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Automatic structures
Lecture 4: Some classical graph problems

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

/41



Infinite cliques Eulerian graphs Hamiltonian graphs
000 00000 000

[e]e] 000 000000000000 00
[o]e] [e]e] [o]e]
The problem

typical graph problems ¢

e Hamiltonicity
e existence of an Eulerian path

e existence of an infinite clique

Question 1
How difficult is it to tell whether A(P) has property ?

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with property ¢?
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Arithmetic and analytical hierarchy

universe U/:  all finitary objects (e.g. natural numbers, words,
automata, finite sets ...)
relations: all decidable relations on U

39 all relations defined by formulas of form
Ix1VXy ... 3/VX, 0 R(X,X1,X2,...,Xp)

M9:  all relations defined by formulas of form
Vx13X2 ...V /3X, 0 R(X,X1,X2,...,Xn)

Z%: all relations defined by formulas of form 3Xi,..., X, 1
with ¢ first-order, X; relation variable
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Computable graphs

C = all pairs (M1, Mp) of TM that decide nodes and edges of a
computable graph with an infinite clique

(Ml, Mz) e Ciff

UEIXCNIY CXIFCT XX Y:
Vue X :ue (M)A
Vu,ve X :(u,v) e L(M)Vu=vA
VxeXdyeY:(x,y)efA
Yx € Xy, €Y i (), (xy2) Ef =y =y

= existence of infinite clique for computable graphs belongs to ¥}
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Infinite cliques in computable graphs
Theorem (Kleene '43)
existence of an infinite clique in a computable graph is ¥1-complete

Question 1

How difficult is it to tell whether the computable graph G has an
infinite clique?

Answer

It is Z1-complete (“highly undecidable”).

Question 2

Is there a “simple” characterization of the computable graphs with

an infinite clique?

Answer
no since there is no better way of saying “the computable graph G
contains an infinite clique” than the obvious one
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Infinite cliques in automatic graphs
Theorem (Rubin '08)

existence of infinite clique in an automatic graph is decidable.

Proof

X infinite Vx,y : (x,y €e X Ax#y) = (x,y) € E
e is formula of FSO,
e expresses “there is an infinite clique”,

e and its validity in an automatic graph is decidable

Question 1

How difficult is it to tell whether the automatic graph G has an
infinite clique?

Answer
It is decidable.

41
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Summary: infinite cliques

Question 1
How difficult is it to tell whether a computable and an automatic
graph have an infinite clique?

Answer
highly undecidable vs. decidable

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with infinite cliques?

Answer
no vs. yes
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Eulerian paths

Eulerian path: bijection f : {n € N | n < |E|} — E such that f(n)
and f(n+ 1) have one node in common and f(n), f(n+ 1),
f(n+2) do not (for all n)

Theorem (Euler 1736)
G = (V,E) finite. Then G has an Eulerian path if and only if
1. G has at most one nontrivial connected component

2. G has at most two nodes of odd order
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Eulerian computable graphs

E = all pairs (M1, M>) of TM that decide nodes and edges of an
Eulerian graph (L(My), L(M>))

(My, My) € E iff
U=3f: f:N— (M) bijection A

Vn e N3v € L(M;) : v belongs to f(n) and to f(n+ 1),
but not to f(n+ 2)

— existence of an Eulerian path in computable graphs belongs
to X1
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Eulerian computable graphs

Erdés, Griinwald & Vazsonyi 1938
G = (V, E) countable. Then G has an Eulerian path if and only if

1. G has at most one nontrivial connected component: in M9
V(x,x"),(y,y") € E3 path from x to y
2. G has a vertex of odd or infinite order: in ¥9
Ixe V,MCg, V:Vy(xEy <y € M)A |M| odd
Vix € VWM Cg, VIy :y € MAXEYy
3. G has at most one vertex of odd order: in I'Ig
Vx,y e WIMNCg, V... x=y
4. G h%s only one end (i.e., removing finitely many edges leaves
8hlyZone infinite connected component) G has only one end:
Chn EVx,y e V:
3 path from x to y in (V,E\ M)V
17 Cg, Vo (XEZ\/yEZ)/\
V(z,Z)e E\M:(z€e Z+ 2 € Z)

14 /41
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Eulerian computable graphs
Theorem (K & Lohrey '10)

existence of an Eulerian path in computable graphs is complete for
DY={KNnL|KexLeny}

Question 1

How difficult is it to tell whether a computable graph is Eulerian?

Answer
It is D9-complete.

Question 2
Is there a “simple” characterization of the computable Eulerian
graphs?

Answer
yes, and the characterization by Erdds, Griinwald & Vazsonyi is
optimal.
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Eulerian automatic graphs

Erdés, Griinwald & Vazsonyi 1938
G = (V, E) countable. Then G has an Eulerian path if and only if
1. G has at most one nontrivial connected component: in M9
V(x,x"),(y,y") € E 3 path from x to y
2. G has a vertex of odd or infinite order: decidable
Ix-3@y : (x,y) € E
3. G has at most one vertex of odd order: decidable
IxVy :x#y =3z (y,z) e EVI®z: (y,z) € E
4. G has only one end: in I—Ig
VM Cyi, EVx,y € V.
3 path from x to y in (V,E\ M)V
1Z Cg, Vo (XEZ\/yGZ)/\
V(z,Z)EE\M:(z€Z <+ Z € 2)

decidable since (V; E, M, Z) automatic
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Eulerian automatic graphs

Theorem (K & Lohrey '10)
existence of an Eulerian path in automatic graphs is I'Ig-complete

Question 1
How difficult is it to tell whether an automatic graph is Eulerian?

Answer
It is M3-complete.

Question 2
Is there a “simple” characterization of the automatic Eulerian
graphs?

Answer
yes, and the characterization by Erdds, Griinwald & Vazsonyi
together with decidability of logic FOX leads to optimal

characterization
18 /41
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Summary: Eulerian path

Question 1
How difficult is it to tell whether a computable and an automatic
graph have an Eulerian path?

Answer
D3- vs. N3-complete

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with an Eulerian path?

Answer
yes in both cases (slightly “simpler” for automatic graphs)
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Hamiltonian computable graphs
Hamiltonian path: bijection f : {n € N | n < |V|} — V such that
(f(n),f(n+1)) € E for all n

H = all pairs (My, M) of TM that decide nodes and edges of a
computable Hamiltonian graph (L(M;), L(M>))

(My, My) € H iff

UEIFCN2YneNIve L(M):(nv)efA
Vv e L(M)dneN:(n,v)ef A
Vn,vi,va i (mowva), (nyw) €F = vi =wva A
Vni, na, v (n,v),(n,v) €Ff — np=n A
Vne N: (f(n),f(n+1)) € L(Ms)

= Hamiltonicity for computable graphs belongs to Z%
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Hamiltonian computable graphs
Theorem (Hirst & Harel '96)

Hamiltonicity for computable graphs is ¥ 1-complete.
(hardness even for planar graphs and for graphs of bounded degree)

hardness proof

reduction from Kleene's Z%—complete problem “computable tree
has infinite branch”

Question 1
How difficult is it to tell whether a computable graph is
Hamiltonian?

Answer
It is Z}—complete.

Question 2
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Hamiltonian graphs

...in automatic graphs
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Recurring tilings

tiling system: tuple (C, T, cp) with C = {cp, c1, - .

of colors, T C C*

tile (tw, tn, te, ts) € C* visualised as:

PN

recurring tiling problem:

all tiling systems that allow tiling of N x N such that color ¢

occurs infinitely often at bottom border

Theorem (Harel '91)
Recurring tiling problem is ¥1-complete

Hamiltonian graphs

O@000000000000
(e]e]

., Cn} finite set
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Hamiltonian automatic graphs

Theorem (K & Lohrey '10)

There is a constant ¢ such that, from a tiling system
T =(C,T,c), one can compute a planar automatic graph Gy of
degree ¢ such that the following are equivalent

e T allows a recurring tiling of N2

e Gy is Hamiltonian.

Hence: Hamiltonicity of automatic planar graphs of degree ¢
is > 1-complete
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Ist step: coding of T in finite graphs (1)
define V = {W;,S;, N;,E; | 0 < i < n}
Lemma (minor extension of Garey, Johnson & Tarjan '76)

3 finite planar graphs Gy, ..., Gy s.t. Vt = (¢, ¢j, ck, ¢¢) € C*:

t € T iff 4 Hamiltonian path P from u to v s.t.
e WneP < m=i,S5,EP < m=
e N, € P < m#k and E, € P < m#/

v. NoNy N,
w, E,
W G E
Wo E
S5 S, U
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Lst step: coding of T in finite graphs (2)

v MNoNi N,
W, E,
E
E
So 51 S, u
u NO N1 W
W, E,

SS S, Vv

No Ny
W,
Wy @
Wo
u Sy5
v NoNy
W,
Wy Ga
Wo
u 5 S

N,
E,
E
Eo
Sn Vv
Ny
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2nd step: placing graphs in plane
Let G1 denote the followmg |nf|n|te graph:

Gy

Gy

G3 G1

O

Gs

G1

Gy

3
G3 G1

Go

Gy

Ga

G1 Gs3
G3 Gy
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Interim result after 2 steps

u-rooted graph G! and correspondence between
1. Hamiltonian paths H from u

2. mappings N2 — T

next problem: extend G! to G? s.t. for all i,j € N and
all Hamiltonian paths H of G2:
Wi(i+1,j) € Hiff Ex(i,j) ¢ H
Sk(i,j+1) € Hiff Ni(i,j) ¢ H
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3rd step: synchronisation of colors (1)

exclusive or (“folklore™)
/ /
/ v / / v /

Vi 1) A

Vi V2
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3rd step: synchronisation of colors (2)

32/41
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Interim result after 3 steps

u-rooted graph G2 and correspondence between
1. Hamiltonian paths H from u
2. tilings of N? with tiles from 7T

remaining problem: color ¢y shall occur infinitely often on
bottom border
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4st step: recurrence checking (1)

a b
¢
.
a b
a b a b
eﬁﬁ—r ottt
a b a b

Hamiltonian graphs
000

000000000 0e000
[o]e]
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4st step: recurrence checking (2)

G Gs3 Gs3
So So S So

A H A H A H A ]

L]
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Interim result after 4 steps

u-rooted graph G2 and correspondence between
1. Hamiltonian paths H from u

2. tilings of N? with tiles from 7 s.t. color ¢y appears infinitely
often at bottom border

last remaining problem: automaticity of G3

holds since G2 can be FOX-interpreted in grid (N x N, <)

hence: Hamiltonicity of automatic planar graphs of degree c is
¥1-complete
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Hamiltonian automatic graphs

Theorem (K & Lohrey '10)

Hamiltonicity for automatic planar graphs of bounded degree is
¥ 1-complete.

Question 1

How difficult is it to tell whether an automatic graph is

Hamiltonian?

Answer
It is Z1-complete.

Question 2

Is there a “simple” characterization of the automatic Hamiltonian
graphs?

Answer

no.
37/41
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Summary: Hamiltonian path

Question 1
How difficult is it to tell whether a computable and an automatic
graph have a Hamiltonian path?

Answer
> 1-complete in both cases

Question 2
Are there “simple” characterizations of the computable and the
automatic graphs with a Hamiltonian path?

Answer
no in both cases
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Summary

there exist (natural) problems ¢ s.t.

1. ¢(automatic) decidable, p(computable) ¥ 1-complete
(e.g., infinite clique)

2. p(automatic) N3-complete, p(computable) DI-complete
(e.g., Euler path, 1-endedness)

3. ¢(automatic) and ¢(computable) ¥i-complete
(e.g., Hamiltonicity, existence of infinite path)

open:
1. explanation for difference between 1, 2, and 3

2. investigation of subclasses of automatic structures
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See you tomorrow!
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