $v=s$, and there is a path from s to s of length 0 .
Now consider a round in which u is scanned, and a node v. If dist [v] does not change in the round, there is nothing to show. So assume dist [v] changes. This implies $v \in V-S$.
dist $[v]$ is changed to the new value dist $[u]+c(u, v)$.
By induction hypothesis there is a path p_{u} from s to u of length at most dist [u]. By extending p_{u} by edge (u, v) we obtain a path from s to v of length at most dist $[v]$.

Proof of (I2) by induction over rounds:
Basis: At the beginning S is empty. In the first round s is put into S, and there is a path of length dist $[s]=0$ from s to s (the path with no edge). On the other hand we have $d(s, s)=0$, since all edges have nonnegative weight, and walks with cycles do not help.
Induction step: Consider a round in which $u \neq s$ is scanned.
By (I1) there is a path from s to u of length at most dist [u].
We must show:
There is no path from s to u shorter than dist [u].
Let $p=\left(s=v_{0}, v_{1}, \ldots, v_{t}=u\right)$ be an arbitrary path from s to u.
p starts in $v_{0}=s \in S$ and ends in $v_{t}=u \in V-S$, hence there is some r such that $s=v_{0}, v_{1}, \ldots, v_{r-1} \in S$ and $v_{r} \notin S$.

We consider the initial segment $p_{r-1}=\left(v_{0}, \ldots, v_{r-1}\right)$ of p.
By the induction hypothesis for $v_{r-1} \in S$ we have $d\left(s, v_{r-1}\right)=\operatorname{dist}\left[v_{r-1}\right]$.
By the definition of the distance function we have $d\left(s, v_{r-1}\right) \leq c\left(p_{r-1}\right)$.
So: dist $\left[v_{r-1}\right]+c\left(v_{r-1}, v_{r}\right) \leq c\left(p_{r}\right)$, for the initial segment $p_{r}=\left(v_{0}, \ldots, v_{r}\right)$ of p.
By the general assumption all edge weights are nonnegative.
In particular: $c(p) \geq c\left(p_{r}\right)$.
Thus:
$(*) \quad c(p) \geq \operatorname{dist}\left[v_{r-1}\right]+c\left(v_{r-1}, v_{r}\right)$.

Furthermore:

$(* *) \quad \operatorname{dist}\left[v_{r-1}\right]+c\left(v_{r-1}, v_{r}\right) \geq \operatorname{dist}\left[v_{r}\right]$.
Why is this so? We go back to the round in which v_{r-1} was scanned. In that round the algorithm compared dist $\left[v_{r-1}\right]+c\left(v_{r-1}, v_{r}\right)$ and dist $\left[v_{r}\right]$, and $(* *)$ is enforced. Afterwards dist $\left[v_{r}\right]$ may change, but it can only decrease.
Finally we observe:
$(* * *) \quad \operatorname{dist}\left[v_{r}\right] \geq \operatorname{dist}[u]$.
This is because the algorithm chooses a node in $V-S$ with minimal dist [.]-value as u, and v_{r} is qualified for the competition.

Combining $(*),(* *)$, and $(* * *)$ gives $c(p) \geq \operatorname{dist}[u]$.

Actually, we do not only want to calculate distances $d(s, v)$, but also find shortest paths from s to all other nodes.
Idea: For each node v we record the edge (w, v) on which "the spark" has reached node v.
If we start in v and walk back step by step according to this "predecessor" information we get a shortest path.

Technically, for each node $v \notin S$ that has been found take down $w=p(v) \in S$ with $(w, v) \in E$ and dist $[v]=\operatorname{dist}[w]+c(w, v)$. Whenever dist $[v]$ is decreased, update $p(v)$.
Data structure: $\mathrm{p}[1 . . n]$.

We modify the algorithm as follows:
(2+). . . $\mathrm{p}[\mathrm{s}] \leftarrow-2$; // the root s is a special case: this value never changes
(3+) for $\mathrm{v} \in V-\{\mathrm{s}\}$ do $\ldots \mathrm{p}[\mathrm{v}] \leftarrow-1$; // "undefined"
Update in later rounds:
(7) for $\mathrm{v} \in V-S$ with $(u, \mathrm{v}) \in E$ do
(8a) $\quad \operatorname{dd} \leftarrow \operatorname{dist}[u]+c(u, \mathrm{v})$;
(8b) if dd $<$ dist $[v]$ then
(8c) dist $[\mathrm{v}] \leftarrow \mathrm{dd}$;
(8d) $\quad \mathrm{p}[\mathrm{v}] \leftarrow u$;
The operation in lines (7)-(8d) is known as update (u) or relax (u).

Algorithm DijkstraTree (G, s)

Input: weighted digraph $G=(V, E, c)$ with $c(e) \geq 0, V=\{1, \ldots, n\}$, start node s Output: length $d(s, v)$ of the shortest paths, predecessor $p(v)$ on shortest path
(1) $S \leftarrow \emptyset$;
(2+) $\quad \operatorname{dist}[\mathrm{s}] \leftarrow 0 ; \mathrm{p}[\mathrm{s}] \leftarrow-2$;
(3+) for $\mathrm{v} \in V-\{\mathrm{s}\}$ do dist $[\mathrm{v}] \leftarrow \infty$; $\mathrm{p}[\mathrm{v}] \leftarrow-1$;
(4) while $\exists u \in V-S$: dist $[u]<\infty$ do
(5) $\quad u \leftarrow$ one such node u that minimizes dist $[u]$;
(6) $S \leftarrow S \cup\{u\}$;
(7) \quad for $\mathrm{v} \in V-S$ with $(\mathrm{u}, \mathrm{v}) \in E$ do
(8a) $\quad \operatorname{dd} \leftarrow \operatorname{dist}[\mathrm{u}]+c(\mathrm{u}, \mathrm{v})$;
(8b) if dd $<$ dist $[v]$ then
(8c)
(8d) dist $[\mathrm{v}] \leftarrow \mathrm{dd}$;
(9+) $\mathrm{p}[\mathrm{v}] \leftarrow \mathrm{u}$;
(9+) return dist [1..n] and $\mathrm{p}[1 . . n]$.

Since exactly the reachable nodes are found we have that $\mathrm{p}[v] \neq-1$ ("undefined") holds at the end if and only if dist $[v]<\infty$.
$\mathrm{p}[v]=-2$ is true only for $v=s$.
Definition A path $\left(s=v_{0}, v_{1}, \ldots, v_{t}\right)$ is called an S-path if all nodes excepting maybe v_{t} are in S.
Claim: In addition to (I1) and (I2) Dijkstra's algorithm maintains the following invariants:
(13) If $v \in S$ then $\mathrm{p}[v] \neq-1$ and if in addition $v \neq s$ then $\mathrm{p}[v]$ is the second-to-last node on a path from s to v that runs completely in S and has length $d(s, v)$.
(14) If $v \notin S$ and dist $[v]<\infty$ then: $\mathrm{p}[v] \in S$ and $\mathrm{p}[v]$ the last S-node on an S-path from s to v of shortest length dist $[v]$.

Proof of (I3) and (I4): Induction on rounds. (Omitted.)

Result:

When Dijkstra's algorithms stops, iteratively following the $\mathrm{p}[v]$-pointers starting from w until s is reached will give a shortest path from s to w (in opposite direction).
The $\mathrm{p}[v]$-pointers cannot form a cycle, since in each round a new node u is attached to S, and the edge $(\mathrm{p}[u], u)$ is fixed forever, the edges $(\mathrm{p}[v], v)$ form a tree with root s, the so-called

shortest path tree.

Example: A shortest-path tree.

Implementation details:

In a round, how do we efficiently find u with smallest value dist $[u]$?
Very simple solution: In each round scan the dist-array to find the node v with minimum value dist [v] among nodes in $V-S$.
Then each of the up to n rounds takes time $\Theta(n)$, and the total running time of Dijkstra's algorithm will be $\Theta\left(n^{2}\right)$, quadratic.
For "dense" graphs, meaning graphs with a number of edges close to n^{2}, this is acceptable and actually not bad. If, however, we have a graph with $|E| \ll|V|^{2}$, quadratic running time is not good. One can do better.

Efficient alternative: A clever data structure.
We maintain the set $v \in V-\mathrm{S}$ with values ("keys") dist $[v]<\infty$ in a

priority queue PQ.

A priority queue (for graph nodes) can be imagined to be a (variable) set of pairs $(v, k), v \in V, k \in \mathbb{R}_{0}^{+}$, with the following operations (i.e., methods):

- init(): Initializes PQ to the empty set.
- $\operatorname{insert}(v, k)$: Inserts a node $v \in V$ plus a key $k \in \mathbb{R}_{0}^{+}$.
- extractMin: Remove from PQ a pair (u, k) with minimum k, and return node u.
- isempty returns true if PQ is empty and false if PQ is not empty.
- decreaseKey (v, ℓ) : assumes that (v, k) is in PQ , with $\ell<k$. (Otherwise illegal use of this operation.) Replace (v, k) by (v, ℓ) in PQ.

Fact: One can implement a priority queue for graph nodes in such a way that

- init() takes time $O(n)$.
- insert (v, k), extractMin, decreaseKey (v, ℓ) take time $O(\log n)$.
- isempty takes time $O(1)$.

The name of an implementation with these properties is „binary heap". It is described in Section 4.5 in the book.

DijkstraFullWithPQ (G, s)

Input: weighted digraph $G=(V, E, c)$ with $c(e) \geq 0, V=\{1, \ldots, n\}$, start node s; Output: length $d(s, v)$ of shortest paths, predecessor nodes $p(v)$, for nodes v reachable from s auxiliary data structures: PQ: a priority queue for nodes; p, dist: as before; inS[1..n]: boolean
(1) for v from 1 to n do
(2) \quad dist $[\mathrm{v}] \leftarrow \infty$; inS $[\mathrm{v}] \leftarrow$ false; $\mathrm{p}[\mathrm{v}] \leftarrow-1$;
(3) PQ.init(); // set up empty priority queue
(4) $\quad \operatorname{dist}[s] \leftarrow 0 ; \mathrm{p}[s] \leftarrow-2 ; \mathrm{PQ} . \operatorname{insert}(s)$;
(5) while not PQ.isempty do
$u \leftarrow$ PQ.extractMin(); inS[u] $\leftarrow t r u e ; ~ / / ~ n o w ~ " s c a n " u ~$
for node v with $(\mathrm{u}, \mathrm{v}) \in E$ and not inS[v] do
$\mathrm{dd} \leftarrow \operatorname{dist}[u]+c(\mathrm{u}, \mathrm{v})$;
if $\mathrm{p}[\mathrm{v}] \geq 0$ and $\mathrm{dd}<\operatorname{dist}[\mathrm{v}]$ then
PQ.decreaseKey(v,dd); p[v] $\leftarrow \mathrm{u}$; dist $[\mathrm{v}] \leftarrow \mathrm{dd}$;
if $\mathrm{p}[\mathrm{v}]=-1$ then $/ / \mathrm{v}$ not found before
dist $[\mathrm{v}] \leftarrow \mathrm{dd} ; \mathrm{p}[\mathrm{v}] \leftarrow \mathrm{u} ; \mathrm{PQ} . \operatorname{insert}(\mathrm{v}) ; / /$ "find" v

Output: dist [1..n] and $\mathrm{p}[1 . . n]$.

Cost of Dijkstra's algorithm, with PQ realized as binary heap:
Maximum number of entries in $\mathrm{PQ}: n-1$.
Initialization: $O(n)$.
Let $V^{\prime}=$ set of reachable nodes, $n^{\prime}=\left|V^{\prime}\right| \leq m+1$.
There are $\leq n^{\prime}$ executions of the while loop (1 execution $=$ "scanning" a node).
One loop execution costs time $O(1)$ for loop organization plus $O(\log n)$ for extractMin plus the time for looking at the edges out of u (in u). Each edge causes cost $O(\log n)$ (for insert or for decreaseKey). The number of such edges is $\operatorname{outdeg}(u)$, so the total time for scanning u is $O((1+\operatorname{outdeg}(u)) \log n)$.
Initialization plus summing over all reachable u gives time bound $O\left(n+\left(n^{\prime}+m\right) \log n\right)=$ $O(n+m \log n)$.
Theorem 4.4.3 Dijkstra's algorithm with a priority queue, implemented as a binary heap, finds shortest paths from start node s in a weighted digraph with nonnegative edge weights in time $O(n+m \log n)$.

Variants of heaps with running times, Box at the end of 4.4.3

With simple scan to find minimum dist-value: $O\left(n^{2}\right)$.
With binary heap as priority queue: $O(n+m \log n)$.
With "Fibonacci heap" (which offers cheaper decreaseKey operations): $O(m+$ $n \log n$).
With " d-ary heaps", $d=m / n: O\left(m \cdot \frac{\log n}{\log (m / n)}\right)$.
This is $O(n \log n)$ for $m=O(n)$ and it is $O(m)$ for $m=n^{1+\varepsilon}$, for any constant $\varepsilon>0$. This is almost as good as Fibonacci-Heaps.

