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The problem

typical graph problems ϕ

• Hamiltonicity

• existence of an Eulerian path

• existence of an infinite clique

Question 1
How difficult is it to tell whether A(P) has property ϕ?

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with property ϕ?
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Arithmetic and analytical hierarchy

universe U : all finitary objects (e.g. natural numbers, words,
automata, finite sets . . . )

relations: all decidable relations on U

Σ0
n: all relations defined by formulas of form

∃x1∀x2 . . . ∃/∀xn : R(x , x1, x2, . . . , xn)

Π0
n: all relations defined by formulas of form

∀x1∃x2 . . . ∀/∃xn : R(x , x1, x2, . . . , xn)

Σ1
1: all relations defined by formulas of form ∃X1, . . . ,Xm : ϕ

with ϕ first-order, Xi relation variable
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Computable graphs

C = all pairs (M1,M2) of TM that decide nodes and edges of a
computable graph with an infinite clique

(M1,M2) ∈ C iff

U |= ∃X ⊆ N∃Y ⊂ X∃f ⊆ X × Y :

∀u ∈ X : u ∈ L(M1) ∧

∀u, v ∈ X : (u, v) ∈ L(M2) ∨ u = v ∧

∀x ∈ X∃y ∈ Y : (x , y) ∈ f ∧

∀x ∈ X , y1, y2 ∈ Y : (x , y1), (x , y2) ∈ f → y1 = y2

⇒ existence of infinite clique for computable graphs belongs to Σ1
1
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Infinite cliques in computable graphs

Theorem (Kleene ’43)

existence of an infinite clique in a computable graph is Σ1
1-complete

Question 1
How difficult is it to tell whether the computable graph G has an
infinite clique?

Answer
It is Σ1

1-complete (“highly undecidable”).

Question 2
Is there a “simple” characterization of the computable graphs with
an infinite clique?

Answer
no since there is no better way of saying “the computable graph G

contains an infinite clique” than the obvious one
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Infinite cliques in automatic graphs

Theorem (Rubin ’08)

existence of infinite clique in an automatic graph is decidable.

Proof
∃X infinite ∀x , y : (x , y ∈ X ∧ x 6= y) → (x , y) ∈ E

• is formula of FSO,

• expresses “there is an infinite clique”,

• and its validity in an automatic graph is decidable

Question 1
How difficult is it to tell whether the automatic graph G has an
infinite clique?

Answer
It is decidable.
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Summary: infinite cliques

Question 1
How difficult is it to tell whether a computable and an automatic
graph have an infinite clique?

Answer
highly undecidable vs. decidable

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with infinite cliques?

Answer
no vs. yes
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Eulerian paths

Eulerian path: bijection f : {n ∈ N | n < |E |} → E such that f (n)
and f (n + 1) have one node in common and f (n), f (n + 1),
f (n + 2) do not (for all n)

Theorem (Euler 1736)

G = (V ,E ) finite. Then G has an Eulerian path if and only if

1. G has at most one nontrivial connected component

2. G has at most two nodes of odd order
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Eulerian computable graphs

E = all pairs (M1,M2) of TM that decide nodes and edges of an
Eulerian graph (L(M1), L(M2))

(M1,M2) ∈ E iff

U |= ∃f : f : N → L(M2) bijection ∧

∀n ∈ N∃v ∈ L(M1) : v belongs to f (n) and to f (n + 1),
but not to f (n + 2)

=⇒ existence of an Eulerian path in computable graphs belongs
to Σ1

1
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Eulerian computable graphs

Erdős, Grünwald & Vazsonyi 1938

G = (V ,E ) countable. Then G has an Eulerian path if and only if

1. G has at most one nontrivial connected component: in Π0
2

∀(x , x ′), (y , y ′) ∈ E ∃ path from x to y

2. G has a vertex of odd or infinite order: in Σ0
3

∃x ∈ V ,M ⊆fin V : ∀y(x E y ↔ y ∈ M) ∧ |M| odd
∨∃x ∈ V∀M ⊆fin V∃y : y /∈ M ∧ x E y

3. G has at most one vertex of odd order: in Π0
3

∀x , y ∈ V∀M,N ⊆fin V : ... → x = y

4. G has only one end (i.e., removing finitely many edges leaves
only one infinite connected component) G has only one end:in Π0

3

∀M ⊆fin E∀x , y ∈ V :
∃ path from x to y in (V ,E \M)∨
∃Z ⊆fin V : (x ∈ Z ∨ y ∈ Z )∧

∀(z , z ′) ∈ E \M : (z ∈ Z ↔ z ′ ∈ Z )
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Eulerian computable graphs

Theorem (K & Lohrey ’10)

existence of an Eulerian path in computable graphs is complete for
D0
3 = {K ∩ L | K ∈ Σ0

3, L ∈ Π0
3}.

Question 1
How difficult is it to tell whether a computable graph is Eulerian?

Answer
It is D0

3 -complete.

Question 2
Is there a “simple” characterization of the computable Eulerian
graphs?

Answer
yes, and the characterization by Erdős, Grünwald & Vazsonyi is
optimal.
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Eulerian automatic graphs

Erdős, Grünwald & Vazsonyi 1938

G = (V ,E ) countable. Then G has an Eulerian path if and only if

1. G has at most one nontrivial connected component: in Π0
2

∀(x , x ′), (y , y ′) ∈ E ∃ path from x to y

2. G has a vertex of odd or infinite order: decidable
∃x¬∃(2)y : (x , y) ∈ E

3. G has at most one vertex of odd order: decidable
∃x∀y : x 6= y → ∃(2)z : (y , z) ∈ E ∨ ∃∞z : (y , z) ∈ E

4. G has only one end: in Π0
2

∀M ⊆fin E∀x , y ∈ V :
∃ path from x to y in (V ,E \M)∨
∃Z ⊆fin V : (x ∈ Z ∨ y ∈ Z )∧

∀(z , z ′) ∈ E \M : (z ∈ Z ↔ z ′ ∈ Z )
︸ ︷︷ ︸

decidable since (V ;E ,M,Z) automatic
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Eulerian automatic graphs

Theorem (K & Lohrey ’10)

existence of an Eulerian path in automatic graphs is Π0
2-complete

Question 1
How difficult is it to tell whether an automatic graph is Eulerian?

Answer
It is Π0

2-complete.

Question 2
Is there a “simple” characterization of the automatic Eulerian
graphs?

Answer
yes, and the characterization by Erdős, Grünwald & Vazsonyi
together with decidability of logic FOX leads to optimal
characterization
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Summary: Eulerian path

Question 1
How difficult is it to tell whether a computable and an automatic
graph have an Eulerian path?

Answer
D0
3 - vs. Π

0
2-complete

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with an Eulerian path?

Answer
yes in both cases (slightly “simpler” for automatic graphs)
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Hamiltonian computable graphs

Hamiltonian path: bijection f : {n ∈ N | n < |V |} → V such that
(f (n), f (n + 1)) ∈ E for all n

H = all pairs (M1,M2) of TM that decide nodes and edges of a
computable Hamiltonian graph (L(M1), L(M2))

(M1,M2) ∈ H iff

U |= ∃f ⊆ N
2 ∀n ∈ N∃v ∈ L(M1) : (n, v) ∈ f ∧

∀v ∈ L(M1)∃n ∈ N : (n, v) ∈ f ∧

∀n, v1, v2 : (n, v1), (n, v2) ∈ f → v1 = v2 ∧

∀n1, n2, v : (n1, v), (n2, v) ∈ f → n1 = n2 ∧

∀n ∈ N : (f (n), f (n + 1)) ∈ L(M2)

=⇒ Hamiltonicity for computable graphs belongs to Σ1
1
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Hamiltonian computable graphs

Theorem (Hirst & Harel ’96)

Hamiltonicity for computable graphs is Σ1
1-complete.

(hardness even for planar graphs and for graphs of bounded degree)

hardness proof

reduction from Kleene’s Σ1
1-complete problem “computable tree

has infinite branch”

Question 1
How difficult is it to tell whether a computable graph is
Hamiltonian?

Answer
It is Σ1

1-complete.

Question 2
Is there a “simple” characterization of the computable Hamiltonian
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Recurring tilings
tiling system: tuple (C , T , c0) with C = {c0, c1, . . . , cn} finite set

of colors, T ⊆ C 4

tile (tW , tN , tE , tS) ∈ C 4 visualised as:

tN

tW

tS

tE

recurring tiling problem:
all tiling systems that allow tiling of N× N such that color c0
occurs infinitely often at bottom border

Theorem (Harel ’91)

Recurring tiling problem is Σ1
1-complete 25 / 41



Infinite cliques Eulerian graphs Hamiltonian graphs

Hamiltonian automatic graphs

Theorem (K & Lohrey ’10)

There is a constant c such that, from a tiling system
T = (C , T , c0), one can compute a planar automatic graph GT of
degree c such that the following are equivalent

• T allows a recurring tiling of N2

• GT is Hamiltonian.

Hence: Hamiltonicity of automatic planar graphs of degree c

is Σ1
1-complete
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1st step: coding of T in finite graphs (1)
define V = {Wi , Si ,Ni ,Ei | 0 ≤ i ≤ n}

Lemma (minor extension of Garey, Johnson & Tarjan ’76)

∃ finite planar graphs G1, . . . ,G4 s.t. ∀t = (ci , cj , ck , cℓ) ∈ C 4:
t ∈ T iff ∃ Hamiltonian path P from u to v s.t.

• Wm ∈ P ⇐⇒ m = i , Sm ∈ P ⇐⇒ m = j

• Nm ∈ P ⇐⇒ m 6= k , and Em ∈ P ⇐⇒ m 6= ℓ

G1

v

u

W0

W1

Wn

E0

E1

En

N0N1 Nn

S0 S1 Sn
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1st step: coding of T in finite graphs (2)

G1

v

u

W0

W1

Wn

E0

E1

En

N0N1 Nn

S0 S1 Sn

G2

u v

W0

W1

Wn

E0

E1

En

N0N1 Nn

S0 S1 Sn

G3

u

v

W0

W1

Wn

E0

E1

En

N0N1 Nn

S0 S1 Sn

G4

v

u

W0

W1

Wn

E0

E1

En

N0N1 Nn

S0 S1 Sn
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2nd step: placing graphs in plane
Let G 1 denote the following infinite graph:

G1

G2

G1

G2

G1

G3

G1

G3

G1

G3

G4

G3

G1

G3

G1

G3

G1

G3

G1

G3

G4

G3

G1

G3

G1
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Interim result after 2 steps

u-rooted graph G 1 and correspondence between

1. Hamiltonian paths H from u

2. mappings N2 → T

next problem: extend G 1 to G 2 s.t. for all i , j ∈ N and
all Hamiltonian paths H of G 2:

Wk(i + 1, j) ∈ H iff E k(i , j) /∈ H

Sk(i , j + 1) ∈ H iff Nk(i , j) /∈ H
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3rd step: synchronisation of colors (1)

exclusive or (“folklore”)

u1 u2

v1 v2

u′1 u′2

v ′1 v ′2

u′

v ′

u′1 u′2

v ′1 v ′2

u′

v ′

×
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3rd step: synchronisation of colors (2)

S0 S1

E0

E1

W0

W1

N0 N1

S0 S1

E0

E1

W0

W1

N0 N1

×

×
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Interim result after 3 steps

u-rooted graph G 2 and correspondence between

1. Hamiltonian paths H from u

2. tilings of N2 with tiles from T

remaining problem: color c0 shall occur infinitely often on
bottom border
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4st step: recurrence checking (1)

ℓ
r

a

a′

b

b′

Aℓ r

a b

a′ b′

Aℓ r

a b

a′ b′

Aℓ r

a b

a′ b′

Aℓ r

a b

a′ b′
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4st step: recurrence checking (2)

S0 S0 S0 S0

G1 G3 G4 G3

A A A A
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Interim result after 4 steps

u-rooted graph G 3 and correspondence between

1. Hamiltonian paths H from u

2. tilings of N2 with tiles from T s.t. color c0 appears infinitely
often at bottom border

last remaining problem: automaticity of G 3

holds since G 3 can be FOX-interpreted in grid (N× N,≤)
hence: Hamiltonicity of automatic planar graphs of degree c is

Σ1
1-complete
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Hamiltonian automatic graphs

Theorem (K & Lohrey ’10)

Hamiltonicity for automatic planar graphs of bounded degree is
Σ1
1-complete.

Question 1
How difficult is it to tell whether an automatic graph is
Hamiltonian?

Answer
It is Σ1

1-complete.

Question 2
Is there a “simple” characterization of the automatic Hamiltonian
graphs?

Answer
no.
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Summary: Hamiltonian path

Question 1
How difficult is it to tell whether a computable and an automatic
graph have a Hamiltonian path?

Answer
Σ1
1-complete in both cases

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with a Hamiltonian path?

Answer
no in both cases
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Summary

there exist (natural) problems ϕ s.t.

1. ϕ(automatic) decidable, ϕ(computable) Σ1
1-complete

(e.g., infinite clique)

2. ϕ(automatic) Π0
2-complete, ϕ(computable) D0

3 -complete
(e.g., Euler path, 1-endedness)

3. ϕ(automatic) and ϕ(computable) Σ1
1-complete

(e.g., Hamiltonicity, existence of infinite path)

open:

1. explanation for difference between 1, 2, and 3

2. investigation of subclasses of automatic structures
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See you tomorrow!
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