(M. Dietzfelbinger, June 24, 2022)

4.4 Dijkstra's algorithm

Input: (Directed or undirected) Graph $G=(V, E)$ with edge weights $\ell(u, v) \geq 0$, for $(u, v) \in E$, and a starting node s.
Notation: If $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right)$ is a path from v_{0} to v_{k}, the length $\ell(p)$ of p is $\ell\left(v_{0}, v_{1}\right)+\ell\left(v_{1}, v_{2}\right)+\cdots+\ell\left(v_{k-1}, v_{k}\right)$.
The empty path (v_{0}) (no edge) has length 0 .
$d(s, v):=$ length of a shortest path from s to v.
(This could be ∞, if v is not reachable from s.)
The following data structure is used:
dist [1..n] is an array of reals, one entry for each node $v \in V=\{1, \ldots, n\}$.
Underway, dist $[v]$ is a tentative/preliminary distance from s to v.
Initially, dist $[s]=0$, and dist $[v]=\infty$ for all $v \neq s$.
Always: dist $[v]$ is the key for entry v, if v is in the priority queue H.
$\operatorname{prev}[1 . . n]$ is an array of nodes, $\operatorname{prev}[v]$ is the node from where the currently estimated shortest path reaches v.

Available is also a data structure H, which is a priority queue (PQ), with operations

- create (an empty PQ).
- insert (H, v, t) : Inserts node v with "priority" (alarm clock time) t.
- decreaseKey (H, v, t) : reduces priority (alarm clock time) of node v to t.
- ejectMin (H) (in the book: "eject"): outputs some node stored in H with minimum priority (alarm clock time), removes this node from H.

A possible implementation of PQs are binary heaps (see Section 4.5.2 in the book). With this, an operation takes time $O(\log n)$, where n is the number of nodes in the graph. There are other implementations, like a simple array or d-ary heaps, see book.

Procedure needed in Dijkstra's algorithm, in the main loop:

```
procedure update(u,v)
    if dist [u]+\ell(u,v)<\operatorname{dist}[v] then
            prev [v]}\leftarrowu
            dist [v]}\leftarrow\operatorname{dist}[u]+\ell(u,v)
```

This corresponds to adjusting the alarm clock if v can be reached faster via u than before. Note that now the status of v with respect to the priority queue has to be adjusted, if dist $[v]$ has changed.

Dijkstra's algorithm

procedure Dijkstra (G, ℓ, s)
Input: Directed or undirected graph $G=(V, E)$
with edge weights $\ell(u, v) \geq 0,(u, v) \in E$, starting node $s \in V$
Output: dist $[v]=d(s, v)$ for all nodes $v \in V$;
if v not reachable from s, dist $[v]=\infty$.
$\operatorname{prev}[v]$ is predecessor of v in a shortest-path tree with root s.
for all $u \in V$:

$$
\operatorname{dist}[u] \leftarrow \infty
$$

$$
\operatorname{prev}[u] \leftarrow \text { nil }
$$

$H \leftarrow$ empty priority queue
dist $[s] \leftarrow 0$
$\operatorname{insert}(H, s) \quad / / \quad$ Object s, Priority dist $[s] \leftarrow 0$
while not isempty (H) do
$u \leftarrow \operatorname{ejectMin}(H)$
for all edges $(u, v) \in E$ do
old $\leftarrow \operatorname{dist}[v]$
if $\operatorname{dist}[u]+\ell(u, v)<$ old then // update (u, v)
$\operatorname{prev}[v] \leftarrow u ;$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+\ell(u, v)$
if old $=\infty$
then $\operatorname{insert}(H, v, \operatorname{dist}[v]) \quad / / \quad$ Object v, new priority dist $[v]$
else decreaseKey (H, v, dist $[v]$) // new priority: new dist $[v]$
return arrays dist $[1 . . n]$ and $\operatorname{prev}[1 . . n]$.

Note: In contrast to the algorithm in the book we do not put all nodes into the priority queue at the beginning. A node v enters the priority queue only when dist $[v]$ is assigned a value $<\infty$ (" v is found").

Running time: Case 1: H is represented by the dist $[1 . . n]$ array. Finding the minimum entry takes time $O(n)$, inserting or deleting an entry takes constant time (mark it as "scanned", 1 bit). The total running time is $O\left(n^{2}+m\right)$.
Case 2: H ist respresented as a binary heap, see discussion group. The operations ejectMin, insert, decreaseKey all take time $O(\log n)$. The overall time is $O((n+$ $m) \log n)$.

Proof of correctness:

We say a node v is found when dist $[v]$ gets a value $<\infty$. We say a node u is scanned when it is taken out of the priority queue and update is applied to all outgoing edges (u, v). It is clear that the start node s is found in the initialization, and that s is the first node to be scanned. For $v \neq s$: node v is found when for the first time update (u, v) is carried out in the course of scanning u, for some node u found earlier. If update (u, v) is carried out, we are sure that dist $[u]<\infty$ before that and dist $[v]<\infty$ afterwards.
Claim 1: Assume dist $[v]<\infty$, i.e., has been found before, at any time in the algorithm. Then there is a path of length dist $[v]$ from s to v.
(In particular: $d(s, v) \leq \operatorname{dist}[v]$. Note the claim is true even though dist $[v]$ may attain first larger and then smaller and smaller values in the course of the algorithm.)
Proof: Indirect. Assume there is some time t and some node v such that dist $[v]$ is set to some value $<\infty$ at time t in the algorithm, but there is no $s-v$ path of length dist $[v]$. Choose t as small as possible with this property. Note first that $v \neq s$, since dist $[s]$ is set to $d(s, s)=0$ at the beginning (and never changed). So at time t the value dist $[v]$ is set to some value dist $[u]+\ell(u, v)$, in the course of an operation update (u, v). We have dist $[u]<\infty$, so u has been found before, and by the choice of t, there is a path from s to u of length dist $[u]$. Together with the edge (u, v) we get a path from s via u to v of length dist $[v]=\operatorname{dist}[u]+\ell(u, v)$, a contradiction.
Remark: When v is found, dist $[v]$ gets a value $<\infty$. Since nodes are taken out of H until no node with dist-value $<\infty$ is left, node v will be scanned at some time.
Claim 2: If v is reachable from s, then v will be found at some time.
Proof: Consider an arbitrary path $p=\left(s=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=v\right)$ from s to v. Assume for a contradiction that v is never found. Choose i minimal such that v_{i} is never found. Then $i>0$, since s is found during initialization. By choice of i we know that v_{i-1} is found at some time. By the Remark, it is then also scanned at some (later) time, and $\operatorname{update}\left(v_{i-1}, v_{i}\right)$ is carried out. Since v_{i} is never found, we then have dist $\left[v_{i}\right]=\infty$, and update $\left(v_{i-1}, v_{i}\right)$ changes dist $\left[v_{i}\right]$ to dist $\left[v_{i-1}\right]+\ell\left(v_{i-1}, v_{i}\right)<\infty$, contradiction.

Claim 3: When u is scanned, we have dist $[u]=d(s, u)$.
(We have seen that Claim 1 implies that dist $[u] \geq d(s, u)$ is always true.)
Proof: We prove this indirectly. Assume for a contradiction that there is some point t in time at which some node u with $d(s, u)<\operatorname{dist}[u]$ is scanned. Choose t minimal with this property, and let S be the set of all nodes scanned strictly before time t. The algorithm sets dist $[s]=0=d(s, u)$ in the initialization, and node s is scanned first, so $s \in S$ and $t>0$. Choose a path $p=\left(s=v_{0}, v_{1}, \ldots, v_{k}=u\right)$ of length $\ell(p)=d(s, u)$ from s to u. Let $r \leq k$ be minimal such that $v_{r} \notin S$. (The situation is given in the picture above.) We observe:
(a) By the algorithm and since $v_{r-1} \in S$: After v_{r-1} has been scanned, we have

$$
\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}\left[v_{r-1}\right]+\ell\left(v_{r-1}, v_{r}\right)=d\left(s, v_{r-1}\right)+\ell\left(v_{r-1}, v_{r}\right) .
$$

Afterwards, dist $\left[v_{r-1}\right]$ cannot change anymore (by Claim 1 it has the minimal possible value), and dist $\left[v_{r}\right]$ may only decrease; so the inequality still holds at round t.
(b) By the definition of $d(s, \cdot)$ we have $d\left(s, v_{r-1}\right) \leq \ell\left(\left(v_{0}, \ldots, v_{r-1}\right)\right)$.
(c) By the assumption, and since all edge costs are nonnegative:

At time $t: \ell\left(\left(v_{0}, \ldots, v_{r-1}\right)\right)+\ell\left(v_{r-1}, v_{r}\right) \leq c(p)=d(s, u)<\operatorname{dist}[u]$.
From (a)-(c) we get dist $\left[v_{r}\right]<\operatorname{dist}[u]$, in round t. This means that in round t a node with a smaller dist value than u is available for scanning, and hence the algorithm will not choose u. This is the desired contradiction.

