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5.1.1 Basics

Reminder
(a) An undirected graph G = (V, E) is called acyclic if there is no cycle in G.
(b) A graph G is called a (free) tree if it is connected and acyclic. — Example:
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Acyclic graphs are also called (free) forests.
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Fundamental facts about trees
If G = (V, E) is a tree with n nodes and m edges, the following statements hold:
(a) m=mn— 1.

(b) For each pair u, v of nodes there is exactly one simple path from u to v.

Furthermore we have:
If G = (V, E) is a graph with n — 1 edges and it is acyclic, it is a tree.
If G = (V, E) is a graph with n — 1 edges and it is connected, it is a tree.

FG KTuEA, TU limenau Algorithms — SS 2022 — Chapter 5.1



(1) Adding an edge (u,w) to a tree G creates exactly one cycle
(consisting of (u,w) and the unique path from u to w in G).
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(2) Removing an edge (u,w) from G makes the graph split in 2 components:
U ={v €V | vreachable from u via edges in £ — {(u,w)}};
W ={v €V | v reachable from w via edges in E — {(u,w)}};
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Example:
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Example:

Definition 5.1.1
For G = (V, E) a connected graph a set T' C E of edges is called a spanning tree

for G if (V,T) is a tree.
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Observe: Every connected graph has a spanning tree.

(Start with E. While there is a cycle, remove some edge from some cycle.
At some point: no cycle is left.

Taking away a cycle edge never destroys connectedness, so the final result is
connected and acyclic: a tree.)
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Definition 5.1.2
Let G = (V, E,c) be a weighted graph, i.e. c: E — R is a “weight function” or
“cost function” .
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Weighted graphs model: road networks — computer networks — electric power networks . . .

edge costs model: building cost — cost for leasing cable use — cost for leasing equipment for
transmitting data via radio waves . . .

Btw: Multiply edge weights by “million Euros”.
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(a) The (total) weight of a subset £’ C E of edges is defined as

c(E') = ZeeE, c(e).

Total weight ¢(E’) =34+ 5+2+5+3+3+3+2=26.
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(b) Let G be a connected graph. A spanning tree T' C E for G is called a minimum
spanning tree (MST) for G if

c(T) = min{c(T") | T’ spanning tree of G},

i.e. if ¢(T") is minimal among all spanning trees of G.

Two MSTs, both with total weight 18.
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Obvious: Each graph has an MST.
(There are only finitely many spanning trees.)

Beware: There may be several different MSTs (with the same weight, of course).
Task: Given G = (V, E, ¢), find an MST T for G.

Here: “Jarnik /Prim algorithm”*
“Kruskal’s algorithm” **

Typical for the algorithm paradigm “greedy”:
Build solution step by step, choosing one edge after the other.
In each step make the decision that momentarily looks best.

Never undo a decision.

* Invented 1930 by Vojt&ch Jarnik, re-invented 1957 by Robert C. Prim
and 1959 by Edsger W. Dijkstra.
“* Invented 1956 by Joseph Kruskal.
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5.1.2 Jarnik/Prim algorithm

S: Set S of nodes, the nodes “reached so far’.
R: Set R of edges, the edges “chosen so far”.

(1) Choose an arbitrary (start) node s € V.
S« {s}; R«

(2) Repeat (n — 1) times:
Find weSandueV —Ss.t.

c(w,u) is minimal among all values c(w’,u), w' € S, v’ € V — 8.

S <~ SU{u}; // add node to S
R+ RU{(w,u)}; // add edge to R

(3) Output: R.
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Example (Jarnik/Prim):
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Example (Jarnik/Prim):

FG KTuEA, TU llmenau

Algorithms — SS 2022 — Chapter 5.1

11



Example (Jarnik/Prim):
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The cut property

For proving the algorithm of Jarnik /Prim correct we use the “cut property”
A partition (S,V — S) with ) # S # V is called a cut.
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The cut property

Definition 5.1.3
A set R C F is called extendible (to an MST), if there is an MST T's.t. RC T.

R is extendible, because there is an MST 7' O R.
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Claim (Cut Property):

Assume R C FE is extendible
and (S,V —§) is a cut s.t.

there is no edge in R from a node in S to a node in V' — S,
and assume that e = (v,w), v € S, w € V — S is an edge

that minimizes ¢((v',w")), v € S, w' € V - §.

Then R U {e} is also extendible.
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The cut property

Proof:
Let RC E, let T O R be an MST; let (S,V — S) be a cut, let e be as assumed.
Case 1: If e € T, we have RU{e} C T, hence RU {e} is extendible.
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Case 2: ¢ ¢ T.

The cut property

R () Restt (O)—C)
T-R(O—O)

MST T with RC T.
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The cut property

Case 2: e ¢ T. R (OO Rest: (O)—O)
T-R(O—O)
v . f
S V-S

e = (v,w) minimizes c¢((v/,w’)), v € S, w' e V - 8S.
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The cut property

Case 2: e ¢ T. R OO Restt (O)—O)
T-R(O—O)

Path from v to w in T must change from S to V — S at some edge ¢’
We obtain a cycle in T'U {e} with e and ¢’ on it.

FG KTuEA, TU limenau Algorithms — SS 2022 — Chapter 5.1

17



The cut property

Case 2: e ¢ T. R OO Restt (O)—O)
T-R(O—O)

New tree T, := (T'— {e’}) U {e} D RU{e} is a spanning tree.
c(Te)—c(T) = c(e) —c(e') <0, hence T, also optimal, hence RU{e} is extendible.[]
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Correctness of the Jarnik /Prim algorithm:

R;: Edge set (size i), after round 7 in R.
Si: Node set (size ¢ + 1), after round 7 in S.

Since in every round an edge and a node is added to a connected graph, creating no
cycles, every graph (S;, R;) is a tree.

Since R,,_1 is a tree with n — 1 edges, R,,_1 is a spanning tree.
Must show: Minimality, i.e. R,,_1 is an MST for G.
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Inductive claim 1C(2): R; is extendible.
(This is easily proved by induction on ¢ =0,1,...,n — 1, with the cut property.)

Then IC(n — 1) says that T' D R,,_1 for some MST T

Since |[T|=n—1=|R,,_1|, we get T'= R,,_1, hence R,,_; is an MST.

Missing: Details of the implementation. There is a great similarity with Dijkstra's algorithm. (We use
a priority queue, for w & S the value dist[w] is the length of an edge (v, w) with v € S that
minimizes c((v, w)).)

Theorem 5.1.1

The Jarnik/Prim algorithm can be implemented using a priority queue, realized
as a binary heap. Then it finds a minimum spanning tree for any given weighted
connected graph G = (V, E,¢) in time O(mlogn), or O(|E|log|V]).

FG KTuEA, TU limenau Algorithms — SS 2022 — Chapter 5.1 20



Jarnik/Prim(G, s) // (full version with priority queue)

Input: Weighted connected graph G = (V, E,c), V ={1,...,n}, s € V (arbitrary);
Output: MST T for G.

Auxiliary structures: PQ: priority queue, initially empty; inS[1..n], p[1..n]: as above

(1) for w from 1 to n do

(2) dist[w] < oo; inS[w] <« false; plw] +— —1;

(3) distl[s] <« 0; pls] < —2; PQ.insert(s);

(4)  while not PQ.isempty do

(5) u < PQ.extractMin; inS[u] <« true;

(6) for all vertices w with (u,w) € E and not inS[w] do

(7) dd < c(u,w); // the only difference to Dijkstra’s algorithm!
(8) if plw] > 0 and dd < dist[w] then

(9) dist[w] < dd; PQ.decreaseKey(w,dd); p[w] < u;

(10) if p[w] = —1 then // wis found

(11) dist [w] < dd; plw] < u; PQ.insert(w);

(12) Ausgabe: 7' = {(w, plw]) | inS[w] = true, w # s}. // set of the chosen edges

FG KTuEA, TU limenau Algorithms — SS 2022 — Chapter 5.1 20



5.1.3 Kruskal’s algorithm

This algorithm also solves the MST problem.

We use a different method than Jarnik/Prim, but also “greedy”:
Start with R = (). Then do n — 1 rounds.

In each round:

Choose an edge e € ¥ — R of minimum weight that does not close
a cycle with (V, R), and add ¢ to R.

It is clear that one can organize this as follows:

Scan the edges in increasing order of their weight. Add e to R if
and only if e does not close a cycle with the current R.
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Kruskal’s algorithm

Step 1: Sort edges e, ..., e, according to their weights c(eq), ..., c(emn)
in increasing order, and re-label.
Afterwards: c(e1) < -+ < clem).

Step 2: R « (.

Step 3: for:=1,2,...,m do
if RU{e;} is acyclic then R < R U {e;}
// otherwise, i.e. if e; closes a cycle, R does not change.

// Optional: End loop as soon as |R| =n — 1.
Step 4: Output R.
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Example (Kruskal):
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Example (Kruskal):
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Example (Kruskal):
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Example (Kruskal):
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Example (Kruskal):
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Example (Kruskal):
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Remarks on 1) Correctness; 2) Computation time

Correctness proof:

R;: Edge set in R after treating e¢;.

One shows by induction on ¢ = 0,...,m: R; is extendible. (Not hard with the cut

property.)
Then R,,, € T for an MST T.
But R,, is also connected, hence it is a tree, hence R,,, = 1.
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Induction Claim 1C(2): R; is extendible.
Proof :

Basis: Ry = () is extendible (since there are MSTs).
ILH.: 1 <¢<m and R;_q is extendible.
1.S.: We execute round ¢ with edge e;.

Case 1: R; 1 U{e;} has a cycle. Then R;,_1 = R; is extendible.

2. Fall: R;_; U{e;} is acyclic. — Let ¢; = (v, w). Define

S := Connected component of v in (V, R;_1).

Then obviously no edge in R;_1 connects S and V' — S.

Since R; 1 U{e;} is acyclic, we have w € V — §S.

Easy: c(e;) is minimal among all ¢(e’) with ¢/ = (v/,w'), v € S, w' € V — S.

By the cut property we get: R; = R; 1 U {e;} is extendible.
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IC(m) says that R,,, C T for some MST T.
But we also have T' C R,,,.

(Let e € T'. Then e = ¢; for some 7 and e is tested in round 4.
Now R;,_1 C R,, C T and e; € T, hence R,_1 U {e;} C T, hence R;_1 U {e;} is acyclic, hence
the algorithm puts e; into R;, hence e = e; € R,,.)

So R,, =T, and R,,, is an MST.
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Computation time:

With a suitable data structure (“Union-Find data structure”, implementation with
trees, see below) the acyclicity test in Step 3 can be carried out in time O(logn).

Total time for Kruskal's algorithm:

O(mlogm) + m - O(logn) = O(mlogn).
soFcirng Ic?orp

(Details to follow. Note that n — 1 < m < n?/2, hence log, m = ©(log,n).)
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5.1.4 Auxiliary data structure: Union-Find

Union-Find data structures are used as an auxiliary structure for
several algorithms, in particular for Kruskal's algorithm.

Intermediate situation in Kruskal's algorithm:
Set R=R; 1 C FE, so that (V, R) is a forest.
Next edge: e = ¢; = (v, w).

Must decide whether e closes a cycle with R.
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For two nodes v and w decide whether (V, R) contains a path from v to w.
(Here: v =2, w =6.)
Possible, but slow: do depth-first-search in (V, R) each time.
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Clever: We do not need to represent the edges in R, only the node sets of the
connected components of (V. R).

In the picture this are the sets

{1},4{2,3,5,7,9}, {4}, {6}, {8, 11}, {10}.

We wish to figure out (fast) whether two nodes are in the same component
(set).

When the algorithm puts a new edge into R, we have to form the union of two of
the sets (and throw away the two old sets).
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New sets: {1},{2,3,5,6,7,9},{4},{8,11}, {10}.

This operation also should be fast.
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Abstract task:

A partition of V = {1,2,... n} consists of disjoint nonempty subsets of V', whose

union is V:
V={1,2....,n}=5USU---US,,

where S1, 59, ...,S, are disjoint.
We consider “dynamic” partitions, which can be changed by operations.
Task: Maintain a “dynamic partition” of the set {1,2,...,n} under operations

init (Initialization)
union  (Union of two of the sets)
find  (“In which set is v?").

Deviation from book: Our ground setis V = {1,2,...,n}, we do not use an insert
operation.
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Example: n = 12.

1 2) (7 3
JEY e o
S $; S S Si

In each set S of the partition we have chosen a representative r € S. This
representative acts as S's name. We write S,. for the set with representative r.
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Operations:
init(n):

find(v):

union(s,t):

Given n > 1, generate the “discrete partition”
with the n singleton sets {1}, {2},...,{n}.
Thus: S, = {v} and r(v) = v, for 1 <v < n.

Given v € {1,...,n}, return the representative r(v) of
the set S, (,) that (currently) contains v.

The arguments s and ¢ must be representatives of

different classes S; and S;. The operation removes
S, and S; from the partition and adds S, U S; to it.
As representative of this new set S, U S; use s or t.

In the example, union(4,10) removes the sets Sy = {1,2,4,5} and S;p = {10} and adds
S, =1{1,2,4,5,10}.
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Kruskal’s algorithm with Union-Find data structure

Input: Weighted connected graph G = (V, E,c) with V = {1,...,n}.

Step 1: Sort edges e1,..., €., in increasing order ¢; = c(e1),...,¢cm = c(eny,) of
weights.
Result: Sorted edge list €1 = (v, w1,¢1), -+ €m = (Vm, Win, Cm).

Step 2: R <+ (; initialize Union-Find structure for {1,...,n}.
Step 3: for:=1,2,...,m do:

s < find(v;); t « find(w;);

if s # t then begin R < RU {e¢;}; union(s, t) end,;

// Optional: Quit loop as soon as |[R| =n — 1.

Step 4: return R.
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Theorem 5.1.2

(a) Kruskal's algorithm in the implementation just given is correct.

(b) The execution time of the algorithm is O(mlogn) if one implements the
Union-Find data structure with trees.
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Proof: (a) (Correctness) One (easily) shows by induction that after i rounds the
sets in the union-find structure are the connected components of (V. {e1,...,¢e;}),
and these are the same as the connected components of the forest (V, R;)

(R; = content of R after ¢ rounds).

Hence “s < find(v;); t < find(w;); if s £t ...
closes a cycle with (V, R;_1).

tests whether e; = (v;, w;)

(b) (Execution time): see below.
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An attractive implementation of the Union-Find data structure uses a forest with
edges directed towards the roots.

Example: Partition {1,2,4,5},{3,7,9,12},{6,8},{10},{11} is represented by:

© B
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For each set S; there is exactly one tree B;.
Each element v € S; is a node in tree B;.

In each tree, all arrows point towards the root:

p(v) is the predecessor of v; the root is the representative r; the root points to itself
as a predecessor: p(v) = v if and only if v is a representative.

Central property: Starting at v, always following the arrows will get us to the root,
I.e., the representative of v.
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A very efficient representation of such a forest uses only an array
pll..n]: array of int;
for node v the entry p[v] gives the predecessor p(v).

The forest in the example

R & &6

o

(&

(2, (12
OO (3
is given by the following array:

1 2 3 4 5 6 7 &8 9 10 11 12

p:|2]4|12]|4|2]6]|7|6|7|10]11]7
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Implementation of find(v):

procedure find(v)
(1) u < v;
// follow arrows until root
2) uu ¢ plul;
3) while uu # u do
4) u < uu;
5  uu < plul ;
6) return u.

(
(
(
(
(

Time: O(depth(v)) = ©(depth of v in its tree).
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union(s,t): Given are two representatives s and t.

We make one of the representatives the child of the other one, i.e., we let p(s) < ¢
or p(t) < s.

? Which of the two options is preferable?

Bad choice: Carry out union(v,v + 1), v = 1,...,n — 1, by p(v) < v + 1,
v=1,...,n—1.
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This gives the tree

OO SO

Now find operations are very expensive!
find(v) for each v € {1,...,n} gives total cost O(n?)!
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Trick: For each node v keep a number rank(v) (rank), in an array
rank[1l..n]: array of int, with

rank [v] = depth of subtree with root wv.

7D B

0(9) 1(12 o

union(s,t): the root with the bigger rank becomes the root of the new, larger tree
(“union by rank™). If the ranks are the same it does not matter which node we
choose as new root — (precisely) in this case the rank of the node that remains a
root increases by 1.
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Examples:

union(4,7) would give:

union(6, 7) would give:
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Operations:

Prozedur init(n) // Initialization
(1) Generate p, rank: arrays of length n for ints
(2) for v from 1 to n do
(3) plv] < v; rank[v] < 0;
// m trees, consisting of only the root, which has rank 0

Cost: O(n).

prozedure union(s, t)
// Assumption: s, t are different representatives/roots
// le..pls] =sandplt]l =t

(1) if rank[s] > rank[¢]

(2) then p[t] < s

(3) elseif rank[t] > rank[s]

(4) then p[s] + ¢

(5) else p[t] < s; rank[s] + rank[s] + 1.

Cost: O(1).
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Theorem 5.1.3
The implementation of Union-Find just described has the following properties:

a) It is correct (i.e. it has the prescribed 1/O behaviour).

b) init(n) takes time O(n);
find(v) takes time O(logn);
union(s,t) takes time O(1).
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Proof: (a) is clear.
(b) We observe:

Claim: If s is root of the tree B, and h = rank(s), then B, contains at least 2"
nodes.

Proof of claim: A root of rank h is created when two trees are joined whose
roots both have rank A — 1. From this the claim follows by an easy induction over

h=0,1,....
Since the number of nodes is n, the largest rank h that can occur satisfies 2h <y,
or h < logs n.

Since rank(s) also gives the depth of the tree with root s, no node v can be more
than log, n steps away from its root, so find(v) takes time O(logn).

[]
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THE END

Many thanks for coming and taking part!

All the best in the exam!



