
(M. Dietzfelbinger, June 24, 2022)

4.4 Dijkstra’s algorithm

Input: (Directed or undirected) Graph G = (V,E) with edge weights ℓ(u, v) ≥ 0, for
(u, v) ∈ E, and a starting node s.

Notation: If p = (v0, v1, v2, . . . , vk) is a path from v0 to vk, the length ℓ(p) of p is
ℓ(v0, v1) + ℓ(v1, v2) + · · ·+ ℓ(vk−1, vk).

The empty path (v0) (no edge) has length 0.

d(s, v) := length of a shortest path from s to v.
(This could be ∞, if v is not reachable from s.)

The following data structure is used:

dist[1..n] is an array of reals, one entry for each node v ∈ V = {1, . . . , n}.
Underway, dist[v] is a tentative/preliminary distance from s to v.
Initially, dist[s] = 0, and dist[v] =∞ for all v ̸= s.
Always: dist[v] is the key for entry v, if v is in the priority queue H.

prev[1..n] is an array of nodes, prev[v] is the node from where the currently esti-
mated shortest path reaches v.

Available is also a data structure H, which is a priority queue (PQ), with operations

� create (an empty PQ).

� insert(H, v, t): Inserts node v with “priority” (alarm clock time) t.

� decreaseKey(H, v, t): reduces priority (alarm clock time) of node v to t.

� ejectMin(H) (in the book: “eject”): outputs some node stored in H with mini-
mum priority (alarm clock time), removes this node from H.

A possible implementation of PQs are binary heaps (see Section 4.5.2 in the book).
With this, an operation takes time O(log n), where n is the number of nodes in the
graph. There are other implementations, like a simple array or d-ary heaps, see book.

1



Procedure needed in Dijkstra’s algorithm, in the main loop:

procedure update(u, v)
if dist[u] + ℓ(u, v) < dist[v] then

prev[v]← u;
dist[v]← dist[u] + ℓ(u, v).

This corresponds to adjusting the alarm clock if v can be reached faster via u than
before. Note that now the status of v with respect to the priority queue has to be
adjusted, if dist[v] has changed.

Dijkstra’s algorithm

procedure Dijkstra(G, ℓ, s)
Input: Directed or undirected graph G = (V,E)

with edge weights ℓ(u, v) ≥ 0, (u, v) ∈ E, starting node s ∈ V
Output: dist[v] = d(s, v) for all nodes v ∈ V ;

if v not reachable from s, dist[v] =∞.
prev[v] is predecessor of v in a shortest-path tree with root s.

for all u ∈ V :
dist[u]←∞
prev[u]← nil

H ← empty priority queue
dist[s]← 0
insert(H, s) // Object s, Priority dist[s]← 0

while not isempty(H) do
u← ejectMin(H)
for all edges (u, v) ∈ E do

old← dist[v]
if dist[u] + ℓ(u, v) < old then // update(u, v)

prev[v]← u;
dist[v]← dist[u] + ℓ(u, v)
if old =∞

then insert(H, v, dist[v]) // Object v, new priority dist[v]
else decreaseKey(H, v, dist[v]) // new priority: new dist[v]

return arrays dist[1..n] and prev[1..n].

Note: In contrast to the algorithm in the book we do not put all nodes into the
priority queue at the beginning. A node v enters the priority queue only when dist[v]
is assigned a value <∞ (“v is found”).

2



Running time: Case 1: H is represented by the dist[1..n] array. Finding the minimum
entry takes time O(n), inserting or deleting an entry takes constant time (mark it as
“scanned”, 1 bit). The total running time is O(n2 +m).
Case 2: H ist respresented as a binary heap, see discussion group. The operations
ejectMin, insert, decreaseKey all take time O(log n). The overall time is O((n +
m) log n).

Proof of correctness:

We say a node v is found when dist[v] gets a value < ∞. We say a node u is
scanned when it is taken out of the priority queue and update is applied to all
outgoing edges (u, v). It is clear that the start node s is found in the initialization,
and that s is the first node to be scanned. For v ̸= s: node v is found when for the
first time update(u, v) is carried out in the course of scanning u, for some node u
found earlier. If update(u, v) is carried out, we are sure that dist[u] <∞ before that
and dist[v] <∞ afterwards.

Claim 1: Assume dist[v] < ∞, i.e., has been found before, at any time in the algo-
rithm. Then there is a path of length dist[v] from s to v.
(In particular: d(s, v) ≤ dist[v]. Note the claim is true even though dist[v] may at-
tain first larger and then smaller and smaller values in the course of the algorithm.)

Proof : Indirect. Assume there is some time t and some node v such that dist[v] is
set to some value <∞ at time t in the algorithm, but there is no s-v path of length
dist[v]. Choose t as small as possible with this property. Note first that v ̸= s, since
dist[s] is set to d(s, s) = 0 at the beginning (and never changed). So at time t the
value dist[v] is set to some value dist[u] + ℓ(u, v), in the course of an operation
update(u, v). We have dist[u] <∞, so u has been found before, and by the choice of
t, there is a path from s to u of length dist[u]. Together with the edge (u, v) we get
a path from s via u to v of length dist[v] = dist[u] + ℓ(u, v), a contradiction. □

Remark: When v is found, dist[v] gets a value <∞. Since nodes are taken out of H
until no node with dist-value <∞ is left, node v will be scanned at some time.

Claim 2: If v is reachable from s, then v will be found at some time.

Proof : Consider an arbitrary path p = (s = v0, v1, v2, . . . , vk = v) from s to v. Assume
for a contradiction that v is never found. Choose iminimal such that vi is never found.
Then i > 0, since s is found during initialization. By choice of i we know that vi−1 is
found at some time. By the Remark, it is then also scanned at some (later) time, and
update(vi−1, vi) is carried out. Since vi is never found, we then have dist[vi] = ∞,
and update(vi−1, vi) changes dist[vi] to dist[vi−1] + ℓ(vi−1, vi) < ∞, contradiction.

□

3



Claim 3: When u is scanned, we have dist[u] = d(s, u).

(We have seen that Claim 1 implies that dist[u] ≥ d(s, u) is always true.)

Proof : We prove this indirectly. Assume for a contradiction that there is some point
t in time at which some node u with d(s, u) < dist[u] is scanned. Choose t minimal
with this property, and let S be the set of all nodes scanned strictly before time t.
The algorithm sets dist[s] = 0 = d(s, u) in the initialization, and node s is scanned
first, so s ∈ S and t > 0. Choose a path p = (s = v0, v1, . . . , vk = u) of length
ℓ(p) = d(s, u) from s to u. Let r ≤ k be minimal such that vr /∈ S. (The situation is
given in the picture above.) We observe:

(a) By the algorithm and since vr−1 ∈ S: After vr−1 has been scanned, we have

dist[vr] ≤ dist[vr−1] + ℓ(vr−1, vr) = d(s, vr−1) + ℓ(vr−1, vr).

Afterwards, dist[vr−1] cannot change anymore (by Claim 1 it has the minimal
possible value), and dist[vr] may only decrease; so the inequality still holds at
round t.

(b) By the definition of d(s, · ) we have d(s, vr−1) ≤ ℓ((v0, . . . , vr−1)).

(c) By the assumption, and since all edge costs are nonnegative:
At time t: ℓ((v0, . . . , vr−1)) + ℓ(vr−1, vr) ≤ c(p) = d(s, u) < dist[u].

From (a)–(c) we get dist[vr] < dist[u], in round t. This means that in round t a node
with a smaller dist value than u is available for scanning, and hence the algorithm
will not choose u. This is the desired contradiction. □

4


