8.5 Das Selektionsproblem

Gegeben ist eine Folge (a_1, \ldots, a_n) von n Objekten aus einer totalen Ordnung (D, <) (in Array oder als Liste), sowie eine Zahl k, $1 \le k \le n$.

O.B.d.A.: Alle Einträge verschieden.

Aufgabe: Finde das Element der Folge, das Rang k hat, d. h. ein Objekt x in der Liste mit $|\{i \mid a_i \leq x\}| = k$.

Spezialfall: Der **Median** einer Folge mit n Einträgen ist das Element mit Rang $\lceil n/2 \rceil$.

(Median($\{2,4,7,9\}$) = 4, Median($\{4,7,9\}$) = 7.)

Einfache Lösung: Sortiere, mit Ergebnis (b_1, \ldots, b_n) , dann wähle $x = b_k$. – Kosten: $n \log n$ Vergleiche, Zeit $O(n \log n)$.

¹ C. A. R. Hoare (*1934), brit. Informatiker, erfand Quicksort, Quickselect & Korrektheitskalkül.

"I conclude that there are two ways of constructing a software design: One way is to make it so *simple* that there are *obviously no* deficiencies and the other way is to make it so *complicated* that there are *no obvious* deficiencies. The first method is far more difficult."

(Dankesrede für den Turingpreis 1980)

"I think Quicksort is the only really interesting algorithm that I've ever developed."

Quelle: Wikipedia

Zunächst:

Ein randomisierter Algorithmus für das Auswahlproblem.

Quickselect (Hoare)

Ansatz: Wie bei Quicksort.

Gegeben: Folge (a_1, \ldots, a_n) , Zahl k, $1 \le k \le n$.

O.B.d.A.: Die a_i sind verschieden.

Falls n=1, ist nichts zu tun.

Falls n=2, sortiere mit einem Vergleich, Ergebnis (b_1,b_2) , gib Element b_k zurück.

Falls n > 3:

Wähle ein Element x aus $\{a_1, \ldots, a_n\}$ als partitionierendes Element **zufällig**.

Zerlege (a_1, \ldots, a_n) mit n-1 Vergleichen in eine Teilfolge b_1, \ldots, b_{p-1} , alle < x, in das Element x, und eine Teilfolge c_{p+1}, \ldots, c_n , alle > x.

- **1. Fall:** k = p. Das Ergebnis ist x.
- **2. Fall:** k < p. Finde (rekursiv) in (b_1, \ldots, b_{p-1}) das Element vom Rang k.
- **3. Fall:** k > p. Finde (rekursiv) in (c_{p+1}, \ldots, c_n) das Element vom Rang k p.

Prozedur quickSelect(a, b, k)

```
// Rekursive Prozedur im Quickselect-Algorithmus, 1 \le a < b \le n, a \le k \le b.
// Vorbed.: Alle Einträge vom Rang \langle a \rangle b links [rechts] von A [a..b]
   Nachbed.: Eintrag vom Rang k in A[k],
   kleinere links davon, größere rechts davon.
        s \leftarrow \text{ein zufälliges Element von } \{a, \dots, b\};
(1)
        if (a < s) then vertausche A[a] und A[s];
(2)
        partition(a, b, p); // p: Ausgabeparameter
(3)
        if k=p then return
(4)
           elseif k < p then quickSelect(a, p - 1, k);
(5)
           else quickSelect(p + 1, b, k).
(6)
```

Mögliche Anpassungen:

- (a) Sortiere z.B. mit Einfügesortieren, wenn b-a sehr klein ist.
- (b) Anstelle von Rekursion benutze Iteration, analog zu der halbrekursiven Variante von Quicksort.

Korrektheit: Klar.

Zu analysieren: (Erwartete) Rechenzeit.

Klar: Die Rechenzeit ist proportional zur Anzahl C_k von Vergleichen.

Wir berechnen den Erwartungswert $\mathbf{E}(C_k)$.

Eingabezahlen, sortiert: $b_1 < \cdots < b_n$.

Beobachtung:

Es werden niemals zwei Zahlen mehrfach verglichen. (Bei Vergleich ist eines das Pivotelement; es kommt im rekursiven Aufruf nicht mehr vor.)

Definiere

$$X_{ij} = \left\{ egin{array}{ll} 1 & \mbox{, falls } b_i \mbox{ und } b_j \mbox{ verglichen werden} \\ 0 & \mbox{, sonst.} \end{array}
ight.$$

Dann gilt:

$$C_k = \sum_{1 \le i < j \le n} X_{ij}.$$

Also (Linearität des Erwartungswertes):

$$\mathbf{E}(C_k) = \sum_{1 \le i < j \le n} \mathbf{E}(X_{ij}).$$

Weil die X_{ij} 0-1-wertig sind:

$$\mathbf{E}(X_{ij}) = \mathbf{Pr}(X_{ij} = 1) = \mathbf{Pr}(b_i \text{ und } b_j \text{ werden verglichen}).$$

Was ist $\mathbf{E}(X_{ij}) = \mathbf{Pr}(b_i \text{ und } b_j \text{ werden verglichen})$?

Wir stellen uns den Ablauf des Algorithmus mit Auswahl von Pivotelementen und rekursiven Aufrufen für Teilarrays vor.

Man beachte, dass die gebildeten Teilarrays stets einen Abschnitt $\{b_s, b_{s+1}, \ldots, b_t\}$ der sortierten Folge enthalten und dass jedes Element dieser Teilfolge dieselbe Wahrscheinlichkeit hat, als Pivot gewählt zu werden.

Setze
$$I_{i,j} = \{b_i, \dots, b_j\}$$
.

1. Fall: $k \le i < j$.

Solange kein Eintrag aus $I_{k,j} = \{b_k, b_{k+1}, \dots, b_j\}$ als Pivot gewählt wird, passiert nichts bezüglich b_i, b_j .

Es kommt auf die Position p des ersten als Pivotelement gewählten Eintrags b_p in $I_{k,j}$ an.

Wenn p < i ist, werden die Einträge in $I_{i,j} = \{b_i, \dots, b_j\}$ im Weiteren ignoriert.

Wenn p = i oder p = j ist, werden b_i und b_j verglichen.

Wenn $i ist, kommt entweder <math>b_i$ oder b_j in der Rekursion nicht mehr vor.

Also:

$$\Pr(X_{ij} = 1) = \frac{2}{j - k + 1}.$$

2. Fall: i < k < j:

Es kommt darauf an, ob b_i oder b_j vor allen anderen Einträgen in $\{b_i, b_{i+1}, \dots, b_j\}$ Pivot wird. Also:

$$\Pr(X_{ij} = 1) = \frac{2}{j - i + 1}.$$

3. Fall: $i < j \le k$:

Es kommt darauf an, ob b_i oder b_j vor allen anderen Einträgen in $\{b_i, b_{i+1}, \dots, b_k\}$ Pivot wird. Also:

$$\Pr(X_{ij} = 1) = \frac{2}{k - i + 1}.$$

Also:

$$\mathbf{E}(C_k) = 2 \cdot \left(\sum_{k \le i < j \le n} \frac{1}{j-k+1} + \sum_{1 \le i < k < j \le n} \frac{1}{j-i+1} + \sum_{1 \le i < j \le k} \frac{1}{k-i+1} \right).$$

Erste Summe:

$$\sum_{k \le i < j \le n} \frac{1}{j - k + 1} = \sum_{j = k + 1}^{n} \frac{j - k}{j - k + 1} < \sum_{j = k + 1}^{n} 1 = n - k.$$

Dritte Summe:

$$\sum_{1 < i < j < k} \frac{1}{k - i + 1} = \sum_{i=1}^{k-1} \frac{k - i}{k - i + 1} < \sum_{i=1}^{k-1} 1 = k - 1.$$

 \Rightarrow Beitrag dieser beiden Summen zu $\mathbf{E}(C_k)$ ist höchstens 2(n-1).

Die Terme der mittleren Summe

$$S = \sum_{1 \le i < k < j \le n} \frac{1}{j - i + 1}$$

stellen wir in der nachfolgenden $(k-1)\times (n-k)$ -Matrix dar (für $k\leq n/2$):

$$\begin{pmatrix}
\frac{1}{k+1} & \frac{1}{k+2} & \cdots & \cdots & \frac{1}{n-k+1} & \frac{1}{n-k+2} & \frac{1}{n-k+3} & \cdots & \frac{1}{n-1} & \frac{1}{n} \\
\frac{1}{k} & \frac{1}{k+1} & \frac{1}{k+2} & \cdots & \cdots & \frac{1}{n-k+1} & \frac{1}{n-k+2} & \cdots & \frac{1}{n-2} & \frac{1}{n-1} \\
\vdots & \vdots & \cdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{k+1} & \frac{1}{k+2} & \cdots & \cdots & \frac{1}{n-k+1} & \frac{1}{n-k+2} & \frac{1}{n-k+3} \\
\frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{k} & \frac{1}{k+1} & \frac{1}{k+2} & \cdots & \cdots & \frac{1}{n-k+1} & \frac{1}{n-k+2}
\end{pmatrix}$$

Wir betrachten die Diagonalen der Matrix. Auf jeder Diagonalen sind die Einträge konstant, und die Summe der Einträge auf jeder Diagonalen ist kleiner als 1. Es gibt genau n-2 Diagonalen, also gilt:

$$\sum_{1 \le i < k < j \le n} \frac{1}{j - i + 1} < n - 2.$$

Im Falle k>n/2 funktioniert das Argument genauso; die Matrix sieht nur etwas anders aus. Man kann jedoch auch o. B. d. A. $k\leq n/2$ annehmen, da aus Symmetriegründen $C_k=C_{n-k+1}$ gilt.

Zusammen: $\mathbf{E}(C_k) \leq 4n$.

Satz 8.5.1

Algorithmus **Quickselect** löst das Auswahlproblem und hat eine erwartete Vergleichsanzahl von $\leq 4n$ und eine erwartete Laufzeit von O(n).

Mitteilungen:

(a) Eine genauere Analyse ergibt für $\alpha=k/n$ konstant eine erwartete Vergleichsanzahl von $2(1+H(\alpha)\ln 2+o(1))n<(3.3863+o(1))\cdot n.$

Dabei ist $H(\alpha) = -\alpha \log \alpha - (1-\alpha) \log (1-\alpha)$ die "binäre Entropie" der Wahrscheinlichkeitsverteilung $(\alpha, 1-\alpha)$.

- $H(\alpha)$ liegt zwischen 0 und 1; das Maximum 1 ist bei $\alpha = \frac{1}{2}$, was der Suche nach dem Median entspricht.
- (b) Die beste Schranke für die erwartete Vergleichsanzahl bei einem Algorithmus für das Auswahlproblem, nämlich $\frac{3}{2}n + o(n)$, erreicht ein anderer randomisierter Algorithmus (siehe Vorlesung "Randomisierte Algorithmen").