
WS 2021/22

Algorithms

Chapter 6
Dynamic Programming

Martin Dietzfelbinger

February 2022

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6

Chapter 6: Dynamic Programming (DP)
Algorithm paradigm for optimization problems. Typical:

• Define (many) “subproblems” (of an input instance)

• Identify simple base cases

• Formulate a version of the property

Substructures of optimal structures are optimal

• Find recursion equations for values of optimal solutions:

Bellman’s optimality equations

• Calculate optimal values (and structures) iteratively

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 1

6.3 Edit distance
Problem statement: Let A be alphabet. (Example: Latin alphabet, ASCII alphabet,

{A,C,G,T}.) Then A∗ denotes the set of all strings (or words) over A.

If x = a1 . . . am ∈ A∗ and y = b1 . . . bn ∈ A∗ are two strings over A, we ask how
similar (or different) they are.

“Arbeit” (work) and “Freizeit” (leisure time) are not identical, but intuitively
more similar than “informatics” and “camping”.

How to measure “being more or less similar”?

We define elementary steps (“edit operations”), which change a string:

• Delete a letter: From uav obtain uv (u, v ∈ A∗, a ∈ A). Example: beat→ bet.

• Insert a letter: From uv obtain uav (u, v ∈ A∗, a ∈ A). Example: bet→ beat.

• Replace a letter: From uav obtain ubv (u, v ∈ A∗, a, b ∈ A).
Example: beat→ best.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 2

The “distance” or edit distance d(x, y) of x and y is the minimal number of edit
operations one needs to transform x into y.

Obvious: d(x, y) = d(y, x). (Insertion and deletion are inverses, replacement is self-inverse.)

Observe: Transforming is equivalent to aligning:

A r b e i - - - t

F r - e i z e i t

i n f o r m a t - i c s

c - - - - - a m p i n g

One aligns strings with some extra dashes below each other, where the two lines
without dashes give x and y. The cost of such an alignment is the number of
positions where letters in the two lines differ.

Claim: The cost of such an alignment is the same as the number of edit operations
in a sequence of operations that transforms one word into the other. (In the examples:

5 and 10, resp.) Hence: The minimal cost of an alignment is exactly the edit distance.
(In the examples: 4 (!) and 10, resp.)

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 3

The problem “edit distance” is the following:

Input: Strings x = a1 . . . am, y = b1 . . . bn from A∗.

Task: Calculate d(x, y) (and a sequence of edit operations resp. an alignment that
transforms x into y of cost d(x, y)).

Strategy: Dynamic programming

Our example: x = exponentiell und y = polynomiell.

Step 1: Identify relevant subproblems.

Consider prefixes x[1..i] = a1 . . . ai and y[1..j] = b1 . . . bj, and let

E(i, j) := d(x[1..i], y[1..j]), for 0 ≤ i ≤ m, 0 ≤ j ≤ n

In the example: E(7, 6) means we are to calculate d(exponen, polyno)

(because x[1..7] = exponen und y[1..6] = polyno).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 4

In order to obtain Bellman equations, we consider relations among subproblems. For this we utilize

the idea of aligning words as on slide 3.

Consider (nonempty) prefixes x[1..i] = a1 . . . ai and y[1..j] = b1 . . . bj, for 1 ≤ i ≤ m,
1 ≤ j ≤ n.

If x[1..i] and y[1..j] are aligned optimally, with cost E(i, j), there are three possibi-
lities for the last position in the alignment:

Case 1 (copy/replace) Case 2 (delete) Case 3 (insert)

x[1..i− 1] ai x[1..i− 1] ai x[1..i] -

y[1..j − 1] bj y[1..j] - y[1..j − 1] bj

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 5

Case 1 (copy/replace) Case 2 (delete) Case 3 (insert)

x[1..i− 1] ai x[1..i− 1] ai x[1..i] -

y[1..j − 1] bj y[1..j] - y[1..j − 1] bj

Case 1: There is a replacement in the last position, with cost

diff(ai, bj) := [ai 6= bj] =

{
1 if ai 6= bj
0 if ai = bj

.

x[1..i− 1] und y[1..j − 1] must be optimally aligned (“optimal substructure”).

⇒ E(i, j) = E(i− 1, j − 1) + diff(ai, bj).

Case 2: There is a deletion in the last position, with cost 1.

x[1..i− 1] and y[1..j] must be optimally aligned.

⇒ E(i, j) = E(i− 1, j) + 1.

Case 3: There is an insertion in the last position, with cost 1.

x[1..i] and y[1..j − 1] must be optimally aligned.

⇒ E(i, j) = E(i, j − 1) + 1.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 6

Among the three cases the one/s with the smallest cost is/are relevant.
Altogether, we obtain:

Bellman optimality equations for edit distance:

E(i, j) = min{E(i− 1, j − 1) + diff(ai, bj), E(i− 1, j) + 1, E(i, j − 1) + 1}.

Base cases: Empty prefixes ε = x[1..0] and ε = y[1..0].

Obvious: E(i, 0) = d(x[1..i], ε) = i, for 0 ≤ i ≤ m, and
E(0, j) = d(ε, y[1..j]) = j, for 0 ≤ j ≤ n.

(One has to delete/insert all letters.)

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 7

The numbers E(i, j) are computed iteratively, entering them into a matrix
E[0..m,0..n]. This is already the “dynamic programming algorithm” for edit
distance.

Initialization:

E[i,0] ← i, for i = 0, . . . ,m;
E[0,j] ← j, for j = 0, . . . , n.

Then we fill in the matrix (i.,e.) row by row, following the Bellman equations:

for i from 1 to m do
for j from 1 to n do

E[i,j] ← min{E[i-1,j-1] + diff(ai, bj), E[i-1,j] + 1, E[i,j-1] + 1};
return E[m,n].

Time: O(m · n).

Remark: For doing the calculation by hand it saves time to identify the pairs (i, j) with

diff(ai, bj) = 0, or ai = bj, beforehand (red, underlined).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 8

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1
x 2
p 3
o 4
n 5
e 6
n 7
t 8
i 9
e 10
l 11
l 12

Base values E(i, 0) and E(0, j), markers for diff(ai, bj) = 0.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 9

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1 1 2 3 4 5 6 7 8 8 9 10
x 2 2 2 3 4 5 6 7 8 9 9 10
p 3 2 3 3 4 5 6 7 8 9 10 10
o 4 3
n 5
e 6
n 7
t 8
i 9
e 10
l 11
l 12

Filled in row by row up to E(4, 1).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 9

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1 1 2 3 4 5 6 7 8 8 9 10
x 2 2 2 3 4 5 6 7 8 9 9 10
p 3 2 3 3 4 5 6 7 8 9 10 10
o 4 3 2
n 5
e 6
n 7
t 8
i 9
e 10
l 11
l 12

E(4, 2) = min{2 + 0, 3 + 1, 3 + 1} = 2.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 9

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1 1 2 3 4 5 6 7 8 8 9 10
x 2 2 2 3 4 5 6 7 8 9 9 10
p 3 2 3 3 4 5 6 7 8 9 10 10
o 4 3 2 3
n 5
e 6
n 7
t 8
i 9
e 10
l 11
l 12

E(4, 3) = min{3 + 1, 3 + 1, 2 + 1} = 3.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 9

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1 1 2 3 4 5 6 7 8 8 9 10
x 2 2 2 3 4 5 6 7 8 9 9 10
p 3 2 3 3 4 5 6 7 8 9 10 10
o 4 3 2 3 4 5 5 6 7 8 9 10
n 5 4 3 3 4 4 5 6 7 8 9 10
e 6 5 4 4 4 5 5 6 7 7 8 9
n 7 6 5 5 5 4 5 6 7 8 8 9
t 8 7 6 6 6 5 5 6 7 8 9 9
i 9 8 7 7 7 6 6 6 6 7 8 9
e 10 9 8 8 8 7 7 7 7 6 7 8
l 11 10 9 8 9 8 8 8 8 7 6 7
l 12 11 10 9 9 9 9 9 9 8 7 6

Matrix is filled completely. Result: d(x, y) = E(12, 11) = 6, lower right corner!

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 9

Discovering an optimal edit sequence in time O(m + n)

Given x and y, one wants not only d(x, y), but also the sequence of operations that transforms x

into y in d(x, y) steps.

If we have the matrix E[0..m,0..n], this is easy:

We walk a path from (m,n) to (0, 0). From (i, j) we go to

(i− 1, j − 1), if E(i, j) = E(i− 1, j − 1) + diff(ai, bj),

(i− 1, j), if E(i, j) = E(i− 1, j) + 1,

(i, j − 1), if E(i, j) = E(i, j − 1) + 1.

If more than one of the equations hold, we can choose arbitrarily.

The path we find ends in (0, 0). This path, read backwards, from (0, 0) to (m,n),represents a

transformation of x into y, where letters are left alone, replaced, inserted, or deleted. One reads

x = x[1..m] from left to right and generates y[1..n] from left to right.

(1) (i− 1, j − 1)
b→ (i, j) corresponds to copying ai (b = 0) or replacing it by bj (b = 1);

(2) (i− 1, j)
1→ (i, j) corresponds to deleting ai;

(3) (i, j − 1)
1→ (i, j) corresponds to inserting bj.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 10

E p o l y n o m i e l l

0 1 2 3 4 5 6 7 8 9 10 11
e 1 1 2 3 4 5 6 7 8 8 9 10
x 2 2 2 3 4 5 6 7 8 9 9 10
p 3 2 3 3 4 5 6 7 8 9 10 10
o 4 3 2 3 4 5 5 6 7 8 9 10
n 5 4 3 3 4 4 5 6 7 8 9 10
e 6 5 4 4 4 5 5 6 7 7 8 9
n 7 6 5 5 5 4 5 6 7 8 8 9
t 8 7 6 6 6 5 5 6 7 8 9 9
i 9 8 7 7 7 6 6 6 6 7 8 9
e 10 9 8 8 8 7 7 7 7 6 7 8
l 11 10 9 8 9 8 8 8 8 7 6 7
l 12 11 10 9 9 9 9 9 9 8 7 6

In the example: (0, 0)
1→ (1, 0)

1→ (2, 0)
0→ (3, 1)

0→ (4, 2)
1→ (5, 3)

1→ (6, 4)
0→ (7, 5)

1→
(8, 6)

1→ (8, 7)
0→ (9, 8)

0→ (10, 9)
0→ (11, 10)

0→ (12, 11), cost 6.

This yields the following alignment/transformation, where the six “chargeable”
positions are marked in red:

e x p o n e n t - i e l l

- - p o l y n o m i e l l

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 11

One more example:

x = speziell (special) and y = beliebig (arbitrary).

Filling in the matrix gives:

E b e l i e b i g

0 1 2 3 4 5 6 7 8

s 1 1 2 3 4 5 6 7 8

p 2 2 2 3 4 5 6 7 8

e 3 3 2 3 4 4 5 6 7

z 4 4 3 3 4 5 5 6 7

i 5 5 4 4 3 4 5 5 6

e 6 6 5 5 4 3 4 5 6

l 7 7 6 5 5 4 4 5 6

l 8 8 7 6 6 5 5 5 6

Red, underlined: the positions (i, j) with ai = bj.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 12

Retracing yields the following sequence of operations (one possibility among others):

(0, 0) → (1, 1) → (2, 1) → (3, 2) → (4, 3) → (5, 4) → (6, 5) → (6, 6) → (7, 7) →
(8, 8).

This yields the following alignment:

s p e z i e - l l

b - e l i e b i g

There are other alignments with cost 6, e.g.

s p e z i e l l -

- b e l i e b i g
.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 13

6.6 The All-Pairs-Shortest-Paths problem

Central example for dynamic programming: The “APSP problem”.

“shortest paths between all nodes”.

Input:

1

3

4

2
6

4

3

2

−1

−23

Directed graph G = (V,E, c)
with V = {1, . . . , n} and E ⊆ {(v, w) | 1 ≤ v, w ≤ n, v 6= w}.
c : E → R ∪ {+∞}: Weight/cost/length function.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 14

Cost/Length of a walk p = (v = v0, v1, . . . , vr = w) is

c(p) =
∑

1≤s≤r

c(vs−1, vs).

Task: For all (v, w), 1 ≤ v, w ≤ n, find a walk from v to w with
minimal cost/length c(p) (“shortest path”).

Here: Floyd-Warshall algorithm.

We demand:
No cycles have negative total weight:

(∗) (v = v0, v1, . . . , vr = v) cycle ⇒
∑

1≤s≤r c(vs−1, vs) ≥ 0.

Reason: If there is a negative cycle from v to v, and some walk from v to w, then there are walks

from v to w with negative length of arbitrarily large absolute value – the question for a “shortest

path” does not make sense.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 15

Consequences: (1) If p is a walk from v to w, then there is a (simple) path p′ from
v to w with c(p′) ≤ c(p).

Reason: Cut out (u, . . . , u)-segments from p, repeatedly, until no repetition remains. The walk

cannot get longer by this operation.)

(2) If there is a walk from v to w at all, then there also is one with minimal length
(a “shortest path”).

Reason: Because of (1) it suffices to consider simple paths (with at most n − 1 edges); of these

there are only finitely many.

But: There may be several “shortest paths” from v to w. (Simple paths and maybe walks with cycles

of length 0.)

First: Determine length S(v, w) of a shortest path from v to w, for all v, w ∈ V .
(∞, if no path exists.)

Output: matrix S = (S(v, w))1≤v,w≤n.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 16

W. l. o. g.: E = V × V − {(v, v) | v ∈ V }
Edges (v, w) that are not present (v, w) are represented by c(v, w) =∞.

First step: Identify suitable subproblems.

Given k, 0 ≤ k ≤ n, consider paths from v to w that in between (excepting start
and end node) visit only nodes in {1, . . . , k}.
k = 0: Cannot visit any node on the way;
only edges (v, w) with c(v, w) <∞, or paths (v, v) of length 0.

k = 1: Possible paths: (v, w) ((v) if v = w) and (v, 1, w).

k = 2: Possible paths:(v, w) ((v) if v = w), (v, 1, w), (v, 2, w), (v, 1, 2, w), and
(v, 2, 1, w).

Etc.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 17

S(v, w, k) := length of a shortest path from v to w using only nodes
in {1, . . . , k} underway.

(=∞, if there is no such path.)

Example:

2

(2,4,3) = 2

(2,4,0) = 6

(2,4,1) = 5

(2,4,2) = 5

S

S

S

S
1

3

4

2

1

4

3

1
6

monotonically

decreasing

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 18

“Bellman equations”:

Consider path p = (v0, . . . , vr) from v to w; intermediate nodes v1, . . . , vr−1 are
from {1, . . . , k}:

v1 v2 vr−1
v w

Assume this path is optimal. Node k appears once or not at all.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 19

1) If k is not on the path p,
then p is optimal for intermediate nodes 1, . . . , k − 1.

2) If k is not on the path p, then p has two parts

v k

︸ ︷︷ ︸
intermediate nodes ≤ k − 1

k w

︸ ︷︷ ︸
intermediate nodes ≤ k − 1

both optimal with respect to {1, . . . , k − 1} (otherwise one could replace the
part by something cheaper, contradicting the optimality of p).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 20

1) and 2) express that substructures (subpaths) of an optimal solution (shortest
path) have to be optimal.

Bellman optimality equations for the Floyd-Warshall algorithm:

S(v, w, k) = min{S(v, w, k − 1), S(v, k, k − 1) + S(k,w, k − 1)},
for 1 ≤ v, w ≤ n, 1 ≤ k ≤ n.

Base cases: S(v, v, 0) = 0.
S(v, w, 0) = c(v, w), for v 6= w.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 21

We describe an iterative algorithm.
Intermediate results are stored in an array S[1..n,1..n,0..n], initialized by

S[v,w,0] ← c(v, w), 1 ≤ v, w ≤ n, v 6= w;

S[v,v,0] ← 0, 1 ≤ v ≤ n.

The algorithm fills S according to growing k:

for k from 1 to n do
for v from 1 to n do

for w from 1 to n do
S[v,w,k]← min{S[v,w,k-1], S[v,k,k-1] + S[k,w,k-1]}.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 22

Correctness: Follows from previous considerations:

The algorithms calculates all values S(v, w, k) according to the Bellman equations.

Running time: There are three nested loops: Θ(n3).

We are wasting space since for the k-th execution of the loop we only need the (k− 1)-components

of S.

Easy: Need only two matrices. An “old” one ((k−1)-version) and a “new” one (k-version), between

which we can switch back and forth.

Then space is O(n2), time is O(n3).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 23

Further improvement: We have:

(∗) S(v, k, k) = S(v, k, k − 1) and
S(k,w, k) = S(k,w, k − 1), für 1 ≤ v, w, k ≤ n,

since node k cannot occur in the interior of a path from v to k or from k to w.

So one does not need an “old” and a “new” array, but only one: S[1..n,1..n].

S[v,v]← 0;

S[v,w]← c(v, w), für 1 ≤ v, w ≤ n, v 6= w;

for k from 1 to n do
for v from 1 to n do
for w from 1 to n do
S[v,w]← min{S[v,w], S[v,k] + S[k,w]}.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 24

We do not only want to know the cost of the shortest paths, but we also want to
be able to calculate such a path for given v, w.

For this: Auxiliary array I[1..n,1..n], in which throughout rounds k = 0, 1, . . . , n
for each pair (v, w) the following information is kept:
What is the node with the largest number that has been used for a path from v to
w of length S(v, w, k)?

Adding this feature gives the complete Floyd-Warshall algorithm.

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 25

Algorithm Floyd-Warshall(C[1..n,1..n])

Input: C[1..n,1..n]: matrix of edge costs/lengths

Output: S[1..n,1..n], with S(v, w) the cost of a shortest path from v to w

I[1..n,1..n]: minimal maximal nodes on shortest (v, w) path

(1) for v from 1 to n do
(2) for w from 1 to n do
(3) if v = w then S[v,w]← 0; I[v,w]← 0

(4) else S[v,w]← C[v,w];

(5) if S[v,w] <∞ then I[v,w]← 0 else I[v,w]← −1;

(6) for k from 1 to n do
(7) for v from 1 to n do
(8) for w from 1 to n do
(9) if S[v,k] + S[k,w] < S[v,w] then
(10) S[v,w]← S[v,k] + S[k,w]; I[v,w]← k;

(11) return S[1..n,1..n] , I[1..n,1..n] .

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 26

Correctness: Loop invariant:
After the k-th execution of the loop we have S[v, w] = S(v, w, k).

(Proof by induction on k, using the Bellman equations and (∗).)

And: I[v, w] is the smallest ` such that among the

shortest paths from v to w over only nodes in {1, . . . , k}
there is one with maximal node `.

(Proof by induction on k.)

Then a shortest path from v to w can be printed using a simple recursive procedure
“printPathInner”, on the basis of I[1..n,1..n].

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 27

Algorithm printPathInner(v, w)

Global: I[1..n,1..n]: matrix of minimal maximal nodes on shortest paths

Input: v, w ∈ V

Output: over print function

(1) if v 6= w then
(2) k← I[v,w];

(3) if k > 0 then
(4) printPathInner(u, k); print(k); printPathInner(k, w);

Algorithm printPath(v, w)

Global: I[1..n,1..n]: matrix of minimal maximal nodes on shortest paths

Input: v, w ∈ V

Output: over print function

(1) if v = w

(2) then print(v, “length 0”)

(3) else if I[v,w] < 0 then print(“no path”)

(4) else print(v); printPathInner(v, w); print(w);

Exercise: Carry this out on an example. Why is the output correct?

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 28

Theorem

Floyd and Warshall’s algorithm solves the All Pairs Shortest Paths problem in time
O(n3) and space O(n2).

The result is a data structure of size O(n2) (a matrix), that enables calculating a
shortest path from v to w, for any given pair (v, w) of nodes. The running time for
such a call is O(#(edges on the path)).

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 29

That’s it!
Thanks for coming to the class, and
all the best for the exam!

FG KTuEA, TU Ilmenau Algorithms – WS 2021/22 – Chapter 6 30

