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Abstract. We study the linear-time model checking problem for boolean
concurrent programs with recursive procedure calls. While sequential re-
cursive programs are usually modeled as pushdown automata, concurrent
recursive programs involve several processes and can be naturally ab-
stracted as pushdown automata with multiple stacks. Their behavior can
be understood as words with multiple nesting relations, each relation con-
necting a procedure call with its corresponding return. To reason about
multiply nested words, we consider the class of all local temporal log-
ics as defined in the book by Gabbay, Hodkinson, and Reynolds (1994).
The unifying feature of these local temporal logics is that their modali-
ties are defined in monadic second-order (MSO) logic. In particular, this
captures numerous local temporal logics over concurrent and/or recursive
programs that have been defined so far. Since the general model checking
problem is undecidable, we restrict attention to phase bounded execu-
tions as proposed by La Torre, Madhusudan, and Parlato (LICS 2007).
While the MSO model checking problem in this case is non-elementary,
our main result states that the model checking (and satisfiability) prob-
lem for all MSO-definable local temporal logics is decidable in elementary
time. More precisely, it is solvable in time exponential in the formula and
(n+ 2)-fold exponential in the number of phases where n is the maximal
level of the MSO modalities in the monadic quantifier alternation hierar-
chy. We complement this result and provide, for each level n, a temporal
logic whose model checking problem is n-EXPSPACE-hard.

1 Introduction

The verification of finite-state (boolean) sequential programs is by now well
understood. In its most classical form, the program is abstracted as a finite
automaton A, and a property ϕ is specified in a temporal logic such as LTL [31].
In the linear-time framework, model checking amounts to the question whether
all executions of A satisfy ϕ.

Nowadays, most programs are distributed in nature and involve recursive
procedure calls. In order to model such programs more accurately, finite-state
models have been extended with several pushdown stacks. When reasoning about
the behavior of such multi-stack systems, it is natural and convenient to consider
an execution as a word with multiple nesting relations. The word itself reflects the



order of atomic actions as observed during an execution. In addition, each nesting
relation associates with a push operation (which corresponds to a procedure call)
its corresponding return position. Over multiply nested words, one may then
formalize properties such as “process p is not allowed to call a procedure while
being in the scope of an active procedure call of process q”, which do not have
a natural interpretation over simple words without nesting relations.

However, it is folklore that even simple verification tasks such as reachability
are undecidable for systems involving two or more stacks. Therefore, any model
checking task can only cover an approximation of the system behavior. There
have been several and, partially, orthogonal approaches to defining meaningful
abstractions. The simplest one restricts to executions with a bounded number of
contexts, each involving only actions of one particular stack [32]. This underap-
proximation does not consider any interaction of processes within a procedure
call, which motivated La Torre et al. to define the more liberal notion of phases
[21]. A phase does not constrain push operations, whereas pop actions are re-
quired to belong to some dedicated process. Orthogonal approaches are due to
[24, 26], where the number of scopes is bounded (a call and its return are sepa-
rated by a bounded number of contexts), and [11, 5], which assumes an ordering
of the stacks and postulates that a pop operation is subject to the first non-
empty stack. Furthermore, there is the notion of split-width which is similar to
tree-width but better fits the setting of multiply nested words [12].

Model checking multi-stack systems has recently received a lot of attention
[21, 4, 8, 12, 25, 6, 7]. In [21], it was shown that model checking is decidable for
monadic second-order (MSO) properties under the restriction of bounded phases.
However, the problem is non-elementary (since it is already non-elementary with-
out stacks). So, the focus has since moved to temporal logics. Previous works on
temporal logic for multi-stack systems differ in the choice of the behavioral re-
striction described above, but also in the concrete temporal logic adopted for the
model checking task. While [4, 6] consider properties over strings such as clas-
sical LTL rather than multiply nested words, [25] introduces a temporal logic
that allows one to identify call and return positions of a given process and to
distinguish between linear successors (referring to the word structure) and ab-
stract successors (involving the nesting edges). As a matter of fact, there is so
far no agreement on a canonical temporal logic for nested words, not even for
those with one single nesting relation [1, 2]. Therefore, we consider the class of
all temporal logics as defined in the book by Gabbay, Hodkinson, and Reynolds
[16], which subsumes virtually all existing formalisms. The unifying feature of
these temporal logics is that their modalities are defined in MSO logic. Not
only does this capture temporal logics over (multiply) nested words, but it also
includes numerous temporal logics that have been designed for concurrent non-
recursive programs and that are typically interpreted over partial orders such
as Mazurkiewicz traces (cf. [17] and the references therein) or message sequence
charts [29]. Note that we concentrate on local temporal logics only since global
temporal logics do not admit model checking algorithms with a reasonable com-
plexity [34].
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In [8], it is shown that satisfiability and model checking for any MSO-
definable local temporal logic are decidable in EXPTIME when restricting to
phase bounded executions. The phase bound τ has to be fixed, though. It was
left open if the problems are still elementary if τ is part of the input. This
is an important issue, as an elementary procedure would allow for a gradual
adjustment of τ at the cost of only an elementary blow-up.

Contribution. In this paper, we show that the model checking problem for multi-
stack systems wrt. phase bounded executions is indeed decidable in elementary
time. More precisely, it is solvable in time exponential in the size of the tem-
poral formula and (n + 2)-fold exponential in the number of phases where n is
the maximal level of the MSO modalities in the monadic quantifier alternation
hierarchy. If the number of phases is fixed, the problem is therefore solvable in
exponential time, i.e., the result from [8] follows.

Our result is in stark contrast to the non-elementary lower bounds of the
branching-time model checking problem [18, 7] and of model checking against
MSO logic. It is optimal for the first level n = 0, which contains the 2-EXPTIME-
complete emptiness problem of multi-stack automata [21, 23]. For all other levels,
we provide a temporal logic whose model checking problem is n-EXPSPACE-
hard.

Two key ideas are pursued in the proof of the upper bound. First, we trans-
late, in polynomial time, a temporal logic formula into an MSO formula in a
certain normal form. The construction is based on Hanf’s locality theorem and
independent of the number of phases. Second, we show that an MSO formula
in normal form can be transformed into a tree automaton in (n+ 1)-fold expo-
nential space. The tree automaton works on tree encodings of multiply nested
words and can then be checked for emptiness. One of its key ingredients is a
tree automaton recovering the direct successor relation of the encoded multiply
nested words. We show that such an automaton can be computed in polynomial
space, avoiding the generic doubly exponential construction given in [21]. The
use of this tree automaton for the direct successor relation is the main difference
from [8]. There, the nested word is interpreted in its tree encoding and then
the resulting formula is translated into a tree automaton. This results in a non-
elementary blowup since the quantifier alternation rank of the interpretation
increases linearly with the number of phases.

To prove the lower bound, we also proceed in two steps. It is first shown for
a restricted version of the satisfiability problem of temporal logics over labeled
grids, and then reduced to the satisfiability problem for temporal logics over
nested words.

Outline. Section 2 introduces crucial notions such as multiply nested words
and MSO-definable temporal logics, Section 3 presents the upper bound of the
satisfiability problem, Section 4 develops our lower bound, and Section 5 transfers
these results to the model checking problem. We conclude in Section 6, giving
directions for future work.

An extended abstract of this paper appeared as [10].
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2 Preliminaries

Given m,n ∈ N with m ≤ n, we denote by [m,n] the set {m,m + 1, . . . , n}. If
m ∈ N, then we let [m] = [1,m] and [m]0 = [0,m]. Furthermore, the function
tower : N2 → N is inductively defined by tower(0,m) = m and tower(`+ 1,m) =
2tower(`,m), for all `,m ∈ N. We let poly(n) denote the set of polynomial functions
in one argument. Finally, if A and B are sets, f : A → B is a mapping, and
b ∈ B, then we write f−1(b) for the set {a ∈ A | f(a) = b}. Similarly, we define
f−1(B′) = {a ∈ A | f(a) ∈ B′} for all B′ ⊆ B.

2.1 Multiply Nested Words

Let Γ be an alphabet, i.e., a non-empty finite set. We define a word over Γ to be
a finite Γ -labeled linear order w = (P,≤, λ), i.e., (P,≤) is a finite, non-empty,
linearly ordered set and λ : P → Γ is a mapping. By l, we denote the immediate
successor relation with respect to ≤, i.e., l = < \<2. Furthermore, the minimal
and maximal elements of P with respect to ≤ are denoted by min(P,≤) and
max(P,≤), resp. Most of the time one can think of P as an initial segment of N
and of ≤ as the restriction of the natural ordering of N to the set P .

A nesting relation y over (P,≤) is a binary relation such that, for all i, j, i′, j′ ∈
P , the following conditions hold:

(i) if iy j, then i < j
(ii) if iy j, i′ y j′, and i ≤ i′, then i < i′ < j′ < j or i < j < i′ < j′ or (i = i′

and j = j′).

If iy j, then we say that i is a call with matching return j.
The idea is that the linear order (P,≤) describes the execution of some

recursive program. Then i y j shall mean that, at time i, the execution calls
some procedure and, at time j, the control is returned to the calling program.
Having this in mind, condition (i) expresses that every return occurs after its
matching call. Condition (ii) ensures that no position is both, a call and a return,
every call has exactly one matching return and vice versa, and calls and matching
returns are well nested.

In the following, we will consider words with not only one, but with a fixed
number of nesting relations σ ≥ 1.

A nested word over Γ is a tuple ν = (w,y1,y2, . . . ,yσ) where w = (P,≤, λ)
is a word over Γ and, for all s ∈ [σ], ys is a nesting relation over (P,≤) such
that we have, for all 1 ≤ s < s′ ≤ σ and i, j, i′, j′ ∈ P :

iys j and i′ ys′ j
′ imply i 6= i′ and j 6= j′ . (1)

We identify isomorphic nested words.
The condition (1) restricts the interplay of the different nesting relations. It

ensures that no position of the word can be call (return, resp.) of two distinct
nesting relations. Note that i1 ys i2 ys′ i3 is possible for s 6= s′, i.e., a position
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Fig. 1. The nested word ν = (w,y1,y2) from Example 2.1. Note that the relation
y1 (y2, resp.) is represented by the edges above (below) the word w.

can be both, a return and a call, but only with respect to distinct nesting relations
(the case s = s′ is excluded by condition (ii) of the definition of a nesting
relation).

Example 2.1. Figure 1 is an illustration of the nested word ν = (w,y1,y2)
where w = ([12],≤, λ), ≤ is the natural ordering on [12], λ(i) = ai for all
i ∈ [12], y1 = {(1, 2), (4, 9), (5, 8)}, and y2 = {(2, 6), (7, 12), (8, 10)}.

In order to make the model checking problem decidable, we adopt the notion of
a phase. The latter is an interval in a nested word in which all returns refer to
the same nesting relation. More formally, if ν = (P,≤, λ,y1, . . . ,yσ) is a nested
word, then a phase of ν is a subset I ⊆ P for which the following conditions
hold:

– there exist i, j ∈ P such that I = {k ∈ P | i ≤ k ≤ j}
– for all i, i′ ∈ P , j, j′ ∈ I, and s, s′ ∈ [σ] with i ys j and i′ ys′ j

′, we have
s = s′.

Let τ ∈ N. We call ν a τ -phase nested word if there exist phases I1, I2, . . . , Iτ of
ν with P = I1∪ . . .∪Iτ . The set of τ -phase nested words is denoted by NWτ (Γ ).

Example 2.2. Consider the nested word ν from Example 2.1. It can be divided
into the four phases {1, 2, 3, 4, 5}, {6, 7}, {8, 9}, and {10, 11, 12}. Hence, ν is
a 4-phase nested word. Note that the phases {1, 2}, {3, 4, 5, 6}, {7, 8, 9}, and
{10, 11, 12} also witness this property. However, ν is no 3-phase nested word
since no two of the positions 2, 6, 8, and 10 can belong to the same phase.

Among the possible divisions of the τ -phase nested word ν into different phases,
the greedy division will serve as a canonical example: We define the mapping
phν : P → [τ ] where phν(i) is the minimal number s ≥ 1 such that the restriction
of ν to the positions {1, . . . , i} is an s-phase nested word. Then, for all s ∈ [τ ],
Is = ph−1ν (s) is a phase of ν, and we have P = I1 ∪ . . . ∪ Iτ . Note that Iτ = ∅ if
and only if ν is a (τ − 1)-phase nested word.

2.2 Monadic Second-Order Logic

We fix the set {x, y, z, . . .} of individual variables and the set {X,Y, Z, . . .} of
set variables. Furthermore, let Γ be an alphabet. The class MSO(Γ ) of MSO
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formulas over Γ is given by the following grammar, where a ∈ Γ , s ∈ [σ], x, y
are first-order variables, and X is a set variable:

ϕ ::= (λ(x) = a) | xl y | xys y | calls(x) | rets(x) | min(x) | max(x)

| x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

The set FO(Γ ) ⊆ MSO(Γ ) contains all formulas without second order quantifi-
cation ∃X. We use common abbreviations such as ϕ1∧ϕ2 for ¬(¬ϕ1∨¬ϕ2) and
∀xϕ for ¬∃x¬ϕ.

The semantics of MSO(Γ )-formulas are as follows: Let ν = (P,≤, λ,y1

, . . . ,yσ) be a nested word and δ be an assignment that maps individual vari-
ables to positions from P and set variables to sets of positions from P . Then we
define

ν, δ |= (λ(x) = a) ⇐⇒ λ(δ(x)) = a

ν, δ |= xl y ⇐⇒ δ(x) l δ(y)

ν, δ |= xys y ⇐⇒ δ(x) ys δ(y)

ν, δ |= calls(x) ⇐⇒ there exists i ∈ P such that δ(x) ys i

ν, δ |= rets(x) ⇐⇒ there exists i ∈ P such that iys δ(x)

ν, δ |= min(x) ⇐⇒ δ(x) = min(P,≤)

ν, δ |= max(x) ⇐⇒ δ(x) = max(P,≤)

ν, δ |= (x = y) ⇐⇒ δ(x) = δ(y)

ν, δ |= x ∈ X ⇐⇒ δ(x) ∈ δ(X)

ν, δ |= ¬ϕ ⇐⇒ ν, δ 6|= ϕ

ν, δ |= ϕ1 ∨ ϕ2 ⇐⇒ ν, δ |= ϕ1 or ν, δ |= ϕ2

ν, δ |= ∃xϕ ⇐⇒ there exists i ∈ P such that ν, δ[x 7→ i] |= ϕ

ν, δ |= ∃X ϕ ⇐⇒ there exists I ⊆ P such that ν, δ[X 7→ P ] |= ϕ

where the assignment δ[x 7→ i] equals δ besides that x is mapped to i (similarly
for δ[X 7→ I]). We often write ϕ(x1, . . . , xk, X1, . . . , X`) to stress the fact that
ϕ is a formula with free variables from {x1, . . . , xk, X1, . . . , X`}. Furthermore,
let i1, . . . , ik ∈ P and I1, . . . , I` ⊆ P . Then we write ν, i1, . . . , ik, I1, . . . , I` |= ϕ
if and only if ν, δ |= ϕ where δ(xm) = im and δ(Xn) = In for all m ∈ [k] and
n ∈ [`].

Example 2.3. For every s ∈ [σ], we define the following FO-formula bijs(X)
which expresses that X can be partitioned into two sets Xc and Xr such that
ys ∩X2 is a bijection from Xc to Xr:

bijs(X) = ∀x ∈ X∃y ∈ X (xys y ∨ y ys x)

Let ν = (P,≤, λ, ν1, . . . , νσ) be a nested word and I ⊆ P . First suppose ν, I |=
bijs. Then, for every position from I, there is a matching call resp. return position
in I. In particular, all positions from I are either call or return positions with
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respect to ys. Let Ic, Ir ⊆ I denote set of all call and return positions from I,
resp. Then ys ∩ I2 is a bijection from Ic onto Ir.

Conversely, let Ic, Ir ⊆ P be sets of call and return positions, resp., with
respect to the nesting relation ys and let I = Ic ∪ Ir. If ys ∩ I2 is a bijection
from Ic onto Ir, then ν, I |= bijs.

2.3 MSO-definable Temporal Logics

An MSO(Γ )-formula is an m-ary modality definition if it has one free individual
variable x and m free set variables X1, . . . , Xm. An MSO(Γ )-definable temporal
logic is a tuple TL = (B, ar, J−K) where B is a finite set of modalities, the
mapping ar : B → N specifies the arity of every modality from B, and J−K : B →
MSO(Γ ) is a mapping such that JMK is an m-ary modality definition whenever
ar(M) = m for M ∈ B. The set of all formulas from TL is the least set such that
the following holds: if M ∈ B and F1, F2, . . . , Far(M) are formulas from TL, then
M(F1, . . . , Far(M)) is a formula from TL. The size |F | of a temporal formula F
is its number of subformulas.

Let ν = (P,≤, λ,y1, . . . ,yσ) be a nested word and F ∈ TL be a formula.
The semantics F ν,TL of F in ν is the set of positions from P where F holds.
The inductive definition is as follows: If F = M(F1, . . . , Fm) where M ∈ B is

of arity m ≥ 0, then F ν,TL = {i ∈ P | ν, i, F ν,TL
1 , . . . , F ν,TL

m |= JMK}. We write
ν, i |=TL F for i ∈ F ν,TL and ν |=TL F for ν,min(P,≤) |=TL F .

Note that a temporal formula F can be part of different temporal logics
and, therefore, can have several semantics. However, if we only deal with one
temporal logic TL, then we often write F ν instead of F ν,TL and ν |= F instead
of ν |=TL F .

Example 2.4. The Boolean connectives negation and conjunction can be ex-
pressed by J¬K(X1, x) = ¬(x ∈ X1) and J∨K(X1, X2, x) = (x ∈ X1) ∨ (x ∈ X2).
The modality TRUE with JTRUEK(x) = (x = x) is always evaluated to true.

Let us also consider the modality RET. Intuitively, RETF expresses that the
current position is a call position and that its matching return position fulfills
the formula F . Formally, we set

JRETK(X1, x) = ∃y [y ∈ X1 ∧
∨
s∈[σ] xys y] .

Example 2.5. A wide range of temporal logics has been defined for nested words
and concurrent systems. Their until operator usually depends on what is con-
sidered a path between two word positions and, more specifically, on a notion
of successor. In the classical setting of words without nesting relations, one nat-
urally considers the direct successor following the linear order. The situation is
less clear in the presence of one or more nesting relations. In [1], Alur et al.
identify three different kinds of successors in singly nested words, namely the
linear, call, and abstract successor. Each of them comes with a separate until
operator.

Towards nested words with multiple nesting relations, Atig et al. consider
only the linear successor [4, 6], while La Torre and Napoli also define modalities
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that correspond to linear, call, and abstract successors [25]. As an example, we
consider the abstract until Ua

s. Intuitively, F1 U
a
s F2 expresses that there exists an

event x fulfilling F2 which can be reached from the current event by an abstract
s-path such that every event on this path (but not necessarily x) fulfills F1. An
abstract s-path in a nested word is a path that does not choose a linear direct
successor from a call position or to a return position (wrt. ys). Formally, the
abstract until is given by

JUa
sK(X1, X2, x) = ∃Y ∃z[

z ∈ X2 ∧ Y ⊆ X1

∧ ∀y (y ∈ Y ∨ y = z)→
(
y = x ∨ ∃y′ (y′ ∈ Y ∧ ϕs(y′, y))

)]
where

ϕs(y
′, y) = y′ ys y ∨ (¬calls(y

′) ∧ ¬rets(y) ∧ y′ l y) .

Indeed, all the modalities considered in [1, 4, 6, 25] are MSO-definable. However,
they appear to be just a few of many other possibilities. For example, one may
define an abstract path including two or more nesting relations, or include past-
time counterparts of until modalities, which are not present in [25]. Such exten-
sions can be realized in our framework by giving their definition in MSO(Γ ). An
elementary upper bound of the satisfiability and model checking problem fol-
lows immediately from our result, without changing anything in the decidability
proof.

Note that the emptiness problem of a 2-stack automaton is undecidable (since a
Turing machine can be simulated using two stacks). It follows that the satisfia-
bility problem of MSO(Γ ) and the model checking problem of every non-trivial
temporal logic is undecidable as well. La Torre et al. [21] proposed the restric-
tion of these problems to τ -phase words and showed that, under this restriction,
the emptiness problem as well as the satisfiability problem of MSO(Γ ) are de-
cidable. Here, we define the satisfiability problem for temporal logics, restricted
to a given number of phases τ : Let TL be some MSO(Γ )-definable temporal
logic. The satisfiability problem of TL is the set of pairs (F, τ) where F ∈ TL
is a formula and τ ∈ N such that there exists some τ -phase nested word ν with
ν |= F .

We now introduce a measure of the complexity of formulas: the monadic quan-
tifier alternation hierarchy. An MSO(Γ )-formula belongs to MΣn(Γ ) if it is of
the form ∃X1 ∀X2 ∃X3 . . . ∃/∀Xn ψ where Xi are tuples of individual and set
variables and ψ is a first-order formula. In contrast, it belongs to MΠn(Γ ) if it
is of the form ∀X1 ∃X2 ∀X3 . . . ∀/∃Xn ψ. Furthermore, BoolMΣn(Γ ) is the set
of Boolean combinations of formulas from MΣn(Γ ).

Let L be some fragment of MSO(Γ ) such as FO(Γ ) or MΣn(Γ ) etc. An
MSO(Γ )-definable temporal logic TL = (B, ar, J−K) is L-definable if JMK ∈ L
for all modalities M ∈ B.

Example 2.6. We have JTRUEK, J∨K, J¬K, JRETK ∈MΣ0(Γ ) and JUa
sK ∈MΣ1(Γ )

where TRUE, ∨, ¬, RET, and Ua
s are the modalities from Examples 2.4 and 2.5,

resp.
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Remark 2.7. Let TL = (B, ar, J−K) be some BoolMΣn(Γ )-definable temporal
logic. Then there is a finite set H of MΣn(Γ )-modalities such that, for every
M ∈ B, JMK is a Boolean combination of formulas from H. Let TLH be the
temporal logic using the modalities from H together with ¬ and ∨. Then we
can express every modality from TL using the modalities from TLH . This allows
us to reformulate an arbitrary formula from TL equivalently in TLH . In this
process, the number of subformulas and therefore the size of the formula increases
linearly. Hence, we polynomially reduced the uniform satisfiability problem of
the BoolMΣn(Γ )-definable temporal logic TL to that of the MΣn(Γ )-definable
temporal logic TLH .

As a consequence, it will suffice to prove the upper complexity bound for
MΣn(Γ )-definable temporal logics. Dually, the lower bound will be proved for
MΠn(Γ )-definable temporal logics only. From the same reduction, we obtain
that it holds for MΣn(Γ )-definable logics as well.

3 Upper Bound

The purpose of this section is to show that the satisfiability problem of every
BoolMΣn(Γ )-definable temporal logic belongs to (n+ 2)-EXPTIME. In the re-
mainder of the section, we assume that P is an initial segment of {1, 2, . . .} and
that ≤ is the natural ordering over P for every word w = (P,≤, λ). Furthermore,
we fix the alphabet Γ and we write MSO instead of MSO(Γ ), MΣn for MΣn(Γ )
etc.

3.1 From Temporal Logics to MSO

The first step in our solution of the satisfiability problem is a translation of
the temporal formula into an MSO-formula of a particular form (see Prop. 3.5).
For this, we start with a second measure for the complexity of formulas from
MSO, the full quantifier alternation hierarchy (cf. the definition of the monadic
quantifier alternation hierarchy on page 8): An MSO-formula belongs to ΣM

n if
it is of the form ∃X1 ∀X2 ∃X3 . . . ∃/∀Xn ψ where Xi are tuples of individual
and set variables and ψ is quantifier-free. In contrast, it belongs to ΠM

n if it is
of the form ∀X1 ∃X2 ∀X3 . . . ∀/∃Xn ψ.

Example 3.1. We have JTRUEK, J∨K, J¬K ∈ ΣM
0 , JRETK ∈ ΣM

1 , and JUa
sK ∈ ΣM

3

where TRUE, ∨, ¬, RET, and Ua
s are the modalities from Examples 2.4 and 2.5,

respectively.

It is easily seen that ΣM
m ⊆MΣm and MΣm 6⊆ ΣM

n for any m,n ∈ N. However, as
the following theorem states, every MΣn-definable temporal logic is also ΣM

n+1-
definable without changing the semantics of temporal formulas. This result is
achieved by applying Hanf’s locality principle. The actual proof of Theorem 3.2
can be found on page 12.
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Theorem 3.2. Let ϕ(x,X1, . . . , Xm) be an MΣn-modality definition. There ex-
ists a modality definition ψ ∈ ΣM

n+1 such that, for any nested word ν, any tuple

X = (X1, . . . , Xm) of sets of positions, and any position x, we have

ν, x,X |= ϕ ⇐⇒ ν, x,X |= ψ .

Since our logic does not speak about the linear order ≤ directly, it handles
nested words as structures of bounded degree. This allows us, using Hanf’s theo-
rem [19, 15, 14], to translate the first-order part of ϕ into a Boolean combination
of existential first-order formulas. For this, we need to introduce the following
definitions.

A nw-like structure is a tuple S = (V,l, λ, (ys, calls, rets)s∈[σ],min,max)
where V is a finite set, λ : V → Γ is a function, calls, rets, min, max ⊆ V are
unary, and l,ys ⊆ V 2 are binary relations for all s ∈ [σ].

Let ν = (P,≤, λ,y1, . . . ,yσ) be a nested word. For s ∈ [σ], let calls ⊆ P
denote the set of positions i ∈ P for which there exists a position j ∈ P with
i ys j. The unary relation rets is defined analogously. Furthermore, min ⊆
P is the singleton relation containing the minimal element of P only. Again,
max ⊆ P is defined similarly. Then ν can be understood as the nw-like structure
(P,l, λ, (ys, calls, rets)s∈[σ],min,max). In the following, we will identify the
nested word ν with this nw-like structure.

Let S = (V,l, λ, (ys, calls, rets)s∈[σ],min,max) be a nw-like structure. For
i, j ∈ P , the distance dist(i, j) between i and j is the length of the shortest
path from i to j in the undirected graph (V,l∪l−1 ∪y∪y−1). In particular,
dist(i, i) = 0 and dist(i, j) = 1 if il j, j l i, iys j, or j ys i for some s ∈ [σ].
Next, let Z = (Z0, . . . , Zm) be a tuple of subsets of V . For r ∈ N, the r-sphere of
(S, Z) around v ∈ V , denoted S(S,Z),r(v), is the substructure of (S, Z, v) induced

by {i ∈ V | dist(v, i) ≤ r}.
It is a folklore result that, for every sphere (S, Z, v) and r ∈ N, there exists a
first-order formula such that any nested word ν, sets of positions X0, . . . , Xm,
and postion j fulfill this formula if and only if the r-sphere of (ν,X) around
j is isomorphic to (S, Z, v). The obvious proof of this general fact results in a
formula whose quantifier-prefix is of the form ∃∗∀. The following lemma shows
that in our case, we can avoid the universal quantifier.

Lemma 3.3. Let S = (V,l, λ, (ys, calls, rets)s∈[σ],min,max) be some nw-like
structure, Zi ⊆ V for i ∈ [m]0, r ∈ N, and v ∈ V . Then there exists an existential
first-order formula (i.e., a formula from ΣM

1 ∩FO) sph(S,Z),r(x0, X0, X1, . . . , Xm)

such that, for all nested words ν = (P,≤, λ,y1, . . . ,yσ), all Xi ⊆ P , and all
j ∈ P , we have

ν,X0, . . . , Xm, j |= sph(S,Z),r ⇐⇒ S(ν,X),r(j)
∼= (S, Z, v) . (2)

Proof. If there is no nested word ν with S(ν,X),r(j)
∼= (S, Z, v) for any sets of

positionsXi and any position j, then set sph(S,Z),r(x0, X0, . . . , Xm) = (x0 6= x0).
From now on, assume that for some nested word ν, some sets of posi-

tions Xi, and some position j, we have S(ν,X),r(j)
∼= (S, Z, v). Suppose V =
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{v0, v1, . . . , vn} with v = v0. Then let ϕ denote the conjunction of the following
formulas (for a ∈ Γ , k, ` ∈ [n]0, i ∈ [m]0, and s ∈ [σ]):

– ¬(xk = x`) for k 6= `
– xk ∈ Xi if vk ∈ Zi, and xk /∈ Xi otherwise
– λ(xk) = a if λ(vk) = a, and ¬(λ(xk) = a) otherwise
– xk l x` if vk l v`, and ¬(xk l x`) otherwise
– xk ys x` if vk ys v`, and ¬(xk ys x`) otherwise
– calls(xk) if vk ∈ calls, and ¬calls(xk) otherwise
– rets(xk) if vk ∈ rets, and ¬rets(xk) otherwise
– min(xk) if vk ∈ min, and ¬min(xk) otherwise
– max(xk) if vk ∈ max, and ¬max(xk) otherwise

Then set
sph(S,Z),r = ∃x1 ∃x2 . . . ∃xn ϕ .

Let ν′ be a nested word, Yi sets of positions, and let x0, . . . , xn be positions in ν′.
Then ν′, Y , x0, . . . , xn |= ϕ if and only if the mapping vk 7→ xk is an embedding
of (S, Z, v) into S(ν′,Y ),r(x0). It remains to be shown that this embedding is

surjective. Towards a contradiction, assume it is not. Then there exist k ∈ [n]0
and a position x in ν′ such that dist(x0, xk) < r, dist(xk, x) = 1, and x /∈
{x0, . . . , xn}. Assume xk l x. In this case, xk /∈ max and therefore vk /∈ max.
Since (S, Z, v) ∼= S(ν,X),r(x0), there is some ` ∈ [n]0 with vkl v`. Hence xklx`.
Since ν′ is a nested word, xk l x and xk l x` imply x = x` contradicting
x /∈ {x0, . . . , xn}. The other cases, namely x l xk, xk ys x and x ys xk for
some s ∈ [σ] can be handled similarly (using, instead of the relation max, the
unary relations min, calls, and rets, respectively). ut

Towards the proof of Theorem 3.2, we state the following lemma.

Lemma 3.4. Let ϕ be some MΣ0-modality definition. Then there exists a Boolean
combination ψ of existential first-order formulas such that

ν, x,X |= ϕ ⇐⇒ ν, x,X |= ψ

for any nested word ν, any tuple X of sets of positions, and any position x.

As an aside, we remark that one such Boolean combination ψ can be computed
in triply exponential time [9].

Proof. Note that every position in a nested word is related to at most 4 positions
via the relations l and ys. By Hanf’s theorem [19, 15, 14], ϕ is therefore (on
nested words) equivalent to a Boolean combination of statements of the form:

“There are at least n positions whose r-sphere is isomorphic to (S, Z, x).”

where n ∈ N, S is a nw-like structure, Zi are sets of elements of S, and x is
an element of S. By Lemma 3.3 this is expressible as a Boolean combination of
existential first-order formulas. ut
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We are now able to prove Theorem 3.2.

Proof (of Theorem 3.2). Since ϕ ∈MΣn, it is of the form

∃Y 1 ∀Y 2 . . . ∃/∀Y n ϕ0(x,X, Y )

with ϕ0 ∈ FO = MΣ0. Then, by Lemma 3.4, there exists a Boolean combination
of ΣM

1 ∩FO formulas ψ0 that is equivalent to ϕ0 for all nested words. The formula
∃Y 1 ∀Y 2 . . . ∃/∀Y n ψ0(x,X, Y ) belongs to ΣM

n+1 and is obviously equivalent to
ϕ for all nested words. ut

We are now able to transform any temporal formula of an arbitrary but fixed
MSO-definable temporal logic into an equivalent MSO-sentence in polynomial
time.

Proposition 3.5 (cf. [30]). Let TL = (B, ar, J−K) be some fixed MΣn-definable
temporal logic. From a temporal formula F of TL, one can compute in time
poly(|F |) an MSO-sentence

ψ = ∃X
[∧

i∈[|F |]
(
ψ1,i(X) ∧ ∀y ψ2,i(y,X)

)]
(where X is a tuple of set variables) such that, for all i ∈ [|F |], ψ1,i ∈ ΠM

n+1,
ψ2,i ∈ ΣM

n+1, and, for any nested word ν, we have ν |= F if and only if ν |= ψ.
Furthermore, the sizes of the ψ1,i’s and ψ2,i’s are independent from |F |.

Note that the above proposition differs the corresponding statemen [10, Propo-
sition 1] in the conference version of this paper. There, we constructed formulas
ψ1 and ψ2 sizes are linear in |F |. In contrast, the sizes of the above formu-
las ψ1,i and ψ2,i are independent from |F |. In Theorem 3.13, this allows us to
construct a tree automaton for F in space |F | · towern+1(poly(τ)) instead of
towern+1(poly(|F | + τ)) [10, Theorem 3], i.e., the influence of the size of F on
the space complexity is vastly reduced by a tower of n+ 1 exponents.

Proof. By Theorem 3.2, we can assume JMK ∈ ΣM
n+1 for all M ∈ B. Let

{F1, . . . , Fm} be the set of subformulas of the temporal formula F with F = F1.
Then let X = (X1, . . . , Xm) and define MSO-formulas ξi(y,X) as follows:

ξi(y,X) = JMK(y,Xi1 , . . . , Xik) if Fi = M(Fi1 , . . . , Fik)

The idea is that Xi is the set of positions in a nested word ν where Fi holds.
Having this idea in mind, the following is obvious: Let ν be a nested word. Then
ν |= F if and only if ν satisfies the MSO-formula

∃X
[
1 ∈ X1 ∧

∧
i∈[m] ∀y

(
y ∈ Xi ↔ ξi(y,X)

)]
where 1 ∈ X1 is a shortcut for ∀x (min(x)→ x ∈ X1). Note that this formula is
logically equivalent to

∃X
[∧

i∈[m]

(
1 ∈ X1 ∧ ∀y

(
y ∈ Xi ∨ ¬ξi(y, Y )

)
∧ ∀y

(
y /∈ Xi ∨ ξi(y, Y )

))]
.
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Now, for all i ∈ [m], we set:

ψ1,i(X) = 1 ∈ X1 ∧ ∀y
(
y ∈ Xi ∨ ¬ξi(y, Y )

)
ψ2,i(y,X) = y /∈ Xi ∨ ξi(y, Y )

Since ξi ∈ ΣM
n+1 for all i ∈ [m], this finishes the proof. ut

It follows from Prop. 3.5 that, in order to solve the satisfiability problem of an
MSO-definable temporal logic, it suffices to decide the satisfiability problem of
an MSO-sentence of a certain form.

3.2 The Encoding of Nested Words as Trees

We aim at reducing the satisfiability problem of some MSO-sentence expressing
properties of nested words to the emptiness problem of tree automata. For this,
we introduce the following definitions.

Let Λ be an alphabet. A Λ-tree is a structure T = (V,E0, E1, `) where V 6= ∅
is the finite set of nodes, E0, E1 ⊆ V × V are sets of edges (E0 is the left-
successor relation, and E1 the right-successor relation), and ` : V → Λ is the
labeling function. Furthermore, there is a node u ∈ V (the root) such that, for
every node v, there is a unique path in (V,E0∪E1) from the root u to v. Finally,
every node has at most one successor wrt. E0, and at most one successor wrt. E1.
The set of all Λ-trees is denoted by TΛ.

A (nondeterministic bottom-up) tree automaton over the alphabet Λ is a triple
B = (Q,∆,F ) where Q is the non-empty and finite set of states, ∆ ⊆ Q × Λ ×
(Q ∪ {⊥})2 is the transition relation (where ⊥ /∈ Q), and F ⊆ Q is the set of
final states. Let T = (V,E0, E1, `) be a Λ-tree. The mapping ρ : V → Q is a run
of B on T if, for all v ∈ V , there exists a transition (ρ(v), `(v), q0, q1) ∈ ∆ such
that for all i ∈ {0, 1} the following holds: if there exists v′ ∈ V with (v, v′) ∈ Ei,
then qi = ρ(v′) and qi = ⊥ otherwise. The run ρ is accepting if ρ(u) ∈ F where u
is the root of T . By L(B), we denote the set of all Λ-trees for which there exists
an accepting run of B.

In order to translate not only MSO-sentences but also arbitrary MSO-formulas
into tree automata, we need to extend node labels by additional bits in the usual
way: If T = (V,E0, E1, `) is a Λ-tree, X1, . . . , Xm are sets of nodes of T , and
x1, . . . , xn are nodes of T , then (T,X1, . . . , Xm, x1, . . . , xn) denotes the new tree
(V,E0, E1, `

′) over the alphabet Λ × {0, 1}m+n where, for all v ∈ V , we have
`′(v) = (`(v), b1, . . . , bm, c1, . . . , cn) with

– bi = 1 if and only if v ∈ Xi for i ∈ [m] and
– ci = 1 if and only if v = xi for i ∈ [n].

Note that a tree over Λ × {0, 1}m+n is of the above form if and only if, for all
1 ≤ i ≤ n, there is a unique node whose bit ci is set to 1. Hence the set of these
trees forms a regular tree language that can be accepted by a tree automaton
with 2n states.
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(a1, 1, 0, 1)

(a2, 2, 1, 1)

(a3, 0, 0, 1)

(a4, 1, 0, 1)

(a5, 1, 0, 1)

(a8, 2, 1, 3)

(a10, 0, 2, 4)

(a11, 0, 0, 4)

(a9, 0, 1, 3)

(a6, 0, 2, 2)

(a7, 2, 0, 2)

(a12, 0, 2, 4)

Fig. 2. The tree encoding of the nested word from Fig. 1.

Let ν be a nested word. Following [21], we will now describe its encoding as a tree
tree(ν) = (V,E0, E1, `). First, the nodes of the tree are the positions of ν. The
position j is the right-successor of the position i if i and j are matching call and
return positions. Moreover, the left-successor of i is its immediate successor in
ν provided that this is no return position. It remains to describe the labeling of
the nodes j of the tree. Any such label `(j) will be a tuple. The first component
of `(j) is the letter from Γ at position j. For calls, the second component is
the number s of the nesting relation, otherwise it is 0. Similarly, for returns,
the third component is the number s′ of the nesting relation, otherwise it is 0.
Finally, in the fourth component of `(j), we want to store the phase to which j
belongs in the greedy division of ν, i.e., the number phν(j). More formally:

If ν = (P,≤, λ,y1, . . . ,yσ) is a nested word, then tree(ν) denotes the tree
(P,E0, E1, `) where

(i, j) ∈ E1 ⇐⇒ iys j for some s ∈ [σ], and

(i, j) ∈ E0 ⇐⇒ il j and there do not exist k and s with k ys j .

and `(j) =
(
λ(j), s, s′,phν(j)

)
∈ Γ × [σ]0 × [σ]0 × N where

– s > 0 if and only if there exists k ∈ P with j ys k and
– s′ > 0 if and only if there exists i ∈ P with iys′ j.

If ν is a τ -phase nested word and j is a position in ν, then phν(j) ∈ [τ ]. Hence,
in this case, tree(ν) = (V,E0, E1, `) is a tree over the alphabet Γ × [σ]20 × [τ ].

Example 3.6. The encoding of the nested word from Example 2.1 is depicted in
Fig. 2.

Our decision procedure will work with these tree encodings and not with nested
words. It is therefore important to describe those trees that are actually encod-
ings of nested words. Such a description was obtained by La Torre, Madhusudan,
and Parlato [21].
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Theorem 3.7 ([21]). From τ ∈ N, one can construct in time tower2(poly(τ))
a tree automaton Bτ with L(Bτ ) = tree(NWτ (Γ )).

Note that the proof of the above theorem only considers tree encodings whose
labels belong to Γ × [τ ]. However, the extension to our encodings tree(ν) can be
handled in the same spirit.

3.3 Tree Automata for Possibly Negated Atomic Formulas

We plan to construct, from an MSO-formula ϕ(x1, . . . , xk, X1, . . . , X`), a small
tree automaton Bϕ that accepts the tree (tree(ν), x1, . . . , xk, X1, . . . , X`) if and
only if ν, x1, . . . , xk, X1, . . . , X` |= ϕ for any τ -phase nested word ν. The simplest
such formulas ϕ are the atomic formulas λ(x) = a, x l y, x ys y, min(x) etc.
and their negations that we handle in this section.

Proposition 3.8. Given a possibly negated atomic MSO-formula ϕ not of the
form x l y or max(x)and τ ∈ N, one can construct in space poly(τ) a tree
automaton Bϕ with the following property: Let ν = (P,≤, λ,y1, . . . ,yσ) be a
τ -phase nested word, i, j ∈ P , and I ⊆ P .3 Then (tree(ν), i, j, I) is accepted by
Bϕ if and only if ν, i, j, I |= ϕ.

Proof. Let ν = (P,≤, λ,y1, . . . ,yσ) be a nested word, i, j ∈ P and I ⊆ P . Then
ν, i, j, I |= min(x) if and only if i is the root of the tree tree(ν). From the label
of i in (tree(ν), i, j, I), one can immediately tell whether ν, i, j, I |= (λ(x) = a)
and similarly for the formulas calls(x), rets(x), x ∈ X, x = y, and for their
negations.

Note that i ys j is equivalent to (i, j) ∈ E1 and i ∈ calls. Hence the
above automata for calls(x) and for ¬calls(x) together with standard automata
techniques allow us to handle the formulas xys y and ¬(xys y).

Note that i is no immediate predecessor of j if and only if j ≤ i or there
exists a position k with i < k < j. Since [21] proves the claim for the formula
ϕ = (x ≤ y) (which is not part of our logic), standard automata techniques allow
us to handle ¬(xl j). Similar arguments apply to the formula ¬max(x). ut

The real difficulty comes with the remaining atomic formulas ϕ of the form xly
or max(x). We could, of course, simply complement the automaton B¬ϕ from
Proposition 3.8. But this requires exponential space.

In a first step, we will construct a tree automaton accepting (tree(ν), X, x) if
and only if X is the set of positions of ν preceding x in ν. To this aim, Lemma 3.9
gives a new characterization of the order relation ≤ of ν in the tree tree(ν).

Let T = (V,E0, E1, `) be a tree over the alphabet Γ × [σ]20 × [τ ]. For v ∈ V ,
we let phase(v) denote its phase, i.e., the number t ∈ [τ ] with `(v) = (a, s, s′, t).
Then the phase word pw(v) ∈ [τ ]+ is defined by induction:

pw(v) =


phase(v) if v is the root of T

pw(u) if (u, v) ∈ E0 ∪ E1 and phase(v) = phase(u)

pw(u) phase(v) if (u, v) ∈ E0 ∪ E1 and phase(v) 6= phase(u)

3 Note that ϕ has at most two free individual and one free set variable.
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Intuitively, the phase word of v recalls the sequence of the phases on the path
from the root to the node v where stuttering is deleted.

If ν is a τ -phase nested word, then any phase word from the tree tree(ν)
begins with 1 and its entries increase properly. On the set of these phase words,
we define a strict linear order: (s1, . . . , sm) @ (t1, . . . , tn) if and only if

– sm < tn or
– sm = tn and (s1, . . . , sm−1) A (t1, . . . , tn−1).

For instance, (1, 2, 4) @ (1, 5) and therefore (1, 2, 4, 6) A (1, 5, 6).

Lemma 3.9. Let ν = (P,≤, λ,y1, . . . ,yσ) be a τ -phase nested word, x, y ∈ P ,
and tree(ν) = (P,E0, E1, `) be the tree encoding of ν. Then x < y if and only if

(1) pw(x) @ pw(y) or
(2) pw(x) = pw(y) and x is a predecessor of y in tree(ν) or
(3) pw(x) = pw(y) and there exist positions z, x′, y′ ∈ P such that x′ 6= y′,

(z, x′), (z, y′) ∈ E0 ∪ E1, x′ is a predecessor of x and y′ one of y and

(z, x′) ∈ E0 if and only if
(
|pw(x)| − |pw(z)| even ⇐⇒ phν(x′) = phν(y′)

)
.

Proof. First of all, note that, for every x ∈ P , we have two numbers that denote
its phase: First, seen as a position in the nested word ν, we have phν(x). Secondly,
seen as a node in tree(ν), we have phase(x). By the very definition of tree(ν),
we get phν(x) = phase(x). If x, y ∈ P , then we write x <pre y if and only if x
precedes y in the preorder traversal of tree(ν).

The lemma is shown by induction on max(phν(x),phν(y)). First of all, let
phν(x),phν(y) ≤ 1, i.e., phν(x) = phν(y) = 1 and therefore pw(x) = pw(y).
Then, by [21, Lemma 2], x < y if and only if x <pre y. But this is equivalent
with

– x is a predecessor of y, i.e., (2), or
– there exist z, x′, y′ with (z, x′) ∈ E0, (z, y′) ∈ E1, x′ is a predecessor of x

and y′ is one of y. Note that pw(z) = 1 = pw(x) and phν(x′) = 1 = phν(y′),
i.e., (3).

This proves the lemma in case phν(x),phν(y) ≤ 1. Now, let phν(x),phν(y) ≤ t
for some t > 1. Then, by [21, Lemma 2], we have x < y if and only if

(a) phν(x) < phν(y) or
(b) phν(x) = phν(y) and there is z ∈ P with phν(z) = phν(x) that is a prede-

cessor of both, x and y, and x <pre y, or
(c) phν(x) = phν(y) and there are positions x1, x2, y1, y2 ∈ P with x2 6= y2,

(x1, x2), (y1, y2) ∈ E0 ∪ E1, x2 is a predecessor of x and y2 is one of y,
phν(x1) < phν(x2) = phν(x), phν(y1) < phν(y2) = phν(y), and x1 > y1.

By the definition of <pre and the induction hypothesis, we obtain that x < y if
and only if

(a) phν(x) < phν(y) or

16



(b) phν(x) = phν(y) and

(b.1) x is a predecessor of y or

(b.2) there are x′, y′, z ∈ P with phν(z) = phν(x), (z, x′) ∈ E0, (z, y′) ∈ E1,
x′ is a predecessor of x, and y′ is a predecessor of y or

(c) phν(x) = phν(y) and there are positions x1, x2, y1, y2 ∈ P with x2 6= y2,
(x1, x2), (y1, y2) ∈ E0 ∪ E1, x2 is a predecessor of x and y2 is one of y,
phν(x1) < phν(x2) = phν(x), phν(y1) < phν(y2) = phν(y) such that

(c.1) pw(x1) A pw(y1) or

(c.2) pw(x1) = pw(y1) and y1 is a predecessor of x1 or

(c.3) pw(x1) = pw(y1) and there are positions x′, y′, z ∈ P with x′ 6= y′,
(z, x′), (z, y′) ∈ E0 ∪ E1, x′ is a predecessor of x1, y′ is a predecessor
of y1, and

(z, y′) ∈ E0 iff
(
|pw(y1)| − |pw(z)| even ⇐⇒ phν(y′) = phν(x′)

)
.

Note that the disjunction of (a) and (c.1) is equivalent to pw(x) @ pw(y) since,
in (c.1), we have pw(x) = pw(x1) phν(x) and pw(y) = pw(y1) phν(y), i.e., it is
equivalent to (1). Furthermore, (b.1) holds if and only if pw(x) = pw(y) and x is
a predecessor of y, i.e., it is equivalent to (2). It therefore remains to be shown
that the disjunction of (b.2), (c.2), and (c.3) is equivalent to (3). We start with
the implication “⇒” that naturally splits into three cases:

– Suppose (b.2) holds. Clearly, pw(z) is a prefix of pw(x) and ends with the
same number. Since all phase words are increasing, this implies pw(z) =
pw(x). For analogous reasons, the phase words of y, x′, and y′ coincide with
pw(z). Hence, we have (z, x′) ∈ E0, |pw(x)| − |pw(z)| = 0, and phν(x′) =
phν(y′), i.e., we showed (3).

– Suppose (c.2) holds. From (c), we get pw(x) = pw(x1) phν(x) and pw(y) =
pw(y1) phν(y). From (c.2), we know pw(x1) = pw(y1) which, together with
phν(x) = phν(y) implies pw(x) = pw(y). Recall that tree(ν) was based
on the greedy subdivision of the nested word ν into phases. This implies
in particular that y1 ys y2 for some s ∈ [σ] and therefore (y1, y2) ∈ E1.
Similarly, (x1, x2) ∈ E1 which, together with x2 6= y2 implies x1 6= y1. Let
x′ be the first node on the path from y1 to x1, i.e., (y1, x

′) ∈ E0 ∪ E1 and
x′ is a predecessor of x1 (and therefore of x2 and of x). If (y1, x

′) ∈ E1,
then x′ = y2, i.e., y2 is a predecessor of x1. But this contradicts phν(x1) <
phν(x2) = phν(y2). Hence (y1, x

′) ∈ E0. Finally,

|pw(x)| − |pw(y1)| = |pw(x)| − |pw(x1)| = 1

is odd and phν(x′) ≤ phν(x1) < phν(x2) = phν(y2). Hence, also in this case,
we have (3) with z = y1 and y′ = y2.
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– Finally, suppose (c.3). Then, as above, we have pw(x) = pw(x1) phν(x).
Hence we get

(z, x′) ∈ E0

iff (z, y′) /∈ E0 since x′ 6= y′

iff
(
|pw(y1)| − |pw(z)| odd ⇐⇒ phν(y′) = phν(x′)

)
by (c.3)

iff
(
|pw(x1)| − |pw(z)| odd ⇐⇒ phν(x′) = phν(y′)

)
since pw(x1) = pw(y1)

iff
(
|pw(x)| − |pw(z)| even ⇐⇒ phν(x′) = phν(y′)

)
since |pw(x)| = |pw(x1)|+ 1 .

Hence, (3) follows from (c.3), too.

Finally, we have to show the implication “⇐”, i.e., we have to show that (3)
implies the disjunction of (b.2), (c.2), and (c.3). So assume (3).

– We first consider the case phν(x) = phν(z). Then we have phν(x) ≥ phν(x′) ≥
phν(z) = phν(x) as well as phν(x) = phν(y) ≥ phν(y′) ≥ phν(z) = phν(x)
implying in particular phν(x′) = phν(y′). Since phν(x) = phν(z), we get
pw(x) = pw(z) and therefore |pw(x)| − |pw(z)| = 0. From (3), we can now
infer (z, x′) ∈ E0 which, together with x′ 6= y′, implies (z, y′) ∈ E1. Hence
we showed (b.2).

– Next suppose phν(x) > phν(z). Then there are positions x1, x2, y1, y2 ∈ P
such that (x1, x2), (y1, y2) ∈ E0 ∪E1 are edges on the paths from z to x and
y, resp., phν(x1) < phν(x2) = phν(x), and phν(y1) < phν(y2) = phν(y).
Then

pw(x1) phν(x) = pw(x) = pw(y) = pw(y1) phν(y)

implies pw(x1) = pw(y1). We consider three cases depending on the relation
between x1 and y1:

• If y1 is a predecessor of x1, then we have (c.2).

• If x1 is a proper predecessor of y1, then z = x1 and therefore x2 =
x′ 6= y′. From phν(x1) < phν(x2), we get (z, x′) = (x1, x2) ∈ E1 and
therefore (z, y′) ∈ E0. This implies phν(z) = phν(y′). Because of (3),
(z, x′) ∈ E1, and phν(x′) 6= phν(y′), the difference |pw(y)| − |pw(z)| =
|pw(x)|− |pw(z)| is even. Consequently, the difference |pw(y1)|− |pw(z)|
is odd.

In summary, we showed (z, y′) ∈ E0, |pw(y1)| − |pw(z)| is odd, and
phν(x′) 6= phν(y′), i.e., (c.3) holds.
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• If x1 and y1 are not predecessors of each other, then x′ is a predecessor
of x1 and y′ one of y1. Furthermore, we have

(z, y′) ∈ E0

iff (z, x′) /∈ E0 since x′ 6= y′

iff (|pw(x)| − |pw(z)| odd ⇐⇒ phν(x′) = phν(y′))

by (3)

iff (|pw(y)| − |pw(z)| odd ⇐⇒ phν(x′) = phν(y′))

since pw(y) = pw(x)

iff (|pw(y1)| − |pw(z)| even ⇐⇒ phν(y′) = phν(x′))

since |pw(y)| = pw(y1)|+ 1 .

Hence, also in this case, (c.3) holds.

This concludes the proof of Lemma 3.9. ut

Based on Lemma 3.9, one can prove the following.

Lemma 3.10. From τ ∈ N, one can construct in space poly(τ) a tree automaton
B satisfying the following property: Let ν = (P,≤, λ,y1, . . . ,yσ) be a τ -phase
nested word, x ∈ P , and X ⊆ P . Then (tree(ν), x,X) is accepted by B if and
only if X = {y ∈ P | y ≤ x}.

Proof. The tree automaton B is based on the following observation: For a τ -
phase nested word ν = (P,≤, λ,y1, . . . ,yσ) and x ∈ P , let H(ν, x) ⊆ P denote
the set of all positions y ∈ P incomparable with x such that

(z, x′) ∈ E0 iff
(
|pw(x)| − |pw(z)| even ⇐⇒ phν(x′) = phν(y′)

)
where z is the largest common prefix of x and y in tree(ν) and x′ and y′ are the
direct successors of z on the path to x and y, resp. Then y ∈ H(ν, x) if and only
if y is incomparable with x and

– the direct predecessor of y belongs to H(ν, x) or
– the direct predecessor z of y is a predecessor of x and

y is a return iff
(
|pw(x)| − |pw(z)| is even ⇐⇒ phν(x′) = phν(y)

)
where x′ is the direct successor of z on the path to x.

We first construct an intermediate automaton B1 whose set of states equals

PW(τ)2 × [τ ]20 × {0, 1}4 .

The behavior of B1 can be described as follows: For all τ -phase nested words ν =
(P,≤, λ,y1, . . . ,yσ), x ∈ P , and H ⊆ P , the tree (tree(ν), x,H) is accepted
by B1. Furthermore, every accepting run ρ of B1 on (tree(ν), x,H) satisfies the
following conditions (for all z ∈ P where ρ(z) = (u, v, t0, t1, b, c, d0, d1)):
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– u = pw(x) and v = pw(z)
– if there is y ∈ P with (z, y) ∈ E0, then t0 = phν(y) and d0 = 1 ⇐⇒ y ∈ H
– if there is y ∈ P with (z, y) ∈ E1, then t1 = phν(y) and d1 = 1 ⇐⇒ y ∈ H
– b = 1 if and only if z is a predecessor of x in tree(ν)
– c = 1 if and only if z is a successor of x in tree(ν)

By restricting the set of transitions of B1, we get a tree automaton B2 that only
accepts (tree(ν), x,H) if H = H(ν, x). Now B is obtained from B2 as follows
(recall that B runs on trees of the form (tree(ν), x,X)):

– It guesses a set H ⊆ P and verifies that (tree(ν), x,H) is accepted by B2,
i.e., that H = H(ν, x).

– It verifies that X contains precisely those positions y that satisfy
(1) pw(x) @ pw(y) or
(2) pw(x) = pw(y) and x is a predecessor of y or
(3) pw(x) = pw(y) and y ∈ H .

By Lemma 3.9, B accepts the correct trees (tree(ν), x,X). Since the intermediate
tree automata B1 and B2 need not be constructed explicitly, we have that B can
be constructed in space poly(τ). ut

Based on this automaton, one can easily construct tree automata for the formulas
xl y and max(x).

Proposition 3.11. Given a formula ϕ of the form xl y or max(x) and τ ∈ N,
one can construct in space poly(τ) a tree automaton Bϕ satisfying the following
property: Let ν = (P,≤, λ,y1, . . . ,yσ) be a τ -phase nested word and i, j ∈ P .
Then (tree(ν), i, j) is accepted by Bϕ iff ν, i, j |= ϕ.

Proof. Running on (tree(ν), i, j), the tree automaton Bxly proceeds as follows:

(1) It guesses sets X,Y ⊆ P and verifies that X = {x ∈ P | x ≤ i} and
Y = {x ∈ P | x ≤ j}.

(2) It verifies that Y \X = {j}.

Similarly, running on (tree(ν), i), the tree automaton Bmax(x) guesses a set X ⊆
P and verifies X = {x ∈ P | x ≤ i} and X = P . By Lemma 3.10, these automata
can be constructed in space poly(τ) and accept the correct encodings of τ -phase
nested words. ut

3.4 The Decision Procedure

We need one final lemma for the translation of temporal formulas into tree
automata:

Lemma 3.12. From a tree automaton B over Λ × {0, 1}, one can construct a
tree automaton B′ with L(B′) = {T ∈ TΛ | (T, v) ∈ L(B) for all v ∈ T} in space
poly(|Q|+ |Λ|).
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Note that, using standard constructions, one would produce B′ from B by com-
plementation, projection, and complementation, again. This construction can
be carried out in space in the size of B. Thus, the above lemma yields in an
exponentially more efficient construction compared to the standard one.

Proof. The idea is the following: The states of B′ are pairs (M1,M2) of subsets
of the states of B. Its transition relation is defined in such a way that, on a tree
T , the tree automaton B′ can reach the state (M1,M2) if and only if

– M1 is the set of states that B can reach on (T, ∅), and,
– for all positions v of T , there is a state contained in M2 which can be reached

by B on (T, {v}).

The state (M1,M2) of B′ is accepting iff M2 is a set of accepting states of B.
More formally, let B = (Q,∆,F ). For a tree T and a position v of T , let Tv

denote the subtree of T rooted at v. The states of the tree automaton B′ are
pairs of sets of states of B, i.e., Q′ = 2Q × 2Q is the set of states of B′. A state
(M1,M2) ∈ Q′ is accepting if and only if M2 ⊆ F . The transition relation ∆ is
the least relation fulfilling the following properties:

– There is a transition
(
({ι}, {ι}), a,⊥,⊥

)
∈ ∆ for every a ∈ Λ which is meant

to be executed at the a-labeled leaves of a tree.
– We have ((K1,K2), a, (L1, L2), (M1,M2)) ∈ ∆′ (forK1,K2, L1, L2,M1,M2 ⊆
Q and a ∈ Λ) if and only if

• K1 = {p ∈ Q | there exist q ∈ L1, r ∈M1 such that (p, (a, 0), q, r) ∈ ∆},
• for all q ∈ L2 there exist r ∈M1, p ∈ K2 such that (p, (a, 0), q, r) ∈ ∆,
• for all q ∈ M2 there exist r ∈ L1, p ∈ K2 such that (p, (a, 0), q, r) ∈ ∆,

and
• there exist q ∈ L1, r ∈M1, p ∈ K2 such that (p, (a, 1), q, r) ∈ ∆.

– We have ((K1,K2), a, (L1, L2),⊥) ∈ ∆′ (for K1,K2, L1, L2 ⊆ Q and a ∈ Λ)
if and only if

• K1 = {p ∈ Q | there exist q ∈ L1 such that (p, (a, 0), q,⊥) ∈ ∆},
• for all q ∈ L2 there exist p ∈ K2 such that (p, (a, 0), q,⊥) ∈ ∆, and
• there exist q ∈ L1 and p ∈ K2 such that (p, (a, 1), q,⊥) ∈ ∆.

– Similarly for transitions of the form ((K1,K2), a,⊥, (M1,M2)) ∈ ∆′.

This finishes the definition of B′ (note that B′ can indeed be computed in space
poly(|Q| + |Λ|). By induction on the number of nodes of the tree |Tv|, one can
show the following: Let T = (V,E0, E1, `) ∈ TΛ and ρ′ : V → Q′. Then ρ′ is a
run of B′ on T if and only if, for all nodes v ∈ V with ρ′(v) = (M1,M2), the
following holds:

(i) M1 = {p ∈ Q | (Tv, ∅) ∈ L(Q,∆, {p})}
(ii) For all w ∈ Tv, there is a state p ∈M2 such that (Tv, {w}) ∈ L(Q,∆, {p}).

Now the claim about the tree language L(B′) follows immediately from (ii) and
the definition of the set of accepting states F ′ = 2Q × 2F . ut
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The main difficulties of the translation of a temporal formula expressing prop-
erties of nested words into a tree automaton have been mastered in the above
Propositions 3.5, 3.8, and 3.11. It remains to assemble these ingredients using
quite standard arguments:

Theorem 3.13. Let TL be a fixed MΣn-definable temporal logic. From a for-
mula F from TL and τ ∈ N, one can construct in space |F | · towern+1(poly(τ))
a tree automaton BF over the alphabet Γ with the following property: For any
τ -phase nested word ν, we have

ν |= F ⇐⇒ tree(ν) ∈ L(BF ) .

Proof. By Prop. 3.5, we can construct an MSO-formula

ψ = ∃X
[∧

i∈[|F |]
(
ψ1,i(X) ∧ ∀y ψ2,i(y,X)

)]
that is (over nested words) equivalent to F . Recall that ψ1,i ∈ ΠM

n+1 and
ψ2,i ∈ ΣM

n+1 for all i ∈ [|F |]. In particular, if i ∈ [|F |], then ψ2,i is of the

form ∃X1 ¬∃X2 . . . ¬∃Xn+1 ϕ where ϕ is quantifier-free and Xi are tuples of
individual and set variables. Even more, we can assume that ϕ is a positive
Boolean combination of possibly negated atomic formulas. Also recall that the
size of ψ2,i is independent from the size of |F | and that TL is fixed. Therefore,
the size of ψ2,i is a constant. Using Propositions 3.8 and 3.11 and standard
constructions (for union and intersection) from automata theory, we can trans-
form ϕ into a tree automaton Bϕ in space poly(τ). The desired tree automaton
Bψ2,i is obtained from Bϕ by a sequence of n complementations and n+ 1 pro-
jections. Hence this construction can be carried out in space towern(poly(τ)).
Then, by Lemma 3.12, we can also translate ∀y ψ2,i(y,X) into a tree automa-
ton in space towern+1(poly(τ)). Since a formula belongs to ΠM

n+1 if and only
if its negation belongs to ΣM

n+1, we similarly obtain a tree automaton Bψ1,i

for ψ1,i in space towern+1(poly(τ)). Finally, by standard automata techniques
for intersection and projection, we obtain the tree automaton for ψ in space
|F | · towern+1(poly(τ)). ut

Now, our main theorem states that the satisfiability problem of some fixed MΣn-
definable temporal logic can be solved in time exponential in the size of the
temporal formula and (n+ 2)-fold exponential in the phase bound τ (which is a
vast improvement over the conference version of this paper [10] where the space
was also (n+ 2)-fold exponential in the size of the temporal formula)

Theorem 3.14. Let n ≥ 0 and TL be some fixed BoolMΣn(Γ )-definable tem-
poral logic. The satisfiability problem of TL is solvable in time

tower1(|F |2 · towern+1(poly(τ)))

(where τ is encoded in unary).
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Proof. By Remark 2.7, we can assume that TL is MΣn-definable. Let τ ∈
N and F be a temporal formula from TL. First construct the tree automa-
ton BF from Theorem 3.13. Furthermore, let Bτ be the tree automaton from
Theorem 3.7. The number of states of both these automata is bounded by
tower1(|F | · towern+1(poly(τ))).

Note that we have L(BF ) ∩ L(Bτ ) = ∅ if and only if F is not satisfiable by
any τ -phase nested word. This can be decided in time polynomial in |BF | · |Bτ |,
i.e., in time tower1(|F |2 · towern+1(poly(τ))). ut

As an immediate consequence, we get the main result from [8].

Corollary 3.15 (cf. [8]). Let n ≥ 0, TL be some BoolMΣn(Γ )-definable tem-
poral logic, and τ ≥ 1. The satisfiability problem of TL for τ -phase-bounded
nested words is solvable in exponential time.

4 Lower Bound

In this section, we show that there exists an MΣn-definable temporal logic whose
satisfiability problem is n-EXPSPACE-hard. In order to present a plain and
modular proof, we proceed in two steps. First of all, we show a lower bound
for the satisfiability problem of temporal logics over labeled grids. Secondly, we
polynomially reduce this satisfiability problem to the satisfiability problem for
MΣn-definable temporal logics over nested words.

4.1 The Lower Bound for Labeled Grids

A labeled grid over an alphabet Γ is a tuple G = (k,m, µ) where k,m ≥ 1 specify
the number of rows and columns, resp., and µ : [k]× [m]→ Γ is a mapping. The
elements of dom(G) = [k] × [m] are called cells. Furthermore, we define the
horizontal and the vertical successor relations:

Sh = {((r, c1), (r, c2)) | c2 = c1 + 1} ⊆ dom(G)2

Sv = {((r1, c), (r2, c)) | r2 = r1 + 1} ⊆ dom(G)2

The set MSOG(Γ ) of MSO formulas ϕ over labeled grids is given by the following
grammar, where a ∈ Γ :

ϕ ::= (µ(x) = a) | x Sh y | x Sv y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

The semantics of the above formulas are as expected. In particular, for a grid G
and cells (r1, c1), (r2, c2) ∈ dom(G) we have G, (r1, c1), (r2, c2) |= x Sh y if and
only if (r1, c1) Sh (r2, c2). The sets FOG(Γ ), MΣG

n (Γ ), and MΠG
n (Γ ) are defined

like their corresponding fragments of the logic MSO(Γ ).

Example 4.1. Consider the two MSOG(Γ )-formulas lc(x) = ¬∃y (y Sh x) and
rc(x) = ¬∃y (x Sh y). If G = (k,m, µ) is a grid and (r, c) ∈ dom(G), then
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G, (r, c) |= lc if and only if (r, c) is contained in the leftmost column of G.
Analogously, rc(x) expresses that x is a cell in the rightmost column. Now,
consider the following two MSOG(Γ )-formulas:

ul(x) = lc(x) ∧ ¬∃y (y Sv x)

lr(x) = rc(x) ∧ ¬∃y (x Sv y)

We have G, (r, c) |= ul if and only if (r, c) = (1, 1). Analogously, lr(x) expresses
that x is the cell (k,m) in the lower right of G.

An MSOG(Γ )-definable temporal logic expressing properties of labeled grids is
defined analogous to an MSO(Γ )-definable temporal logic talking about nested
words. If TLG is an MSOG(Γ )-definable temporal logic and F ∈ TLG, then we
write G |= F if G, (1, 1) |= F .

Example 4.2. Consider the modality Sh defined by JShK(X1, x) = ∃y (x Sh y∧y ∈
X1) . Intuitively, Sh F holds at a cell if F holds at its right neighbor.

If TLG is some MSOG(Γ )-definable temporal logic, then the satisfiability problem
of TLG is the set of pairs (F,m) where F ∈ TLG is a formula and m ∈ N such
that there exists some grid G with m columns and G |= F .

Our intermediate goal is to prove the following lower bound on the satisfiability
problem of MSOG(Γ )-definable temporal logics.

Theorem 4.3. Let n ≥ 1. There exists an MΠG
n (Γ )-definable temporal logic

TLG with an n-EXPSPACE-hard satisfiability problem.

Our proof adapts the techniques from [28, 33, 17] (the actual proof can be found
at the end of this section on page 31).

For all `,m ∈ N, the function F` : N → N is defined by F0(m) = m and
F`+1(m) = F`(m) · 2F`(m). Clearly, we have tower(`,m) ≤ F`(m) for all ` ≥ 0
and m ≥ 1. Hence, there exists a Turing machine M fulfilling the following
conditions:

– M runs in space Fn(m)− 3 on an input of length m− 2.
– M accepts some n-EXPSPACE-hard problem.
– No state of M is initial and accepting at the same time.
– All accepting states of M are halting.

Let ΓT be the tape alphabet (which includes the blank symbol � and the end-
of-tape markers . and /) and Q the set of states of M . Furthermore, let Γ =
ΓT ]Q. An m-configuration of M is a word .αqβ/ ∈ Γ ∗ of length Fn(m) where
αβ ∈ (ΓT \ {., /})∗ is the tape content, q ∈ Q is the current state, and the
head is on the first letter of β/4. It is initial if q is an initial state and α = ε.
It is accepting if q is a final state. An m-computation of M of length ` ≥ 1 is
a sequence ζ = ζ1ζ2 . . . ζ` where ζi are m-configurations of M such that ζi+1

4 Note that an m-configuration uses space |αβ| = Fn(m) − 3, whence the name m-
configuration.
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can be reached from ζi in one step for all 1 ≤ i < `. We say that ζ is initial
(accepting) if ζ1 (ζ`) is initial (accepting).

Now let G = (k,m, µ) be a grid over Γ . The concatenation of the rows of G
is denoted by

seq(G) = µ(1, 1)µ(1, 2) . . . µ(1,m)µ(2, 1) . . . µ(2,m)µ(3, 1) . . . µ(k,m) ∈ Γ k·m .

Let v be some input word of length m−2. Suppose v is accepted by M . Since
M uses space Fn(m)−3, there is an initial and accepting m-computation ζ with
input v. Then |ζ| (the length of the word ζ and not the number of configurations
in ζ) is a multiple of Fn(m) and therefore of m. Consequently, there exists a grid
G with m columns and seq(G) = ζ, i.e.,

G has m columns and seq(G) is an initial and accepting m-
computation of M with input v.

(*)

Consequently, a word v of length m − 2 is accepted by M if and only if there
is a grid G satisfying (*). Since we want to reduce the language of M to the
satisfiability problem of the (not yet defined) temporal logic TLG, the logic has
to be able express this property.

For a grid G = (k,m, µ), the function p : dom(G) → [k · m] maps every
cell (r, c) ∈ dom(G) to the corresponding position within seq(G), i.e., p(r, c) =
(r − 1) ·m+ c.

The first lemma states that there exists a simple formula interval(x, y, Z) which
ensures that Z contains exactly those cells which make up the interval between
the cells x and y in the sequence seq(G) (the existence of an MSOG(Γ )-formula
expressing this fact is rather straightforward, the crucial point is to get a formula
from MΣG

1 (Γ )).

Lemma 4.4. There exists a formula interval(x, y, Z) ∈MΣG
1 (Γ ) such that, for

all G = (k,m, µ), cells (r1, c1), (r2, c2) ∈ dom(G), and I ⊆ dom(G), we have

G, (r1, c1), (r2, c2), I |= interval

⇐⇒
(
p(r1, c1) ≤ p(r2, c2) and
I = {(r, c) ∈ dom(G) | p(r1, c1) ≤ p(r, c) ≤ p(r2, c2)}

)
Proof. Let after(x,X) denote the following formula:

x ∈ X ∧ ∀y (y Sh x→ y /∈ X) ∧ ∀y (y Sv x→ y /∈ X) (3a)

∧ ∀y [y ∈ X ↔ (x = y ∨ ∃z ∈ X (z Sh y ∨ z Sv y ∨ (y Sh z ∧ z 6= x)))] (3b)

Let G be a grid, (r, c) ∈ dom(G) and A ⊆ dom(G). It can be shown that
G, (r, c), A |= after if and only if A = {(r′, c′) ∈ dom(G) | p(r, c) ≤ p(r′, c′)}.
Suppose that G, (r, c), A |= after. The first line expresses that the cell (r, c) is in
A and that its left neighbor (r, c− 1) (if existent) and upper neighbor (r − 1, c)
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(if existent) are not contained in A. From (r, c) ∈ A and the implication → in
(3b), we obtain that all cells of the form (r, c + j), (r + i, c + j), and finally
(r+ i+ 1, c− j) belong to A for all i, j ∈ N. In other words, {(r′, c′) ∈ dom(G) |
p(r, c) ≤ p(r′, c′)} ⊆ A. Now assume (r′, c′) ∈ A with p(r′, c′) < p(r, c). Then
the implication ← from (3b) allows to show that (r − 1, c) ∈ A (if r′ < r) or
(r, c − 1) ∈ A (if c′ < c), contradicting (3a). Hence, we have A = {(r′, c′) ∈
dom(G) | p(r, c) ≤ p(r′, c′)}. Conversely, if A = {(r′, c′) ∈ dom(G) | p(r, c) ≤
p(r′, c′)}, then it can be easily checked that G, (r, c), A |= after.

Analogously, we can define a formula before(x,X) such that G, (r, c), B |=
before if and only if we have B = {(r′, c′) ∈ dom(G) | p(r′, c′) ≤ p(r, c)} for
all grids G, (r, c) ∈ dom(G), and B ⊆ dom(G). Now, let interval(x, y, Z) be the
following formula:

∃X,Y [after(x,X) ∧ before(y, Y ) ∧ Z = X ∩ Y ∧ Z 6= ∅]

Because of the presence of Z 6= ∅, we must have p(x) ≤ p(y). ut

The next lemma presents a formula succ(X,Y ) which ensures that Y contains
exactly the direct successors (wrt. seq(G)) of the cells from X. In particular, if X
contains a cell (r,m) from the rightmost column of a grid G = (k,m, µ), then Y
contains the cell (r+1, 1) (provided that r < k) because p(r,m)+1 = p(r+1, 1).

Lemma 4.5. There exists a formula succ(X,Y ) ∈ MΣG
1 (Γ ) such that, for all

grids G = (k,m, µ) and sets H,S ⊆ dom(G), we have

G,H, S |= succ

⇐⇒ S = {(r, c) ∈ dom(G) | there exists (r′, c′) ∈ H s.t. p(r, c) = p(r′, c′)+1} .

Assuming this lemma, we write succ(x, y) as an abbreviation for the MΣG
1 (Γ )-

formula

∃X,Y [∀z (z ∈ X ↔ z = x) ∧ ∀z (z ∈ Y ↔ z = y) ∧ succ(X,Y )] .

Clearly, G, x, y |= succ(x, y) if and only if p(y) = p(x) + 1.

Proof. Let succ(X,Y ) be the following MΣG
1 (Γ )-formula (where lc(x) and rc(x)

are the formulas from Example 4.1):

∃Z
∀x [rc(x)→ (x ∈ Z ↔ x ∈ X)] (4a)

∧ ∀x, y [x Sh y → (x ∈ Z ↔ y ∈ Z)] (4b)

∧ ∀x
[
x ∈ Y ↔ ∃y

(
(y Sh x ∧ y ∈ X) ∨ (lc(x) ∧ ∃y ∈ Z : y Sv x)

) ]
(4c)

Let G be a grid and X,Y, Z ⊆ dom(G) such that the lines (4a)–(4c) hold. The
lines (4a) and (4b) say that an arbitrary cell of G is contained in Z if and only if
the cell in the last column of the same row is contained in X. Therefore, we have
Z = {(r, c) ∈ dom(G) | (r,m) ∈ X}. Line (4c) expresses that a cell is contained
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p(x) p(x′) p(y′) p(y)

0 1 0 1 1 0 1

Y0

0 . . . . . . 0 0 . . . . . . 0 10 . . . . . 0 01 . . . . . 1 1 . . . . . . 1

Y1

1 . . . . . . 1

Fn(m) Fn(m) Fn(m) Fn(m) Fn(m) Fn(m)

X

Fig. 3. This picture visualizes the situation ensured by the formula ϕn+1 of the proof of
Lemma 4.6. The thick line illustrates seq(G). The vertical lines drawn on the thick line
mark the positions of the elements from Z. The bits below the positions show whether
they represent a 0 or 1 through the set B. The arrows indicate that the positions of
successive elements of Z have distance Fn(m).

in Y if and only if (i) its left neighbor is in X or (ii) it is in the leftmost column
and its upper neighbor is contained in Z (i.e., the rightmost cell of the row
directly above belongs to X). Hence, we have

Y = {(r, c) ∈ dom(G) | there exists (r′, c′) ∈ X s.t. p(r, c) = p(r′, c′) + 1} .

If G is a grid, H ⊆ dom(G), and S is as above, then it can be easily checked
that G,H, S |= succ. ut

Recall that we want to express that seq(G) is an m-computation of M . To do
this, we have in particular to relate the positions i and i+Fn(m) (where m is the
number of columns of G) in seq(G). Since our formulas are interpreted over the
grid G, we actually need a formula ϕ(x, y) expressing p(y) = p(x)+Fn(m). This
is the purpose of the following lemma, its proof uses the technique introduced
in [33] by Klaus Reinhardt.

Lemma 4.6. There exists a formula ϕn(x, y) ∈MΣG
n (Γ ) such that, for all grids

G = (k,m, µ) and cells (r1, c1), (r2, c2) ∈ dom(G), we have

G, (r1, c1), (r2, c2) |= ϕn ⇐⇒ p(r2, c2) = p(r1, c1) + Fn(m) .

Proof. The lemma is shown by induction on n. Let G = (k,m, µ) be a grid. Since
F0(m) = m and since every row of G contains precisely m elements, we can set
ϕ0(x, y) = (x Sv y), a formula from FOG(Γ ) = MΣG

0 (Γ ).

For n ≥ 0, let ϕn+1(x, y) denote the following formula (we advise to read
the explanations below and look at Fig. 3 simultaneously with each line of the
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formula):

∃X,Y0, Y1, Z,B, S, x′, y′

interval(x, y,X) ∧ interval(x, x′, Y0) ∧ interval(y′, y, Y1) (5a)

∧ x′, y′ ∈ X (5b)

∧ ϕn(x, x′) ∧ ϕn(y′, y) (5c)

∧ Z ∩ Y0 = {x, x′} ∧ ∀z1, z2 ∈ X [ϕn(z1, z2)→ (z1 ∈ Z ↔ z2 ∈ Z)] (5d)

∧ y ∈ Z (5e)

∧ succ(B,S) (5f)

∧ B ∩ (Y0 \ {x′}) = ∅ (5g)

∧ Y1 \ {y} ⊆ B (5h)

∧ ∀z1, z2 ∈ Z [ϕn(z1, z2)→ (z1 ∈ B ↔ z2 /∈ B)] (5i)

∧ ∀z1, z2 ∈ X [(ϕn(z1, z2) ∧ z1 /∈ Z) (5j)

→ ((z1 ∈ S ∧ z2 /∈ S)↔ (z1 /∈ B ↔ z2 ∈ B))]

∧ ∀z1, z2 ∈ X [(ϕn(z1, z2) ∧ z1 ∈ Z ∧ z1 ∈ S)→ z2 ∈ S] (5k)

Let G = (k,m, µ) be a grid, X,Y0, Y1, Z,B, S ⊆ dom(G) and x, y, x′, y′ ∈
dom(G) such that the lines (5a)–(5k) hold. Line (5a) expresses that x ≤ y,
x ≤ x′, y′ ≤ y, and:

X = {(r, c) ∈ dom(G) | p(x) ≤ p(r, c) ≤ p(y)} (6a)

Y0 = {(r, c) ∈ dom(G) | p(x) ≤ p(r, c) ≤ p(x′)} (6b)

Y1 = {(r, c) ∈ dom(G) | p(y′) ≤ p(r, c) ≤ p(y)} (6c)

Together with (5b), we obtain x ≤ y′ and x′ ≤ y. By the induction hypothesis
for ϕn, line (5c) says that p(x′) = p(x) + Fn(m) and p(y) = p(y′) + Fn(m).

From (5d), we obtain Z ∩X = {(r, c) | p(r, c) = p(x) +k ·Fn(m), k ∈ N}∩X.
Together with (5e), we obtain p(y) = p(x) + k · Fn(m) for some k > 0. In other
words, the set Z divides the interval {p(x), p(x) + 1, . . . , p(y)} represented by X
into blocks of length Fn(m) each. The first block starts at position p(x) and the
last one at position p(y′). With any such block, we associate a natural number
depending on the set B: if the block starts at position p(z) with z ∈ Z and

C = {i < Fn(m) | there exists (r, c) ∈ B such that p(r, c) = p(z) + i} ,

the the associated number is
∑
i∈C 2i. In other words, each block is interpreted

as a binary number (least significant bit first) where B contains those bits set
to 1. Line (5f) says that

S = {(r, c) ∈ dom(G) | there exists (r′, c′) ∈ B s.t. p(r, c) = p(r′, c′) + 1} . (7)

Recalling that Y0 \ {x′} represents the first block, (5g) expresses that its associ-
ated number is 0. Dually, using (5h), we deduce that

∑
0≤i<Fn(m) 2i = 2Fn(m)−1

is the number associated with the final block represented by Y1 \ {y}. We show
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that the blocks “count” from 0 to 2Fn(m) − 1. By (5i), the least significant
bits of consecutive blocks alternate. Considering line (5j), the premise expresses
that z1 and z2 mark the same position i in consecutive blocks and that z1
(and therefore z2) is not the first position of a block. The conclusion says
that the (i − 1)-th bit drops from 1 to 0 if and only if the i-th bit changes.
Hence, line (5j) expresses that the number associated with the following block is
obtained by adding one modulo 2Fn(m). The final formula (5k) ensures that
the last (most significant) bit never drops from 1 to 0. Hence, the number
of blocks must be 2Fn(m). Since each of them is of length Fn(m), we obtain
p(y) = p(x) + Fn(m) · 2Fn(m) = p(x) + Fn+1(m).

For the converse direction, let G = (k,m, µ) be a grid, x, x′, y′, y ∈ dom(G)
such that p(x) = p(y)+Fn+1(m), p(x′) = p(x)+Fn(m), and p(y) = p(y)+Fn(m).
Let X,Y0, Y1 ⊆ dom(G) be as in the lines (6a) – (6c). Furthermore, let

Z = X ∩ {(r, c) ∈ dom(G) | p(r, c) = p(x) + k · Fn(m), k ∈ N} ,

i.e., Z divides X into 2Fn(m) many blocks of length Fn(m). Let B ⊆ dom(G)
such that, for every i ∈ [2Fn(m)], the i-th block represents the number i−1 in the
above sense. Finally, let S be as in line (7). It can be checked by easy inspection
that the lines (5a)–(5k) hold.

By induction, ϕn ∈MΣG
n (Γ ). Note that this formula occurs in the lines (5b),

(5c), (5d), (5i), (5j), and (5k). At all these places, it occurs either positively
under the existential quantification in the very first line, or negatively under an
additional universal quantification. Hence, ϕn+1 ∈MΣG

n+1(Γ ) as required. ut

We are now ready to express that a (sufficiently large) grid G encodes an initial
and accepting m-computation (where m is the number of columns of G):

Proposition 4.7. There exists a sentence ψn ∈ MΠG
n (Γ ) such that, for all

grids G = (k,m, µ) with |seq(G)| > Fn(m), we have

G |= ψn ⇐⇒ seq(G) is an initial and accepting m-computation of Mn .

Proof. LetG = (k,m, µ) be a grid with |seq(G)| > Fn(m). Consider the following
formula:

α1 = ∃x (ul(x) ∧ µ(x) = .) ∧ ∃x (lr(y) ∧ µ(y) = /)

∧ ∀x, y [succ(x, y)→ (µ(x) = /↔ µ(y) = .)] .

Note that ul(x) and lr(x) are the formulas from Example 4.1. If G |= α1, then,
by the first line of α1, the cell (1, 1) is labeled by . and (k,m) is labeled by /.
The second line expresses that each cell from dom(G) \ {(1, 1), (k,m)} labeled
by . is directly preceded by a /-labeled cell in seq(G) and that each cell from
dom(G)\{(1, 1), (k,m)} labeled by / is followed by a .-cell. It can be shown that
the grid G satisfies the formula α1 if and only if seq(G) is in (.(Γ \ {., /})∗/)+.
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Recall that seq(G) is assumed to be at least of length Fn(m) + 1. Therefore,
G satisfies the conjunction of α1 and

α2 = ∀x, y,X
[(

ϕn(x, y) ∧ µ(x) = .
∧ interval(x, y,X)

)
→ X ∩ µ−1(.) = {x, y}

]
∧ ∀x, y,X

[(
ϕn(x, y) ∧ µ(y) = /
∧ interval(x, y,X)

)
→ X ∩ µ−1(/) = {x, y}

]
if and only if seq(G) ∈ (ΓFn(m) ∩ .(Γ \ {., /})∗/)+, i.e., each factor of seq(G)
from .(Γ \ {., /})∗/ is of length Fn(m). Similarly, the formula

α3 = ∀x, y,X
[(

ϕn(x, y) ∧ µ(x) = .
∧ interval(x, y,X)

)
→ |X ∩ µ−1(Q)| = 1

]
.

ensures that each factor of seq(G) from .(Γ \{., /})∗/ contains exactly one state
from the set of states Q of Mn. Hence, we have G |= α1 ∧ α2 ∧ α3 if and only if

seq(G) ∈ C =
(
ΓFn(m) ∩ .(ΓT \ {., /})∗Q(ΓT \ {., /})∗ /

)+
.

Note that there is a relation R ⊆ Γ 6 such that ζ ∈ C is an m-computation
of the Turing machine Mn if and only if, for all γ1, γ2, γ3, δ1, δ2, δ3 ∈ Γ with

ζ ∈ Γ ∗T γ1γ2γ3Γ
Fn(m)−3
T δ1δ2δ3Γ

∗
T , we have (γ1, γ2, γ3, δ1, δ2, δ3) ∈ R. Let

α4 = ∀x1, x2, x3, y1, y2, y3
(
ϕn(x1, y1) ∧ succ(x1, x2) ∧ succ(x2, x3)

∧ succ(y1, y2) ∧ succ(y2, y3)

)
→
∨

(γ1,γ2,γ3,δ1,δ2,δ3)∈R

(
µ(x1) = γ1 ∧ µ(x2) = γ2 ∧ µ(x3) = γ3
∧ µ(y1) = δ1 ∧ µ(y2) = δ2 ∧ µ(y3) = δ3

)


The grid G satisfies ψ =
∧
i∈[4] αi if and only if seq(G) is an m-computation of

Mn. Let q0 be the initial and q1 be the final state of the Turing machine Mn.
Consider the following formula (where ul(x) is the formula from Example 4.1):

α5 = ∀x, y [(ul(x) ∧ x Sh y)→ µ(y) = q0]

∧ ∀x, y,X
[

(ul(x) ∧ ϕn(x, y) ∧ interval(x, y,X))
→ ∀z ∈ X \ {y} (µ(z) ∈ {/,�} ↔ ∃z′ (z′ Sv z))

]
The grid G satisfies the formula ψ =

∧
i∈[5] αi if and only if seq(G) is an initial m-

computation of Mn, i.e., seq(G) is an m-computation and the first configuration
of seq(G) is an initial configuration of Mn on an input word of length m − 2.
The last formula to consider is the following:

α6 = ∃z (µ(z) = q1)

Recall that all accepting states of the Turing machine Mn are halting. Hence,
G satisfies ψn =

∧
i∈[6] αi if and only if seq(G) is an initial and accepting m-

computation of Mn.
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Moreover, we have ψn ∈ MΠG
n (Γ ) since it is a conjunction of MΠG

n (Γ )-
formulas. The formula α1 is anMΠ1-formula because theMΣ1-formula succ(x, y)
only occurs negatively under universal quantification. In the formulas α2 – α6,
the MΣG

n (Γ )-formula ϕn and the MΣ1-formulas succ(x, y) and interval(x, y,X)
only occur negatively under universal quantification. Therefore, α2, . . . , α6 ∈
MΠG

n (Γ ). ut

Consider the MΠG
n (Γ )-definable temporal logic TLGn based on the usual boolean

connectives and the constants COMPUTATION and TOOSHORT where

JCOMPUTATIONK = ψn ,

JTOOSHORTK = ∀x, y ¬ϕn(x, y) ,

ψn is the formula from Prop. 4.7, and ϕn is the formula from Lemma 4.6. Recall
that every initial and accepting computation of Mn has at least length 2 since
no state is initial and accepting at the same time. If G is a grid with m columns,
then the following holds:

G |= ¬TOOSHORT ∧ COMPUTATION

⇐⇒ |seq(G)| > Fn(m) and G |= COMPUTATION

⇐⇒ seq(G) is an initial and accepting m-computation of Mn of length ≥ 2

Now, we can prove the desired lower bound for the satisfiability problem of
MSOG(Γ )-definable temporal logics:

Proof (of Theorem 4.3). Recall that the Turing machine M works in space
Fn(m) − 3 where m − 2 is the length of the input. Consider the MΠG

n (Γ ) de-
finable temporal logic TLGn based on the modality Sh (see Example 4.2), the
usual boolean connectives, and the constants COMPUTATION, TOOSHORT,
and TRUE where JTRUEK = ∃x (x = x) is always evaluated to true. Let v =
v1 . . . vm−2 be an input word of the Turing machine M and consider the formula

INITv = Sh (. ∧ Sh (q0 ∧ Sh (v1 ∧ Sh (v2 ∧ Sh (. . . vm−2 ∧ ¬ Sh TRUE) . . .))))

which intuitively expresses the fact that the first configuration is actually the
initial configuration of M on the input word v and that the grid has exactly m
columns. Then the input v is accepted by M if and only if there is a grid G with
m columns satisfying the formula ¬TOOSHORT∧COMPUTATION∧INITv . Note
that this formula can be constructed from v in linear time. Since the language of
M is n-EXPSPACE-hard, the satisfiability problem for TLGn is n-EXPSPACE-
hard. ut

4.2 The Reduction from Labeled Grids to Nested Words

Our goal is a polynomial reduction of the satisfiability problem of a MΠG
n (Γ )-

definable temporal logic expressing properties of labeled grids to the satisfiability
problem of an MΠn(Γ )-definable temporal logic which is evaluated on nested

31



≤

≤

≤

≤ ≤

≤

µ(1, 1) ⊥ µ(1, 2) ⊥ µ(1,m) ⊥

µ(2, 1) ⊥ µ(2, 2) ⊥ µ(2,m) ⊥

µ(3, 1) ⊥ µ(3, 2) ⊥ µ(3,m) ⊥

µ(k, 1) ⊥ µ(k, 2) ⊥ µ(k,m) ⊥

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

y1 y2 y1 y2 y2 y1

y1 y2 y1 y2 y2 y1

y1 y2 y1 y2 y2 y1

y1 y2 y1 y2 y2 y1

k
ro

w
s

2m columns

Fig. 4. The nested word νG obtained from a grid G = (k,m, µ).

words. For this purpose, we represent a grid G = (k,m, µ) over Γ by a 2m-phase
nested word νG = (P,≤, λ,y1,y2) over the alphabet Γ ] {⊥} like it is shown
in Fig. 4. First, we insert after every column of G an artificial column whose
cells are labeled by ⊥’s. Hence, we obtain an intermediate grid with 2m columns
whose cells become the positions of νG. The direct successor relation of the linear
ordering ≤ of νG is depicted by the continuous edges → in Fig. 4. The cell (1, 1)
is the minimal element wrt. ≤ followed by the remaining cells of the first column
top down. That means, we have (1, 1) l (2, 1) l . . . l (k, 1). The cell (k, 1) is
then followed by the cells of the second column (labeled by the ⊥’s) bottom up,
i.e., (k, 1) l (k, 2) l (k − 1, 2) l . . . l (1, 2). Then the cells of the third column
(which is the second column in the original grid) follow top down and so on. We
insert a nesting edge y1 from every cell of an odd column to its right neighbor.
Similarly, we introduce a nesting edge y2 pointing from every cell of an even
column to its right neighbor.

Recall that we insert artificial rows into the grid which become intervals of⊥’s
in the corresponding nested word. Indeed, they allow an easy navigation within
νG. More precisely, moving from a grid cell to its lower neighbor corresponds
always to going to the direct successor with respect to ≤. Whereas moving to
the right neighbor of a grid cell is accomplished by following a y1 and a y2

edge.
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a d g ⊥ ⊥ ⊥ b e h ⊥ ⊥ ⊥ c f i ⊥ ⊥ ⊥

Fig. 5. The grid G and the nested word νG from Example 4.8.

Example 4.8. Consider the grid G = (3, 3, µ) from Fig. 5. The corresponding
nested word νG is also depicted in Fig. 5. The upper and lower edges visualize
the nesting relation y1 and y2, resp.

More formally, if G = (k,m, µ) is a grid over the alphabet Γ , then the 2m-phase
nested word νG = (P,≤, λ,y1, . . . ,yσ) over Γ ] {⊥} is defined as follows: The
set of positions is given by P = [k]× [2m] and, for all (i, j) ∈ P , we have λ(i, j) =
µ(i, j+1/2) if j is odd and λ(i, j) = ⊥ otherwise. For all (i1, j1), (i2, j2) ∈ P , we
define (i1, j1) ≤ (i2, j2) if and only if

j1 < j2

or (j1 = j2 is odd and i1 ≤ i2)

or (j1 = j2 is even and i2 ≤ i1) .

The nesting relations y1 and y2 are defined as follows:

y1 = {
(
(i1, j1), (i2, j2)

)
∈ P 2 | i1 = i2, j2 = j1 + 1 even}

y2 = {
(
(i1, j1), (i2, j2)

)
∈ P 2 | i1 = i2, j2 = j1 + 1 odd}

Whereas we set ys = ∅ for all 3 ≤ s ≤ σ.

The next lemma states that there is an FO-formula ϕΓ⊥(X) which expresses
that X is an interval within a nested word of the form (Γ+⊥+)+ such that the
position directly left (resp. right) of X (if existent) is not labeled by Γ (⊥).

Lemma 4.9. There exists a formula ϕΓ⊥(X) ∈ FO(Γ ] {⊥}) such that, for all
nested words ν = (P,≤, λ,y1, . . . ,yσ) and I ⊆ P , we have ν, I |= ϕΓ⊥ if and
only if there exist i, j ∈ P with

(1) I = [i, j],
(2) λ(i) ∈ Γ and (i = min(P,≤) or λ(k) = ⊥ with k l i), and
(3) λ(j) = ⊥ and (j = max(P,≤) or λ(k) ∈ Γ with j l k).

Proof. Consider the following FO-formula:

ϕΓ⊥(X) = ∃x, y
x, y ∈ X (8a)

∧ ∀z [z ∈ X → (z = x ∨ ∃z′ ∈ X z′ l z)] (8b)

∧ (min(x) ∨ ∃z [min(z)→ z /∈ X]) (8c)

∧ ∀z [y l z → z /∈ X] (8d)

∧ λ(x) ∈ Γ ∧ ∀z (z l x→ λ(z) = ⊥) (8e)

∧ λ(y) = ⊥ ∧ ∀z (y l z → λ(z) ∈ Γ ) (8f)
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1 2 3 · · · k k + 1 · · · 2k − 2 2k − 1 2k

labeled by symbols from Γ labeled by ⊥’s

Fig. 6. The nested word ν from the base clause of the proof of Prop. 4.11. The edges
visualize the nesting relation y1.

Let ν = (P,≤, λ,y1,y2) be a nested word, X ⊆ P , and x, y ∈ P such that the
lines (8a) – (8f) hold. Without loss of generality, we can assume that P = [n] for
some n ∈ N. By (8a), we obtain x, y ∈ X. Let us assume that there exists k ∈ X
with k < x. From line 8b, it follows that k − 1 ∈ X, k − 2 ∈ X, . . ., 1 ∈ X.
Since k < x, we have x 6= 1. This is a contradiction to line 8c. That means that
[x− 1] ∩X = ∅ and, in particular, x ≤ y. From (8b), we obtain [x, y] ⊆ X. Let
us assume that k ∈ X with y < k. By (8b), we have k − 1 ∈ X, k − 2 ∈ X,
. . ., y + 1 ∈ X. This contradicts (8d). Hence, X = [x, y] and condition 1 from
Lemma 4.9 holds, respectively. It can be easily checked that the conditions 2
and 3 are ensured by the lines (8e) and (8f). The converse direction follows by
simple inspection. ut

Lemma 4.10. There exists a formula ϕ⊥Γ (X) ∈ FO(Γ ] {⊥}) such that, for
all nested words ν = (P,≤, λ,y1, . . . ,yσ) and I ⊆ P , we have ν, I |= ϕ⊥Γ if
and only if there exist i, j ∈ P with

(1) I = [i, j],
(2) λ(i) = ⊥ and (i = min(P,≤) or λ(k) ∈ Γ with k l i), and
(3) λ(j) ∈ Γ and (j = max(P,≤) or λ(k) = ⊥ with j l k)

Proof. The formula ϕ⊥Γ can be obtained from the formula ϕΓ⊥ in the proof of
Lemma 4.9 by exchanging λ(v) ∈ Γ and λ(v) = ⊥ in lines (8e) and (8f) for all
v ∈ {x, y, z}. ut

Using the Lemmas 4.9 and 4.10, we can now specify an MΠ1(Γ ] {⊥})-formula
defining the set of nested words representing grids.

Proposition 4.11. There exists a sentence grid ∈MΠ1(Γ ]{⊥}) such that, for
all nested words ν, we have ν |= grid if and only if there exists a grid G over Γ
with νG = ν.

Proof. Consider the following formula ψ:

∃x (min(x) ∧ λ(x) ∈ Γ ) ∧ ∃x (max(x) ∧ λ(x) = ⊥) (9a)

∧y1 ⊆ λ−1(Γ )× λ−1(⊥) ∧ ∀X ϕΓ⊥(X)→ bij1(X) (9b)

∧y2 ⊆ λ−1(⊥)× λ−1(Γ ) ∧ ∀X ϕ⊥Γ (X)→ bij2(X) (9c)

∧y3 = ∅ ∧ y4 = ∅ ∧ . . . ∧ yσ = ∅ (9d)
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Recall that bij1 and bij2 are the formulas from Example 2.3. It suffices to consider
nested words ν = (P,≤, λ,y1, . . . ,yσ) where P = [n] for some n ∈ N and ≤
is the natural ordering over [n]. It can be easily verified that νG |= ψ holds for
every grid G. Now, let us prove the direction from left to right. By c(ν) we denote
the number of ⊥-labeled positions from [n] who do not have a direct successor
which is labeled by ⊥ (i.e., either there is no successor or the direct successor is
labeled by a symbol from Γ ). More formally, we define

c(ν) = |{i ∈ λ−1(⊥) | i = n or (i+ 1 ≤ n and λ(i+ 1) ∈ Γ )}| .

Let ν = ([n],≤, λ,y1, . . . ,yσ) be a nested word satisfying ψ. Because of line
(9a), we have λ(n) = ⊥. Hence, c(ν) ≥ 1. We show that there exists a grid
G with ν = νG by induction over c(ν). Assume that c(ν) = 1. By line (9a),
we have λ(1) ∈ Γ and λ(n) = ⊥. Therefore, there exists a k ∈ [n − 1] such
that λ(k) ∈ Γ and λ(k + 1) = ⊥. Let I1 = [k] and I2 = [k + 1, n]. Since
c(ν) = 1, we have λ(I1) ⊆ Γ and λ(I2) ⊆ {⊥}. By (9b) and Lemma 4.9,
we obtain that y1 is a bijection from I1 to I2. Hence, we have n = 2k and
y1 = {(1, 2k), (2, 2k − 1), . . . , (k, k + 1)}. From λ−1(⊥) × λ−1(Γ ) ∩ ≤ = ∅ and
the left part of the conjunction in line (9c) it follows that y2 = ∅. Because of
(9d), we have ys = ∅ for all 3 ≤ s ≤ σ. That means that ν is of the form
shown in Fig. 6. We have νG = ν for the one-column grid G = (k, 1, µ) with
µ(r, 1) = λ(r) for all r ∈ [k].

Assume that there exists a grid G = (k, c(ν), ν) with ν = νG and k = n/2c(ν)
for every nested word ν with n positions, 1 ≤ c(ν) ≤ m, and ν |= ψ. For the
induction step, let ν = ([n],≤, λ,y1, . . . ,yσ) be a nested word with c(ν) = m+1
and ν |= ψ. Furthermore, let n′ ∈ [n] be the largest position with λ(n′) = ⊥
and λ(n′ + 1) ∈ Γ . Note that such an n′ exists since c(ν) > 1. Furthermore,
let ν′ be the restriction of ν to the positions [n′]. It can be easily checked that
c(ν′) = m and ν′ |= ψ. By induction, there exists a grid G′ = (k,m, µ′) with
νG′ = ν′. Because of λ(n′ + 1) ∈ Γ and λ(n) = ⊥ (due to the right part of
the conjunction in line (9a)), there exists i ∈ [n′ + 1, n] such that λ(i) ∈ Γ
and λ(i + 1) = ⊥. Since c(ν) = c(ν′) + 1, we must have λ([n′ + 1, i]) ⊆ Γ and
λ([i + 1, n]) ⊆ {⊥}. We set I1 = [n′ + 1, i] and I2 = [i + 1, n]. Furthermore,
let J = [n′ − k + 1, n′] (i.e., J represents the last interval of ⊥’s in ν′). From
λ(J) ⊆ {⊥}, λ(I1) ⊆ Γ , and line (9c), we obtain that y2∩(J∪I1)2 is a bijection
from J to I1 and |I1| = |J | = k, respectively. Analogously, from (9b), it follows
that y1 ∩ (I1 ∪ I2)2 is a bijection from I1 to I2. Therefore, we have |I2| = k.
Consider the grid G = (k,m+ 1, µ) with

µ(r, c) =

{
µ′(r, c) if c ∈ [m]

λ(c · 2k + r) if c = m+ 1

for all (r, c) ∈ dom(G). It holds that νG = ν. ut

We now translate MΠG
n (Γ )-modalities into suitable MΠn-modalities.
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Lemma 4.12. Let ϕ(x,X1, . . . , Xn) ∈MΠG
n (Γ ) be a modality definition. There

exists a modality definition ϕ# ∈ MΠn(Γ ] {⊥}) such that the following holds
for all grids G = (k,m, µ), all positions (r, c) ∈ dom(G), and all sets I1, . . . , In ⊆
dom(G):

G, (r, c), I1, . . . , In |= ϕ ⇐⇒ νG, (r, 2c− 1), I ′1, . . . , I
′
n |= ϕ#

where I ′i = {(r, 2c− 1) | (r, c) ∈ Ii} for all i ∈ [n].

Proof. A cell (r, c) from dom(G) corresponds to the position (r, 2c − 1) from
dom(νG). For cells (r1, c1), (r2, c2) ∈ dom(G), we have (r1, c1) Sh (r2, c2) if and
only if there exists a position (i, j) ∈ dom(νG) such that (r1, 2c1 − 1) y1 (i, j)
and (i, j) y2 (r2, 2c2 − 1). Whereas we have (r1, c1) Sv (r2, c2) if and only if
(r1, 2c1 − 1) l (r2, 2c2 − 1). Furthermore, the cells from dom(G) are precisely
the positions from dom(νG) \ λ−1(⊥). With this in mind, it can be easily seen
that the following definition is sound. If ϕ is an MSOG(Γ )-formula, then the
MSO-formula ϕ# is inductively defined as follows:

ϕ# =



λ(x) = a if ϕ = (µ(x) = a)

∃y [xy1 y ∧ y y2 z] if ϕ = (x Sh z)

xl y if ϕ = (x Sv y)

x = y if ϕ = (x = y)

x ∈ X if ϕ = x ∈ X
¬ψ# if ϕ = ¬ψ
ψ#
1 ∨ ψ

#
2 if ϕ = ψ1 ∨ ψ2

∃X (X ∩ λ−1(⊥) = ∅ ∧ ψ#) if ϕ = ∃X ψ

∃x (λ(x) 6= ⊥ ∧ ψ#) if ϕ = ∃xψ

Note that ϕ# ∈MΠn(Γ ) whenever ϕ ∈MΠG
n (Γ ) for all n ∈ N. ut

Let TL = (B, ar, J−K) be an MSOG(Γ )-definable temporal logic. Then TL#

denotes the MSO(Γ ] {⊥})-definable logic (B#, ar#, J−K#) where

– B# = B ∪ {¬,∧,TRUE,RET,GRID},
– ar# � B = ar,
– ar#(∧) = 2, ar#(RET) = ar#(¬) = 1, ar#(TRUE) = ar#(GRID) = 0,
– JMK# = ϕ# ∧ (λ(x) 6= ⊥) for all M ∈ B with JMK = ϕ(x,X1, . . . , Xn),

JGRIDK# is defined as in Prop. 4.11, J¬K#, J∧K#, JTRUEK#, and JRETK# are
defined as in Example 2.4.

Clearly, every formula of TL is also a formula of TL#. Vice versa, this is not the
case since TL# contains additional modalities. If TL is MΠG

n (Γ )-definable for
some n ∈ N, then TL# is MΠn(Γ )-definable.

Lemma 4.13. If TL is an MSOG(Γ )-definable temporal logic, F ∈ TL, and G
is a grid, then G |=TL F if and only if νG |=TL# F .
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Proof. Let TL = (B, ar, J−K). Firstly, we show that the following holds:

F νG,TL#

= {(r, 2c− 1) | (r, c) ∈ FG,TL} (10)

Let F = M(F1, . . . , Fn) with M ∈ B, ar(M) = n, and F1, . . . , Fn ∈ TL. By

induction, we have F νG,TL#

i = {(r, 2c−1) | (r, c) ∈ FG,TL
i }. Let (r, c) ∈ dom(G).

If (r, c) ∈ FG,TL, then, by definition, we have G,FG,TL
1 , . . . , FG,TL

n , (r, c) |= JMK.
From Lemma 4.12, we obtain νG, F

νG,TL#

1 , . . . , F νG,TL#

n , (r, 2c − 1) |= JMK#.

Hence, (r, 2c− 1) ∈ F νG,TL#

.

For the converse direction, let (i, j) ∈ F νG,TL#

. Because of λ(i, j) 6= ⊥ (cf.
the definition of TL#), there exists (r, c) ∈ dom(G) with (r, 2c − 1) = (i, j).

Therefore, νG, F
νG,TL#

1 , . . . , F νG,TL#

n , (r, 2c−1) |= JMK# holds. By Lemma 4.12,

we obtain G,FG,TL
1 , . . . , FG,TL

n , (r, c) |= JMK and (r, c) ∈ FG,TL, respectively.
Hence, (10) holds.

Finally, let G = (k,m, µ). If G |=TL F , then, by definition, G, (1, 1) |=TL F .
By (10), we obtain νG, (1, 1) |=TL# F and νG |=TL# F , respectively. The converse
direction can be shown analogously. ut

Now, we are able to prove the main theorem of this section:

Theorem 4.14. Let n ≥ 1 and σ ≥ 2. There is an MΣn(Γ )-definable temporal
logic whose satisfiability problem is n-EXPSPACE-hard.

Using standard coding tricks, one can assume |Γ | = 2.

Proof. By Theorem 4.3, there exists an MΠG
n (Γ )-definable temporal logic TL

whose satisfiability problem is n-EXPSPACE-hard. It follows from Prop. 4.11
and Lemma 4.13 that, for every F ∈ TL and m ≥ 1, there exists an m-column
grid G with G |=TL F if and only if there exists a 2m-phase nested word ν with
ν |=TL# GRID ∧ F ∧WIDTH where

WIDTH = RET(RET(. . . (RET(︸ ︷︷ ︸
2m− 1 times

¬RET(TRUE)) . . .) .

Note that the formula WIDTH ensures that ν represents a grid of width exactly
m. The temporal logic TL# can be constructed in linear time. Hence, we poly-
nomially reduced the satisfiability problem of TL to the satisfiability problem
of the MΠn(Γ )-definable temporal logic TL#. Theorem 4.14 follows from Re-
mark 2.7. ut

5 Model Checking

This section deals with the model checking problem: do all runs of a system sat-
isfy a given formula of a fixed temporal logic? As a system model, we consider
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σ-stack automata. There are essentially two approaches of presenting such au-
tomata. In [21], stacks are included explicitly. Here, following [3], we let automata
run directly on nested words. Note that we extend the model straightforwardly
to also handle nested words where a position can be both a call and a return
with respect to different stacks.

A σ-stack automaton over Γ is a tuple A = (Q,∆, ι, F ) where

– Q is the finite set of states,
– ι ∈ Q is the initial state,
– F ⊆ Q is the set of final states, and
– ∆ ⊆ Q×

(
{#} ∪ ([σ]×Q)

)
× Γ ×Q is the transition relation.

Reading a position i of a nested word, the transition (q, C, a, q′) ∈ ∆ lets the
automaton move on from the current state q to the target state q′ if i is labeled
with letter a. In addition, the transition is guarded by C ∈ {#}∪ ([σ]×Q). This
allows A to retrieve, from a return position, the state reached after executing
the corresponding call. In a sense, this is equivalent to reading a stack symbol
previously pushed. More precisely, if C = (s, q) ∈ [σ]×Q, then we require that i
is a return from stack s and that q is the state reached at position j with j ys i.
If, on the other hand, C = #, then i should not be a return at all.

Let ν = ([n],≤, λ,y1, . . . ,yσ) be a nested word. A run of A on ν is a
mapping ρ : P → Q such that

(
ι,#, λ(1), ρ(1)

)
∈ ∆ and, for every i ∈ {2, . . . , n},(

ρ(i− 1), Ci, λ(i), ρ(i)
)
∈ ∆

where

Ci =

{
(s, ρ(j)) if j ys i

# if there are no s, j such that j ys i

(note that Ci is well-defined by the definitions of a nesting relation and a nested
word). The run ρ is accepting if ρ(n) ∈ F . The set of nested words for which
there is an accepting run is denoted by L(A). The restriction of L(A) to τ -phase
words is denoted by Lτ (A).

Let TL be some MSO(Γ )-definable temporal logic. The model checking problem
of TL is the set of all triples (A, F, τ) where A is a σ-stack automaton, F ∈ TL
is a temporal formula, and τ ∈ N such that every τ -phase nested word accepted
by A satisfies F . In order to use our techniques from the satisfiability problem,
we need the following translation of σ-stack automata into tree automata due
to La Torre, Madhusudan, and Parlato [21]:

Theorem 5.1 ([21]). From a σ-stack automaton A and τ ∈ N, one can con-
struct in time tower1(|A| · tower1(poly(τ))) a tree automaton BA,τ such that
L(BA,τ ) = tree(Lτ (A)).

Let TL be some fixed MΣn-definable temporal logic. Given a σ-stack automaton
A, a formula F from TL, and τ ≥ 1, one can construct the automata B¬F and
BA,τ from the Theorems 3.13 and 5.1, respectively. Note that the negation ¬ can
be easily defined by an FO-modality (see Example 2.4). Every τ -phase nested
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word accepted by A satisfies F if and only if L(BA,τ ) ∩ L(B¬F ) = ∅. The size
of both automata is bounded by tower1(|F | · |A| · towern+1(poly(τ))). Since the
emptiness problem of tree automata is solvable in polynomial time, we obtain
together with Remark 2.7:

Theorem 5.2. Let n ≥ 0 and TL be some BoolMΣn(Γ )-definable temporal
logic. Then the model checking problem of TL is in (n+ 2)-EXPTIME (where τ
is encoded in unary).

More precisely, it is exponential in the size of the formula F and (n + 2)-fold
exponential in the number of phases τ .

A temporal formula F from TL is not satisfiable if and only if all nested
words satisfy ¬F . One can easily construct a σ-stack automaton accepting the
set of all nested words in polynomial time. Hence, the next result follows from
Theorem 4.14:

Theorem 5.3. Let n ≥ 1 and σ = 2. There is an MΣn(Γ )-definable temporal
logic whose model checking problem is hard for n-EXPSPACE.

6 Conclusion

In this paper, we showed that the satisfiability and the model checking problem
of bounded-phase multi-stack systems are decidable in time exponential in the
size of the formula and (n+ 2)-fold exponential in the number of phases for all
BoolMΣn-definable temporal logics. This in particular implies the main result
of [8] where the problem is considered for a fixed number of phases. Moreover,
we identified for every n ≥ 1 an MΣn-definable temporal logic for which the
problems are n-EXPSPACE-hard.

It was shown in [6, 25] for very specific temporal logics (cf. Example 2.5) that
model checking bounded-scope multi-stack systems is in EXPTIME. Note that
such an upper bound cannot be achieved under the phase-bound restriction,
since the corresponding emptiness problem of multi-stack automata is already
2-EXPTIME-hard. Ordered multi-stack systems were considered in [4], estab-
lishing a 2-EXPTIME upper bound for linear-time properties that do not allow
one to reason about nesting edges. In [12], it was shown that the model checking
problem for multi-stack systems restricted to bounded split-width executions
and MSO logic can be solved in non-elementary time. The authors of [12] asked
whether temporal logics could be used to gain a reasonable complexity. Re-
call that the notions of bounded phases, bounded scopes, ordered stacks and
split-width are orthogonal. [30] proves that our techniques can be used to show
tight upper bounds for all MSO-definable temporal logics when restricting to
bounded scopes and bounded split-width, the case of ordered stacks remains to
be considered.

We find it also interesting to check whether this technique can be adapted
to different types of concurrent systems; [17] shows this for Mazurkiewicz traces
and [29] for communicating finite-state machines and MSO-definable temporal
logics.
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In the literature, even pushdown automata communicating via first-in first-
out channels were considered. It was shown that natural restrictions, partly based
on the notion of bounded phases, allow for decidable reachability and model
checking problems (against MSO properties) [22, 27, 20]. Also the notion of split-
width has been extended to such systems: in [13], optimal decision procedures
for the model checking problem of an extension of linear time logic and various
variants of propositional dynamic logic were presented. Still it is actually very
unclear how to define “canonical” temporal operators such as an until in the
setting of recursive message-passing systems. Therefore, our generic approach
may serve here as a starting point as well.
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