The classification problem 0000 000000 00000 Summary 00

Automatic structures Lecture 5: Classification and isomorphism

Dietrich Kuske

LaBRI, Université de Bordeaux and CNRS

- 1. given an automatic presentation P, it is decidable whether $\mathcal{A}(P)$ is a linear order
- 2. since we can effectively list all automatic presentations, we can therefore effectively list all automatic linear orders (via their presentations)
- 3. this list contains repetitions can they be avoided effectively?

A classification is a list of all elements of a class without repetition of isomorphic structures

General problem

Can we find "simple" classification of, e.g., automatic linear orders?

Summary 00

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

Summary 00

Definition and examples

An ordinal is a linear order (V; \leq) not embedding ({..., -3, -2, -1, 0}, \leq)

Examples

- all finite linear orders $\mathbf{n} = (\{0, 1, \dots, n-1\}, \leq)$
- $\omega = (\mathbb{N}, \leq)$
- $\omega + \mathbf{1} = (\mathbb{N} \cup \{\infty\}, \leq)$, but $\mathbf{1} + \omega = \omega$
- $\omega \cdot \mathbf{2} = (\mathbb{N} \times \{0, 1\}, \leq_{\text{lex}}) \cong \omega + \omega$
- $\omega^n=(\mathbb{N}^n,\leq_{\mathrm{lex}})$ for $n\in\mathbb{N}$ (with $\omega^0=1$)
- $\omega^{\omega} = \omega^0 + \omega^1 + \omega^2 + \omega^3 \cdots = (\mathbb{N}^+, \leq_{\text{llex}})$ is least ordinal larger than any ω^n for $n \in \mathbb{N}$

Summary 00

Cantor's normal form

Fact

If $\alpha \in \mathbb{N}$, then there exists a unique tuple of natural numbers (k_0, k_1, \ldots, k_n) with $0 \le k_0 \le k_1 \le k_2 \le \cdots \le k_n$ such that

$$\alpha = 10^{k_n} + \dots + 10^{k_2} + 10^{k_1} + 10^{k_0}$$

Lemma

If $\alpha < \omega^{\omega}$ is an ordinal, then there exists a unique tuple of natural numbers (k_0, k_1, \ldots, k_n) with $0 \le k_0 \le k_1 \le k_2 \le \cdots \le k_n$ such that

$$\alpha = \omega^{k_n} + \dots + \omega^{k_2} + \omega^{k_1} + \omega^{k_0}.$$

Summary 00

Ordinals

Classification

Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

Summary 00

Automaticity of ordinals

Lemma

Ordinals $\alpha < \omega^{\omega}$ have the form $\alpha = \omega^{k_n} + \cdots + \omega^{k_2} + \omega^{k_1} + \omega^{k_0}$ with $0 \le k_0 \le k_1 \le k_2 \le \cdots \le k_n$.

Lemma

Any finite ordinal **n** is automatic.

Lemma

Any ordinal $\omega^n \cong ((0^*1)^n, \leq_{\mathrm{lex}})$ for $n \ge 1$ is automatic.

Lemma

If $\alpha = (A, \leq_A)$ and $\beta = (B, \leq_B)$ are automatic ordinals, then $\alpha + \beta \cong (A \uplus B, \leq_A \cup \leq_B \cup (A \times B))$ is an automatic ordinal.

Consequence

Any ordinal $\alpha < \omega^{\omega}$ is automatic and from $0 \le k_0 \le \cdots \le k_n$, one can compute an automatic presentation of $\omega^{k_n} + \cdots + \omega^{k_1} + \omega^{k_0}$.

Summary 00

Automatic ordinals

Theorem (Delhommé, Goranko & Knapik '03)

An ordinal α is automatic if and only if $\alpha < \omega^\omega$

Since Cantor's normal form is unique, this gives an effective list of all automatic ordinals without repetitions:

- list all tuples $k_0 \geq k_1 \geq k_2 \geq \cdots \geq k_0 \geq 0$ of any length
- from an entry \overline{k} in this list, compute an automatic presentation of $\omega^{k_n} + \cdots + \omega^{k_1} + \omega^{k_0}$.

Hence: There exists a computable classification of all automatic ordinals.

Summary 00

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

The classification problem

Summary 00

The isomorphism problem

P and *P'* automatic presentations of ordinals $\alpha = \omega^{k_n} + \cdots + \omega^{k_1} + \omega^{k_0}$ and $\beta = \omega^{\ell_m} + \cdots + \omega^{\ell_1} + \omega^{\ell_0}$ $\alpha \cong \beta$ if and only if $\overline{k} = \overline{\ell}$ (since Cantor's normal form is unique). to decide whether $\alpha \cong \beta$, it suffices to compute \overline{k} and $\overline{\ell}$.

The classification problem 0000 0000000 00000 Summary 00

Computation of the sequence \overline{k}

$$\begin{split} h &:= 0; \ \overline{k} := () \\ \text{while } \mathcal{A}(P) \neq \mathbf{0} \\ \overline{k} &:= (0, \overline{k}) \\ \text{while } \mathcal{A}(P) \text{ has maximal element} \\ \text{ compute automatic presentation } P' \text{ with } \mathcal{A}(P) \cong \mathcal{A}(P') + 1 \\ \begin{array}{l} P &:= P' \\ \overline{k} = (h, \overline{k}) \\ \text{ compute automatic presentation } P' \text{ with } \mathcal{A}(P) \cong \mathcal{A}(P') \cdot \omega \\ h &:= h + 1 \\ P &:= P' \end{split}$$

Summary 00

The isomorphism problem for ordinals

Theorem (Khoussainov, Nies, Rubin, Stephan '04)

The isomorphism problem for automatic ordinals is decidable (but no primitive recursive procedure is known).

Morale

A "good" classification leads to a "simple" isomorphism problem.

Similar story for automatic Boolean algebras, fields, and f.g. groups but no further classifications are known!

The classification problem • 000 • 0000 • 0000 • 0000 Summary 00

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

The classification problem

Summary 00

Non-classifyability?

Theorem (Goncharov & Knight '02)

$\ensuremath{\mathcal{C}}$ hyperarithmetic^1 class of computable structures.

- "simple" automatic 1. A hyperarithmetic isomorphism problem implies a hyp**eirarith**"metic classification.
- A^{si}Σ^hP^complete isomorphism problem implies the nondestisted isomorphism problem implies the nondestification.
 "simple"

Theorem (Khoussainov, Nies, Rubin & Stephan '07)

The isomorphism problem for automatic successor trees is $\Sigma^1_1\text{-complete}$ – hence a "simple" classification of all automatic successor trees is unlikely.

¹A set *L* is hyperarithmetic if *L* and its complement belong to Σ_1^1 .

Summary 00

The isomorphism problem

For a class of structures \mathfrak{C} , what is the complexity of the set of pairs (P, P') of automatic presentations with $\mathcal{A}(P) \cong \mathcal{A}(P') \in \mathfrak{C}$?

Theorem (Khoussainov, Nies, Rubin, Stephan '07) The isomorphism problem for automatic successor trees is Σ_1^1 -complete.

Theorem (Rubin '04)

For automatic locally finite directed graphs, the isomorphism problem is $\Pi^0_3\text{-}\text{complete}.$

Theorem (Khoussainov, Nies, Rubin, Stephan '04)

The isomorphism problems for automatic ordinals and automatic Boolean algebras are decidable.

Summary 00

The isomorphism problem for further classes

• Rubin '08:

Is isomorphism problem for equivalence structures decidable?

- isomorphism of automatic equivalence structures decidable if all equivalence classes contain at most *n* elements (Khoussainov & Nerode '95)
- ∃ automatic equivalence structure s.t. all equivalence classes finite, but arbitrarily large (Khoussainov & Nerode '95)
- isomorphism problem for equivalence structures is in Π_1^0 (Rubin '08)
- we '09:

Is isomorphism problem for several classes of trees decidable?

• Khoussainov, Rubin & Stephan '03:

Is isomorphism problem for linear orders decidable?

- decidable for ordinals and for FC-rank 0
- automatic linear orders have finite FC-rank (Khoussainov, Rubin & Stephan '03)

The classification problem

Summary 00

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures

Other classses of transitive structures

The classification problem ○●○○ ○●○○○○○ Summary 00

Aim and strategy

Theorem (K, Liu & Lohrey '10)

The isomorphism problem for automatic equivalence structures is $\Pi^0_1\text{-}\text{complete}.$

Strategy

- (0) build an equivalence structure $\mathcal{E}_{\rm Good}$ (the "good structure")
- (1) from polynomials $p_1, p_2 \in \mathbb{N}[\overline{x}]$, build automatic equivalence structure \mathcal{E}_{p_1,p_2} (the "test structure") with

$$\mathcal{E}_{p_1,p_2} \cong \mathcal{E}_{\mathrm{Good}} \iff \forall \overline{c} : p_1(\overline{c}) \neq p_2(\overline{c})$$

(2) use Matiyasevitch: $\{(p_1, p_2) \in \mathbb{N}[\overline{x}] \mid \forall \overline{c} : p_1(\overline{c}) \neq p_2(\overline{c})\}$ is Π_1^0 -hard

The classification problem

Summary 00

The "good structure"

For a countable equivalence structure \mathcal{E} , define $h_{\mathcal{E}}: (\mathbb{N}_{>0} \cup \{\infty\}) \rightarrow \mathbb{N} \cup \{\infty\}$ $h_{\mathcal{E}}(x) \mapsto \#$ equivalence classes of \mathcal{E} of size xThe function $h_{\mathcal{E}}$ describes \mathcal{E} up to isomorphism.

 $C: \mathbb{N} \times \mathbb{N} \to \mathbb{N}_{>0}: (x, y) \mapsto (x + y)^2 + 3x + y + 1$ is injective

 \mathcal{E}_{Good} is countably infinite equivalence structure s.t.

$$h_{\mathcal{E}_{\mathrm{Good}}}(n) = egin{cases} \infty & ext{if } \exists x, y \in \mathbb{N} : x
eq y ext{ and } n = C(x, y) \\ 0 & ext{otherwise} \end{cases}$$

i.e., $\mathcal{E}_{\text{Good}}$ "encodes" $\{(x, y) \mid x \neq y\}$

The classification problem

Summary 00

The "test structure"

Let $p_1, p_2 \in \mathbb{N}[x_1, \dots, x_k]$. Consider the following polynomials

- $S_1(\overline{x}) = C(p_1(\overline{x}), p_2(\overline{x}))$
- $S_2(\overline{x}) = C(x_1, x_1 + x_2 + 1)$
- $S_3(\overline{x}) = C(x_1 + x_2 + 1, x_1)$

folklore

There are nondeterministic finite automata A_i s.t.

•
$$L(\mathcal{A}_i) \subseteq \alpha_1^* \alpha_2^* \dots \alpha_k^*$$

•
$$\forall \overline{c} \in \mathbb{N}^k$$
: \mathcal{A}_i has precisely $S_i(\overline{c})$ accepting runs on $\alpha^{\overline{c}} := \alpha_1^{c_1} \alpha_2^{c_2} \dots \alpha_k^{c_k}$.

The classification problem

Summary 00

The "test structure" - continued

Let V_i denote the set of accepting runs of A_i and $\rho \sim_i \sigma$ iff ρ and σ are runs on the same word $u \in \alpha_1^* \alpha_2^* \dots \alpha_k^*$.

$$\begin{split} & \mathcal{E}_i = (V_i, \sim_i) \text{ is automatic equivalence structure s.t.} \\ & h_{\mathcal{E}_i}(n) > 0 \quad \text{iff} \quad \exists \text{ equivalence class with } n \text{ elements} \\ & \text{iff} \quad \exists \overline{c} : \mathcal{A}_i \text{ has precisely } n \text{ runs on } \alpha^{\overline{c}} \\ & \text{iff} \quad n \in \text{Im}(S_i) \end{split}$$

 $\mathcal{E}_i^{\omega} = (V_i \$^*, \equiv_i)$ with $\rho \$^m \equiv_i \sigma \n iff $\rho \sim_i \sigma$ and m = n is automatic equivalence structure s.t.

$$h_{\mathcal{E}_i^\omega}(n) = egin{cases} \infty & ext{if } n \in \operatorname{Im}(S_i) \ 0 & ext{otherwise} \end{cases}$$

The classification problem

Summary 00

The "test structure" – continued

$$h_{\mathcal{E}_i^\omega}(n) = egin{cases} \infty & ext{if } n \in \operatorname{Im}(S_i) \ 0 & ext{otherwise} \end{cases}$$

i.e., \mathcal{E}_1^{ω} encodes $\{(p_1(\overline{c}), p_2(\overline{c})) \mid \overline{c} \in \mathbb{N}^k\}$, \mathcal{E}_2^{ω} encodes $\{(x, y) \mid x < y\}$, and \mathcal{E}_3^{ω} encodes $\{(x, y) \mid x > y\}$

 $\mathcal{E}_{\textit{p}_1,\textit{p}_2} = \mathcal{E}_1^\omega \uplus \mathcal{E}_2^\omega \uplus \mathcal{E}_3^\omega \text{ is automatic equivalence structure s.t.}$

$$h_{\mathcal{E}_{p_1,p_2}}(n) = egin{cases} \infty & ext{if } n \in igcup_{1 \leq i \leq 3} \operatorname{Im}(S_i) \ 0 & ext{otherwise} \end{cases}$$

i.e. \mathcal{E}_{p_1,p_2} encodes $\{(p_1(\overline{c}), p_2(\overline{c})) \mid \overline{c} \in \mathbb{N}^k\} \cup \{(x, y) \mid x \neq y\}$

The classification problem

Summary 00

Comparision of "good" and "test structure"

$$\begin{aligned} \mathcal{E}_{p_1,p_2} &\cong \mathcal{E}_{\mathrm{Good}} \iff \mathcal{E}_{p_1,p_2} \text{ and } \mathcal{E}_{\mathrm{Good}} \text{ encode the same sets} \\ &\iff \{ (p_1(\overline{c}), p_2(\overline{c})) \mid \overline{c} \in \mathbb{N}^k \} \subseteq \{ (x,y) \mid x \neq y \} \\ &\iff \forall \overline{c} : p_1(\overline{c}) \neq p_2(\overline{c}) \end{aligned}$$

i.e. we proved

Theorem (K, Liu & Lohrey '10)

It is undecidable whether an automatic equivalence structure \mathcal{E} with $h_{\mathcal{E}}(\infty) = 0$ and $\operatorname{Im}(h_{\mathcal{E}}) = \{0, \infty\}$ is isomorphic to $\mathcal{E}_{\operatorname{Good}}$.

Corollary (K, Lohrey & Jiu '10)

The isomorphism problem of automatic equivalence structures is $\Pi^0_1\text{-}\text{complete.}$

The classification problem

Summary 00

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

The classification problem

Summary 00

Equivalence structures as trees of height 2

- $\mathcal{E} \cong \mathcal{E}' \iff T_{\mathcal{E}} \cong T_{\mathcal{E}'}$
- $\mathcal{T}_{\mathcal{E}}$ FO-interpretable in $(\mathcal{E},\leq_{llex})$ and hence effectively automatic

Consequence (K, Lohrey & Jiu '10)

The isomorphism problem for automatic trees of height ≤ 2 is $\Pi^0_1\text{-hard}.$

Summary 00

The isomorphism problem for order trees

Theorem (K, Liu & Lohrey '10, '11)

- 1. The isomorphism problem for automatic trees of height ≤ 1 is decidable.
- For n ≥ 2, the isomorphism problem for automatic trees of height ≤ n is Π⁰_{2n-3}-complete.
- 3. The isomorphism problem for automatic trees of finite height is Δ^0_{ω} -complete (i.e., equivalent to true arithmetic).
- 4. The isomorphism problem for automatic well-founded trees is in Δ^0_{ω} .
- 5. The isomorphism problem for automatic trees is Σ_1^1 -complete.

The classification problem

Summary 00

Equivalence structures as linear orders

- if $h_{\mathcal{E}}(n), h_{\mathcal{E}'}(n) \in \{0, \infty\}$ for all $n \in \mathbb{N}_{>0} \cup \{\infty\}$: $\mathcal{E} \cong \mathcal{E}' \iff L_{\mathcal{E}} \cong L_{\mathcal{E}'}$
- L_E is effectively automatic

L

Consequence (K, Lohrey & Jiu '10)

The isomorphism problem for automatic linear orders is Π_1^0 -hard.

The classification problem ○○○○ ○○○○○○ ○○○○● Summary 00

The isomorphism problem for linear orders

Theorem (K, Liu & Lohrey '10, '11)

- 1. The isomorphism problem for automatic linear orders is $\Sigma^1_1\text{-}\text{complete.},$ and this holds even for linear orders of FC rank 1.
- 2. The isomorphism problem for automatic scattered linear orders is in Δ^0_{ω} .

The classification problem

Summary •0

Ordinals

Classification Isomorphism

The classification problem

Equivalence structures Other classses of transitive structures

Summary O

Summary

There are hyperarithmetic classifications of automatic

- (a) ordinal sim bodie an algebras, equivalence structures,
- (b) trees of bounded (or finite) height,
- (c) well-founded trees, and
- (d) scattered linear orders

since the isomorphism problems are hyperarithmetic.

There seem to be no hyperarithmetic'sithsid fication of automatic

- (e) trees and "simple"
- (f) linear orders

since the isomorphism problems are not hyperarithmetic. It won't be easy to find hyperarithmetidif**clast**ifications in cases (b-d), since the iso**fisionph**ism problems are not that simple.

Challenge

find a useful classification of at least one of the above classes

The classification problem 0000 0000000 00000 Summary 00

See you tomorrow at the reception!