
SS 2022/23

Algorithms

Chapter 5.1
Minimum Spanning Trees

Martin Dietzfelbinger

July 2022

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1

5.1.1 Basics

Reminder

(a) An undirected graph G = (V,E) is called acyclic if there is no cycle in G.

(b) A graph G is called a (free) tree if it is connected and acyclic. – Example:

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 1

Acyclic graphs are also called (free) forests.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 2

Fundamental facts about trees

If G = (V,E) is a tree with n nodes and m edges, the following statements hold:

(a) m = n− 1.

(b) For each pair u, v of nodes there is exactly one simple path from u to v.

Furthermore we have:

If G = (V,E) is a graph with n− 1 edges and it is acyclic, it is a tree.

If G = (V,E) is a graph with n− 1 edges and it is connected, it is a tree.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 3

(1) Adding an edge (u,w) to a tree G creates exactly one cycle
(consisting of (u,w) and the unique path from u to w in G).

w

u

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 3

(2) Removing an edge (u,w) from G makes the graph split in 2 components:

U = {v ∈ V | v reachable from u via edges in E − {(u,w)}};
W = {v ∈ V | v reachable from w via edges in E − {(u,w)}};

WU

u w

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 3

Example:

Definition 5.1.1
For G = (V,E) a connected graph a set T ⊆ E of edges is called a spanning tree
for G, if (V, T) is a tree.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 4

Example:

Definition 5.1.1
For G = (V,E) a connected graph a set T ⊆ E of edges is called a spanning tree
for G if (V, T) is a tree.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 4

Observe: Every connected graph has a spanning tree.

(Start with E. While there is a cycle, remove some edge from some cycle.
At some point: no cycle is left.

Taking away a cycle edge never destroys connectedness, so the final result is
connected and acyclic: a tree.)

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 5

Definition 5.1.2
Let G = (V,E, c) be a weighted graph, i.e. c : E → R is a “weight function” or
“cost function”.

2

4

1
2

3

5

4

12

13

3

31

3

2

5
1 2

1

Weighted graphs model: road networks – computer networks – electric power networks . . .

edge costs model: building cost – cost for leasing cable use – cost for leasing equipment for

transmitting data via radio waves . . .

Btw: Multiply edge weights by “million Euros”.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 6

(a) The (total) weight of a subset E′ ⊆ E of edges is defined as

c(E′) :=
∑

e∈E′
c(e).

2

21
5

2

3

1 3

3

3 1

2 1

4

5

3

1

4

1

2

Total weight c(E′) = 3 + 5 + 2 + 5 + 3 + 3 + 3 + 2 = 26.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 7

(b) Let G be a connected graph. A spanning tree T ⊆ E for G is called a minimum
spanning tree (MST) for G if

c(T) = min{c(T ′) | T ′ spanning tree of G},

i.e. if c(T) is minimal among all spanning trees of G.

2
1

4

1
2

3

5

4

12

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

13

3

31

3

2

5
1 2

Two MSTs, both with total weight 18.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 8

Obvious: Each graph has an MST.
(There are only finitely many spanning trees.)

Beware: There may be several different MSTs (with the same weight, of course).

Task: Given G = (V,E, c), find an MST T for G.

Here: “Jarńık/Prim algorithm”∗

“Kruskal’s algorithm”∗∗

Typical for the algorithm paradigm “greedy”:

Build solution step by step, choosing one edge after the other.

In each step make the decision that momentarily looks best.

Never undo a decision.

∗ Invented 1930 by Vojtěch Jarńık, re-invented 1957 by Robert C. Prim
and 1959 by Edsger W. Dijkstra.
∗∗ Invented 1956 by Joseph Kruskal.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 9

5.1.2 Jarńık/Prim algorithm

S: Set S of nodes, the nodes “reached so far”.
R: Set R of edges, the edges “chosen so far”.

(1) Choose an arbitrary (start) node s ∈ V .
S← {s}; R← ∅;

(2) Repeat (n− 1) times:

Find w ∈ S and u ∈ V − S s.t.
c(w, u) is minimal among all values c(w′, u′), w′ ∈ S, u′ ∈ V − S.

S← S ∪ {u}; // add node to S
R← R ∪ {(w, u)}; // add edge to R

(3) Output: R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 10

Example (Jarńık/Prim):

4

1
2

3

5

4

12

3

1

3

1 3

1

3

2

21
5

2

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 11

Example (Jarńık/Prim):

2
1

4

1
2

3

5

4

12

13

3

31

3

2

5
1 2

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 11

Example (Jarńık/Prim):

3

3

13

2

1

4

1
2

3

5

4

12

2

21
5

3

1

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 11

The cut property

For proving the algorithm of Jarńık/Prim correct we use the “cut property”

A partition (S, V − S) with ∅ ≠ S ̸= V is called a cut.

S

V−S

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 12

The cut property

Definition 5.1.3

A set R ⊆ E is called extendible (to an MST), if there is an MST T s.t. R ⊆ T .

2

21
5

2

3

1 3

3

3 1

4

1
2

3

5

1

4

12

R is extendible, because there is an MST T ⊇ R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 12

Claim (Cut Property):

Assume R ⊆ E is extendible
and (S, V − S) is a cut s.t.

there is no edge in R from a node in S to a node in V − S,
and assume that e = (v, w), v ∈ S, w ∈ V − S is an edge

that minimizes c((v′, w′)), v′ ∈ S, w′ ∈ V − S.

Then R ∪ {e} is also extendible.

e

S
V−S

4

21

4

5
9

v
w

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 13

The cut property

Proof :

Let R ⊆ E, let T ⊇ R be an MST; let (S, V − S) be a cut, let e be as assumed.

Case 1: If e ∈ T , we have R ∪ {e} ⊆ T , hence R ∪ {e} is extendible.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 14

The cut property

Case 2: e /∈ T . R: Rest:

S
V−S

T−R:

MST T with R ⊆ T .

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 15

The cut property

Case 2: e /∈ T .

e

R:

V−SS

Rest:

T−R:

v

w

e = (v, w) minimizes c((v′, w′)), v′ ∈ S, w′ ∈ V − S.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 16

The cut property

Case 2: e /∈ T .

e’

e

R:

V−SS

Rest:

T−R:

v

w

Path from v to w in T must change from S to V − S at some edge e′.
We obtain a cycle in T ∪ {e} with e and e′ on it.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 17

The cut property

Case 2: e /∈ T .

e’

e

R:

V−SS

Rest:

T−R:

v

w

New tree Te := (T − {e′}) ∪ {e} ⊇ R ∪ {e} is a spanning tree.
c(Te)−c(T) = c(e)−c(e′) ≤ 0, hence Te also optimal, hence R∪{e} is extendible.□
FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 18

Correctness of the Jarńık/Prim algorithm:

Ri: Edge set (size i), after round i in R.
Si: Node set (size i+ 1), after round i in S.

Since in every round an edge and a node is added to a connected graph, creating no
cycles, every graph (Si, Ri) is a tree.

Since Rn−1 is a tree with n− 1 edges, Rn−1 is a spanning tree.

Must show: Minimality, i.e. Rn−1 is an MST for G.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 19

Inductive claim IC(i): Ri is extendible.
(This is easily proved by induction on i = 0, 1, . . . , n− 1, with the cut property.)

Then IC(n− 1) says that T ⊇ Rn−1 for some MST T .
Since |T | = n− 1 = |Rn−1|, we get T = Rn−1, hence Rn−1 is an MST.

Missing: Details of the implementation. There is a great similarity with Dijkstra’s algorithm. (We use

a priority queue, for w /∈ S the value dist[w] is the length of an edge (v, w) with v ∈ S that

minimizes c((v, w)).)

Theorem 5.1.1

The Jarńık/Prim algorithm can be implemented using a priority queue, realized
as a binary heap. Then it finds a minimum spanning tree for any given weighted
connected graph G = (V,E, c) in time O(m logn), or O(|E| log|V |).

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 20

Jarnik/Prim(G, s) // (full version with priority queue)

Input: Weighted connected graph G = (V,E, c), V = {1, . . . , n}, s ∈ V (arbitrary);

Output: MST T for G.

Auxiliary structures: PQ: priority queue, initially empty; inS[1..n], p[1..n]: as above

(1) for w from 1 to n do
(2) dist[w] ←∞; inS[w]← false; p[w]← −1;
(3) dist[s] ← 0; p[s]← −2; PQ.insert(s);
(4) while not PQ.isempty do
(5) u← PQ.extractMin; inS[u]← true;

(6) for all vertices w with (u, w) ∈ E and not inS[w] do
(7) dd← c(u, w); // the only difference to Dijkstra’s algorithm!

(8) if p[w] ≥ 0 and dd < dist[w] then
(9) dist[w]← dd; PQ.decreaseKey(w,dd); p[w]← u;

(10) if p[w] = −1 then // w is found

(11) dist[w]← dd; p[w]← u; PQ.insert(w);

(12) Ausgabe: T = {(w, p[w]) | inS[w] = true, w ̸= s}. // set of the chosen edges

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 20

5.1.3 Kruskal’s algorithm

This algorithm also solves the MST problem.

We use a different method than Jarńık/Prim, but also “greedy”:
Start with R = ∅. Then do n− 1 rounds.

In each round:

Choose an edge e ∈ E−R of minimum weight that does not close
a cycle with (V,R), and add e to R.

It is clear that one can organize this as follows:

Scan the edges in increasing order of their weight. Add e to R if
and only if e does not close a cycle with the current R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 21

Kruskal’s algorithm

Step 1: Sort edges e1, . . . , em according to their weights c(e1), . . . , c(em)
in increasing order, and re-label.
Afterwards: c(e1) ≤ · · · ≤ c(em).

Step 2: R← ∅.
Step 3: for i = 1, 2, . . . ,m do

if R ∪ {ei} is acyclic then R← R ∪ {ei}
// otherwise, i.e. if ei closes a cycle, R does not change.

// Optional: End loop as soon as |R| = n− 1.

Step 4: Output R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 22

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 22

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 22

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 22

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 22

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 23

Example (Kruskal):

13

3

31

3

2

5
1 2

2
1

4

1
2

3

5

4

12

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 23

Remarks on 1) Correctness; 2) Computation time

Correctness proof:

Ri: Edge set in R after treating ei.

One shows by induction on i = 0, . . . ,m: Ri is extendible. (Not hard with the cut
property.)

Then Rm ⊆ T for an MST T .
But Rm is also connected, hence it is a tree, hence Rm = T .

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 24

Induction Claim IC(i): Ri is extendible.

Proof :

Basis: R0 = ∅ is extendible (since there are MSTs).
I.H.: 1 ≤ i ≤ m and Ri−1 is extendible.
I.S.: We execute round i with edge ei.

Case 1: Ri−1 ∪ {ei} has a cycle. Then Ri−1 = Ri is extendible.

2. Fall: Ri−1 ∪ {ei} is acyclic. – Let ei = (v, w). Define

S := Connected component of v in (V,Ri−1).

Then obviously no edge in Ri−1 connects S and V − S.

Since Ri−1 ∪ {ei} is acyclic, we have w ∈ V − S.

Easy: c(ei) is minimal among all c(e′) with e′ = (v′, w′), v′ ∈ S, w′ ∈ V − S.

By the cut property we get: Ri = Ri−1 ∪ {ei} is extendible. □

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 25

IC(m) says that Rm ⊆ T for some MST T .

But we also have T ⊆ Rm.

(Let e ∈ T . Then e = ei for some i and e is tested in round i.

Now Ri−1 ⊆ Rm ⊆ T and ei ∈ T , hence Ri−1 ∪ {ei} ⊆ T , hence Ri−1 ∪ {ei} is acyclic, hence
the algorithm puts ei into Ri, hence e = ei ∈ Rm.)

So Rm = T , and Rm is an MST.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 26

Computation time:

With a suitable data structure (“Union-Find data structure”, implementation with
trees, see below) the acyclicity test in Step 3 can be carried out in time O(log n).

Total time for Kruskal’s algorithm:

O(m logm)︸ ︷︷ ︸
sorting

+ m ·O(log n)︸ ︷︷ ︸
loop

= O(m log n).

(Details to follow. Note that n− 1 ≤ m < n2/2, hence log2m = Θ(log2 n).)

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 27

5.1.4 Auxiliary data structure: Union-Find

Union-Find data structures are used as an auxiliary structure for
several algorithms, in particular for Kruskal’s algorithm.

Intermediate situation in Kruskal’s algorithm:
Set R = Ri−1 ⊆ E, so that (V,R) is a forest.
Next edge: e = ei = (v, w).
Must decide whether e closes a cycle with R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 28

I.e.:

1

3

3

2

5

3

21

1

3

2

1

4

1
2

3

5

4

1

2

1 2 43

765

8 9 10

11

For two nodes v and w decide whether (V,R) contains a path from v to w.
(Here: v = 2, w = 6.)
Possible, but slow: do depth-first-search in (V,R) each time.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 29

Clever: We do not need to represent the edges in R, only the node sets of the
connected components of (V,R).

In the picture this are the sets

{1}, {2, 3, 5, 7, 9}, {4}, {6}, {8, 11}, {10}.
We wish to figure out (fast) whether two nodes are in the same component
(set).

When the algorithm puts a new edge into R, we have to form the union of two of
the sets (and throw away the two old sets).

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 30

1

3

3

2

5

3

21

1

3

2

1

4

1
2

3

5

4

1

2

1 2 3 4

5 6 7

8 9 10

11

New sets: {1}, {2, 3, 5, 6, 7, 9}, {4}, {8, 11}, {10}.
This operation also should be fast.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 31

Abstract task:

A partition of V = {1, 2, . . . , n} consists of disjoint nonempty subsets of V , whose
union is V :

V = {1, 2, . . . , n} = S1 ∪ S2 ∪ · · · ∪ Sℓ,

where S1, S2, . . . , Sℓ are disjoint.

We consider “dynamic” partitions, which can be changed by operations.

Task: Maintain a “dynamic partition” of the set {1, 2, . . . , n} under operations
init (Initialization)
union (Union of two of the sets)
find (“In which set is v?”).

Deviation from book: Our ground set is V = {1, 2, . . . , n}, we do not use an insert
operation.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 32

Example: n = 12.

1 2
4 5

37
9 12

8
6

S4 S7 S6 S10 S11

10 11

In each set S of the partition we have chosen a representative r ∈ S. This
representative acts as S’s name. We write Sr for the set with representative r.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 33

Operations:

init(n): Given n ≥ 1, generate the “discrete partition”
with the n singleton sets {1}, {2}, . . . , {n}.
Thus: Sv = {v} and r(v) = v, for 1 ≤ v ≤ n.

find(v): Given v ∈ {1, . . . , n}, return the representative r(v) of
the set Sr(v) that (currently) contains v.

union(s, t): The arguments s and t must be representatives of
different classes Ss and St. The operation removes
Ss and St from the partition and adds Ss ∪ St to it.
As representative of this new set Ss ∪ St use s or t.

In the example, union(4, 10) removes the sets S4 = {1, 2, 4, 5} and S10 = {10} and adds

S′10 = {1, 2, 4, 5, 10}.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 34

Kruskal’s algorithm with Union-Find data structure

Input: Weighted connected graph G = (V,E, c) with V = {1, . . . , n}.
Step 1: Sort edges e1, . . . , em in increasing order c1 = c(e1), . . . , cm = c(em) of
weights.

Result: Sorted edge list e1 = (v1, w1, c1), . . . , em = (vm, wm, cm).

Step 2: R← ∅; initialize Union-Find structure for {1, . . . , n}.
Step 3: for i = 1, 2, . . . ,m do:

s← find(vi); t← find(wi);
if s ̸= t then begin R← R ∪ {ei}; union(s, t) end;
// Optional: Quit loop as soon as |R| = n− 1.

Step 4: return R.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 35

Theorem 5.1.2

(a) Kruskal’s algorithm in the implementation just given is correct.

(b) The execution time of the algorithm is O(m log n) if one implements the
Union-Find data structure with trees.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 36

Proof : (a) (Correctness) One (easily) shows by induction that after i rounds the
sets in the union-find structure are the connected components of (V, {e1, . . . , ei}),
and these are the same as the connected components of the forest (V,Ri)
(Ri = content of R after i rounds).

Hence “s ← find(vi); t ← find(wi); if s ̸= t . . . ” tests whether ei = (vi, wi)
closes a cycle with (V,Ri−1).

(b) (Execution time): see below.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 37

Tree implementation of Union-Find

An attractive implementation of the Union-Find data structure uses a forest with
edges directed towards the roots.

Example: Partition {1, 2, 4, 5}, {3, 7, 9, 12}, {6, 8}, {10}, {11} is represented by:

1 5

2

4

9 12

3

8

67 10 11

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 38

1 5

2

4

9 12

3

8

67 10 11

For each set St there is exactly one tree Bt.

Each element v ∈ St is a node in tree Bt.

In each tree, all arrows point towards the root:
p(v) is the predecessor of v; the root is the representative r; the root points to itself
as a predecessor: p(v) = v if and only if v is a representative.

Central property: Starting at v, always following the arrows will get us to the root,
i.e., the representative of v.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 39

A very efficient representation of such a forest uses only an array
p[1..n]: array of int;
for node v the entry p[v] gives the predecessor p(v).

The forest in the example

1 5

2

4

9 12

3

8

67 10 11

is given by the following array:

1 2 3 4 5 6 7 8 9 10 11 12

p : 2 4 12 4 2 6 7 6 7 10 11 7

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 40

Implementation of find(v):

procedure find(v)
(1) u ← v;

// follow arrows until root
(2) uu ← p[u];
(3) while uu ̸= u do
(4) u ← uu;
(5) uu ← p[u] ;
(6) return u.

Time: Θ(depth(v)) = Θ(depth of v in its tree).

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 41

union(s, t): Given are two representatives s and t.

We make one of the representatives the child of the other one, i.e., we let p(s)← t
or p(t)← s.

+ =

s
t

s

t

? Which of the two options is preferable?

Bad choice: Carry out union(v, v + 1), v = 1, . . . , n − 1, by p(v) ← v + 1,
v = 1, . . . , n− 1.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 42

This gives the tree

2

n

n −1

1

Now find operations are very expensive!
find(v) for each v ∈ {1, . . . , n} gives total cost Θ(n2)!

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 43

Trick: For each node v keep a number rank(v) (rank), in an array
rank[1..n]: array of int, with

rank[v] = depth of subtree with root v.

1 5

2

4

9 12

3

8

67 10 11

0 0

0

0

0

0 0

1 1

12 2

union(s, t): the root with the bigger rank becomes the root of the new, larger tree
(“union by rank”). If the ranks are the same it does not matter which node we
choose as new root – (precisely) in this case the rank of the node that remains a
root increases by 1.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 44

Examples:

union(4, 7) would give:

1 5

2 8

6 10 11

0 0

0

0 0

1

1

9 12

3

7

0

0

1

2

43

union(6, 7) would give:

2 7

1 5

2

4

9 12

3

10 11

0 0

0

0

0 0

1 1

2

8

61

0

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 45

Operations:

Prozedur init(n) // Initialization

(1) Generate p, rank: arrays of length n for ints

(2) for v from 1 to n do
(3) p[v]← v; rank[v]← 0;

// n trees, consisting of only the root, which has rank 0

Cost: Θ(n).

prozedure union(s, t)
// Assumption: s, t are different representatives/roots

// I.e.: p[s] = s and p[t] = t

(1) if rank[s] > rank[t]

(2) then p[t]← s

(3) elseif rank[t] > rank[s]

(4) then p[s]← t

(5) else p[t]← s; rank[s]← rank[s] + 1.

Cost: O(1).

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 46

Theorem 5.1.3

The implementation of Union-Find just described has the following properties:

a) It is correct (i.e. it has the prescribed I/O behaviour).

b) init(n) takes time Θ(n);
find(v) takes time O(log n);
union(s, t) takes time O(1).

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 47

Proof : (a) is clear.

(b) We observe:

Claim: If s is root of the tree Bs and h = rank(s), then Bs contains at least 2h

nodes.

Proof of claim: A root of rank h is created when two trees are joined whose
roots both have rank h − 1. From this the claim follows by an easy induction over
h = 0, 1,

Since the number of nodes is n, the largest rank h that can occur satisfies 2h ≤ n,
or h ≤ log2 n.

Since rank(s) also gives the depth of the tree with root s, no node v can be more
than log2 n steps away from its root, so find(v) takes time O(log n).

□

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.1 48

THE END

Many thanks for coming and taking part!

All the best in the exam!

