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Explanation

“Greedy” algorithms may be used in
construction tasks for finding an optimal structure.

They find a solution structure step by step, without ever undoing any step.
In each step, they make a choice that looks good in the present situation.
They never construct more intermediate solutions than absolutely necessary.

Previous example: Dijkstra’s algorithm.
Coming examples: Algorithms by Jarńık/Prim and Kruskal for minimum spanning
trees.
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5.2.1 Huffman Codes

Given: Alphabet A with 2 ≤ |A| < ∞ and “probabilities” or “relative frequencies”
p(a) ∈ [0, 1] for each a ∈ A.
Hence:

∑
a∈A

p(a) = 1.

Example with |A| = 10:

A B C D E F G H I K

p(a) 0.15 0.08 0.07 0.10 0.21 0.08 0.07 0.09 0.06 0.09

Origin of the probabilites:

(1) Statistical frequency of letters in natural language (English, German, . . . ) or

(2) empirical relative frequencies in a given text w = a1 . . . an:

Fraction of letter a in w is (p(a) · 100) percent.

Note: In the book absolute frequencies instead of our percentages are used. There is no conceptual

difference. You can use the book notation if you wish.
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We seek: “good” binary prefix code for (A, p). — Example:

A B C D E F G H I K

1100 0110 000 111 10 0011 010 0010 0111 1101

Definition 5.2.1 prefix code:

Each a ∈ A is associated with a “codeword” c(a) ∈ {0, 1}∗ (set of all binary strings),
with property prefix free:

For a, b ∈ A, a ̸= b, codeword c(a) is not a prefix of codeword c(b).

Coding of words (strings):

c(a1 . . . an) = c(a1) · · · c(an) ∈ {0, 1}∗.
For coding use the table directly.

Example: c(C A C H E) = 0001100000001010.

Leave out the gaps.
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Compact representation of the code as binary tree:
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Leaves are marked with letters; edges are marked with bits; edge markings on the
path from the root to the leaf gives the codeword (left: 0, right: 1).

Decoding: Start at root, walk path in tree, directed by the bits in the codeword,
until leaf is reached. Repeat with remainder of the word, until nothing is left.
Prefix property ⇒ we do not need gaps between the codes for the single letters.

Example: 0110110011101010 gives “BADGE”. [Fach = discipline]
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First idea: All code words c(a) have same length;
best possible: length of ⌈log2 |A|⌉ bits.

⇒ c(a1 . . . an) has length ⌈log2 |A|⌉ · n.
(Examples: 52 uppercase and lowercase letters plus punctuation marks plus space:

log 64 = 6 bits per codeword. Latin-1-Code: 8 bits per codeword.)

Second idea: Can we save something by coding frequent letters with shorter
codewords than rare letters?

A first attempt at data compression
(store files in less storage space, save time when transmitting data)!

Here: “lossless compression” – full information is preserved in the codeword.

Opposite: e.g. MP3: loses information when compressing.
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A B C D E F G H I K

p(a) 0.15 0.08 0.07 0.10 0.21 0.08 0.07 0.09 0.06 0.09

c1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

c2 1100 0110 000 111 10 0011 010 0010 0111 1101

We code a file T with 100000 letters from A, where the relative frequency of a ∈ A
is given by p(a).

With c1 (fixed code word length): 400000 bits.

With c2 (variable code word length):
(4 · (0.15 + 0.08 + 0.08 + 0.09 + 0.06 + 0.09) + 3 · (0.07 + 0.10 + 0.07)
+ 2 · 0.21) · 100000 = 334000 bits.

For long files or when transmission is expensive it pays to count the letters and to determine the

relative frequencies p(a), and to find a good code with variable code word length.
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Definition 5.2.2

A coding tree for A is a binary tree T in which

• the edge out of an inner node to its left resp. right child is marked by 0 resp. 1;

• each letter a ∈ A is assigned to one and only one leaf of T , and each leaf is
assigned a letter.

The code cT (a) for a is the inscription on the edges of the path from the root to
the leaf with inscription a.

The cost of T under p are defined as

B(T, p) =
∑

a∈A
p(a) · dT (a),

where dT (a) = |cT (a)| is the depth of the a-leaf in T .
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Example: If T is our example tree and p is the sample distribution from above, then
B(T, p) = 3.34.
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Easy to see: B(T, p) = |cT (a1 . . . an)|/n,
if the relative frequency of a in w = a1 . . . an is given by p(a),

or B(T, p) = the expected number of bits per letter,

if p(a) is the probability of letter a ∈ A.
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Definition 5.2.3

A coding tree T for A is optimal (or redundancy minimal for p)
if B(T, p) ≤ B(T ′, p) for all coding trees T ′ for A.

Task:
Given a probability distribution p : A → [0, 1], find an optimal coding tree T .

Is there always an optimal tree?

(An alphabet A admits infinitely many coding trees!)

Yes, see next slide ...
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Lemma 5.2.4 If T is a coding tree and p is a probability distribution for A, then
there is a coding tree T ′ with B(T ′, p) ≤ B(T, p), such that in T ′ every inner node
has two children.

Proof idea:
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Result: T ′ for A with the same marked leaves as T , and B(T ′, p) ≤ B(T, p).
Consequence: When looking for optimal trees, we can restrict our attention to trees in

which every inner node has two children.
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For fixed alphabet A there are only finitely many A-coding trees T in which every
inner node has two children. One of these trees must have minimal cost for input
(A, p). Hence there are always optimal coding trees.

Optimal trees are not unique (excepting in the boring case |A| = 1).

Task: Given (A, p), where |A| ≥ 2, find an optimal tree.

Method: “greedy”.

Lemma 5.2.5

Let a and a′ be two letters with p(a) ≤ p(a′) ≤ p(b) for all b ∈ A− {a, a′}
(a, a′ are two “rarest” or “least probable” letters. They need not be unique.)

Then there is an optimal tree in which the leaves with a and a′ are “siblings”, i.e.
children of the same node.

Proof :

Start with an arbitrary optimal tree T .
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Without loss of generality (Le. 5.2.4): All inner nodes have two children.
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T:
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Choose two sibling leaves at maximal depth d = d(T ), with letters b and b′, say,
where p(b) ≤ p(b′).

Exchange a with b and a′ with b′ to obtain tree T ′.

Then B(T, p) ≥ B(T ′, p), because p(a) ≤ p(b) and p(a′) ≤ p(b′).

Hence T ′ is optimal for (A, p) as well. □
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We have done the first step in direction of a greedy approach!

The algorithm starts with

“Choose two rarest/lightest letters and make them siblings.”

Then it is sure that this choice can be extended to an optimal solution.

We do the rest by recursion (that’s the concept) respectively by iteration (in an
actual implementation).

Algorithm is due to D. A. Huffman (1925–1999), an American computer scientist.

Nice story:

http://www.huffmancoding.com/my-uncle/scientific-american
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Huffman’s algorithm (recursive version):

We build a tree “bottom-up”.

If |A| = 2: We make the leaves for the two letters children of the root. It is clear
that this is optimal.

Otherwise, for |A| > 2, two “rarest” letters a, a′ from A are placed into sibling
nodes:

z

p
a

p
a’

0 1

a a’

b

p pa a’
+
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The root of this mini tree is regarded as a new leaf node z with “artificial” letter b,
with p(b) = p(a) + p(a′).

New alphabet: A′ := (A− {a, a′}) ∪ {b}; new probability distribution:

p′(d) :=

{
p(d) if d ̸= b
p(a) + p(a′) if d = b
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Now we call the algorithm recursively to build a tree T ′ for A′ and p′.

: :

b

a a’

z

T’ T

In T ′ we replace leaf node z (with letter b) with the mini tree for a and a′.

Result: A coding tree T for A, with B(T, p) = B(T ′, p′)+ p(a)+ p(a′). (Check!)
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Lemma 5.2.6 T is an optimal tree for (A, p).

Proof : By induction over recursive calls.

By Lemma 5.2.5. there is an optimal tree T ∗ for (A, p) in which the a and a′ leaves
are siblings.

From T ∗ we obtain T ∗′ by replacing the mini tree for a and a′ by the new leaf node
z with artificial letter b.
Then T ∗′ is a coding tree for A′.

*: :T *

a

b
z

T   ’

a’

We have: B(T ∗, p) = B(T ∗′, p′) + p(a) + p(a′).
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By the induction hypothesis T ′ is optimal for (A′, p′), hence B(T ′, p′) ≤ B(T ∗′, p′).
This implies the following.

B(T, p) = B(T ′, p′) + p(a) + p(a′)

≤ B(T ∗′, p′) + p(a) + p(a′)

= B(T ∗, p).

Since T ∗ is an optimal tree for (A, p):
B(T, p) = B(T ∗, p), and T is optimal as well. □
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One could program the algorithm as a recursive procedure. It is also often program-
med with a priority queue as a data structure.

Much more efficient: Iterative implementation with some tricks.

• sort at the beginning s.t. p(a1) ≤ · · · ≤ p(an) (takes time O(n log n)).

• number the leaves 1, . . . , n (letters from A), n + 1, . . . , 2n − 1 for inner nodes
(artificial letters).

• special representation of coding tree (only indices, no pointers).

• Observation: The newly created probabilities p(b) are (weakly) increasing.

Data structures are three arrays:

p[1..2n− 1] (probabilties for a ∈ A and for artificial letters),
pred[1..2n− 2] (predecessor node, 2n− 1 is the root)
mark[1..2n− 2] (is edge to node i marked 0 or 1?)
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ai A B C D E F G H I K

i 1 2 3 4 5 6 7 8 9 10

pi 0.15 0.08 0.07 0.10 0.21 0.08 0.07 0.09 0.06 0.09

pred

mark

Sort and re-number.

(In general: running time O(n log n).)
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ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred

mark

i 11 12 13 14 15 16 17 18 19

pi

pred —

mark —
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ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred 11 11

mark 0 1

i 11 12 13 14 15 16 17 18 19

pi 0.13

pred —

mark —
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ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred 11 11 12 12 13 13 14 14

mark 0 1 0 1 0 1 0 1

i 11 12 13 14 15 16 17 18 19

pi 0.13 0.15 0.17 0.19

pred —

mark —

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.2 19



ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred 11 11 12 12 13 13 14 14 15

mark 0 1 0 1 0 1 0 1 1

i 11 12 13 14 15 16 17 18 19

pi 0.13 0.15 0.17 0.19 0.28

pred 15 —

mark 0 —
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ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred 11 11 12 12 13 13 14 14 15

mark 0 1 0 1 0 1 0 1 1

i 11 12 13 14 15 16 17 18 19

pi 0.13 0.15 0.17 0.19 0.28 0.32

pred 15 16 16 —

mark 0 0 1 —
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ai I G C F B K H D A E

i 1 2 3 4 5 6 7 8 9 10

pi 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.15 0.21

pred 11 11 12 12 13 13 14 14 15 17

mark 0 1 0 1 0 1 0 1 1 1

i 11 12 13 14 15 16 17 18 19

pi 0.13 0.15 0.17 0.19 0.28 0.32 0.40 0.60 1.00

pred 15 16 16 17 18 18 19 19 —

mark 0 0 1 0 0 1 0 1 —
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The resulting optimal coding tree T can now be built top-down.
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The coding function c3 can then be read off from the tree:

A B C D E F G H I K

p(a) 0.15 0.08 0.07 0.10 0.21 0.08 0.07 0.09 0.06 0.09

c3 101 1110 1100 001 01 1101 1001 000 1000 1111

B(T, p) = 0.21·2+(0.15+0.10+0.09)·3+(0.08+0.07+0.08+0.07+0.06+0.09)·4 =
3.24.

Our text of length 100 000 letters would lead to a code of length 324 000. This is
optimal.

FG KTuEA, TU Ilmenau Algorithms – SS 2022 – Chapter 5.2 21



Algorithm Huffman(p[1..n])
Input: probability/weight vector p[1..n], sorted: p[1] ≤ · · · ≤ p[n].

Output: optimal tree T , represented as pred[1..2n− 2] and mark[1..2n− 2]

(1) pred[1]← n + 1;

(2) pred[2]← n + 1;

(3) p[n + 1]← p[1] + p[2];

(4) m← 3 // first node in [1..n] not yet processed

(5) h← n + 1 // first node in [n + 1..2n− 1] not yet processed

(6) for b from n + 2 to 2n− 1 do
(7) // the following two lines find, in i and j, the positions of the

(8) // two “lightest” letters available at present

(9) if m ≤ n and p[m] ≤ p[h] then i← m; m++ else i← h; h++;

(10) if m ≤ n and (h = k or p[m] ≤ p[h]) then j← m; m++ else j← h; h++;

(11) pred[i]← b;

(12) mark[i]← 0;

(13) pred[j]← b;

(14) mark[j]← 1;

(15) p[b]← p[i] + p[j];

(16) Output: pred[1..2n− 2] and mark[1..2n− 2].
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Using pred[1..2n− 1] and mark[1..2n− 1], one can build the optimal Huffman
tree as follows:

Allocate array leaf[1..n] with leaf node objects
and array inner[n+ 1..2n− 1] with inner node objects.

(1) for i from 1 to n do
(2) leaf[i].letter← letter ai.

(3) if mark[i] = 0

(4) then inner[pred[i]].left← leaf[i]

(5) else inner[pred[i]].right← leaf[i]

(6) for i from n + 1 to 2n− 2 do
(7) if mark[i] = 0

(8) then inner[pred[i]].left← inner[i]

(9) else inner[pred[i]].right← inner[i]

(10) return inner[2n− 1] // root node

Beware: If carrying out the algorithm by hand, it is much simpler to draw the tree
starting from the root.
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Theorem 5.2.7

The algorithm Huffman is correct and has running time O(n log n), if n denotes
the number of letters of the alphabet A.
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