
Forwards- and Backwards-Reachability for
Cooperating Multi-Pushdown Systems

Chris Köcher1?[0000−0003−4575−9339] and Dietrich Kuske2

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
2 Technische Universität Ilmenau, Germany

Abstract. A cooperating multi-pushdown system consists of a tuple of
pushdown systems that can delegate the execution of recursive proce-
dures to sub-tuples; control returns to the calling tuple once all sub-
tuples finished their task. This allows the concurrent execution since
disjoint sub-tuples can perform their task independently. Because of the
concrete form of recursive descent into sub-tuples, the content of the
multi-pushdown does not form an arbitrary tuple of words, but can be
understood as a Mazurkiewicz trace.
For such systems, we prove that the backwards reachability relation effi-
ciently preserves recognizability, generalizing a result and proof technique
by Bouajjani et al. for single-pushdown systems. While this preservation
does not hold for the forwards reachability relation, we can show that it
efficiently preserves the rationality of a set of configurations; the proof of
this latter result is inspired by the work by Finkel et al. It follows that
the reachability relation is decidable for cooperating multi-pushdown sys-
tems in polynomial time and the same holds, e.g., for safety and liveness
properties given by recognizable sets of configurations.

Keywords: Reachability, Formal Verification, Pushdown Automaton,
Distributed System

1 Introduction

In this paper, we introduce the model of cooperating multi-pushdown systems3

and study the reachability relation for such systems. To explain the idea of
a cooperating multi-pushdown system, we first look at well-studied pushdown
systems. They model the behavior of a sequential recursive program and possess
a control state as well as a pushdown. The top symbol of the pushdown stores
the execution context, e.g., parameters and local variables, the state can be used
to return values from a subroutine to the calling routine. Such a system can,
depending on the state and the top symbol, do three types of moves: it can call
a subroutine (i.e., change state and top symbol and add a new symbol on top of

? This work was done while Chris Köcher was affiliated with the Technische Universität
Ilmenau.

3 A more descriptive name would be “cooperating systems of pushdown systems”, but
we refrain from using this term.

2 C. Köcher, D. Kuske

the pushdown), it can do an internal action (i.e., change state and top symbol),
and it can return from a subroutine (i.e., delete the top symbol and store the
necessary information into the state). This leads to the unifying definition of a
transition that, depending on state and top symbol, changes state and replaces
the top symbol by a (possibly empty) word.

A cooperating multi-pushdown system consists of a finite family of push-
down systems (indexed by a set P). Cooperation is realized by the formation
of temporary coalitions that perform a possibly recursive subroutine in a joint
manner. Suppose the system is in a configuration where C ⊆ P forms one of
the coalitions. The execution context of the joint task is distributed between the
top symbols of the pushdowns from the coalition and can only be changed in all
these components at once. As above, there are three types of moves depending
on the top symbols and the states of the systems from the coalition. First, a
(further) subroutine can be called on a sub-coalition C0 ⊆ C. Even more, sev-
eral subroutines can be called in parallel on disjoint sub-coalitions of C. This is
modeled as a change of states and top symbols of C and addition of some further
symbols on the pushdowns from subsets of C. Internal actions of the coalition C
can change the (common) top symbol as well as the states of the systems that
form the coalition C. Similarly, a return move deletes the common top symbol
and changes the states of the systems from C, in this moment, the coalition C is
dissolved and the systems from C are free to be assigned to new coalitions and
tasks by the calling routine. Since several, mutually disjoint coalitions can exist
and operate at any particular moment, the cooperating multi-pushdown system
is a non-sequential model.

Since a cooperating multi-pushdown system consists of several pushdown sys-
tems, a configuration consists of a tuple of local states and a tuple of pushdown
contents; the current division into coalitions is modeled by the top symbols of the
pushdowns: any component forms a coalition with all components that have the
same top symbol a on their stack. Since all these occurrences of the letter a can
only change at once, there is some dependency in the tuple of pushdown contents
of a configuration. It turns out to be convenient and fruitful to understand such
a “consistent” tuple of pushdown contents as a Mazurkiewicz trace. Since the
set of all Mazurkiewicz traces forms a monoid, we can define recognizable and
rational sets of traces and therefore of configurations: Both these classes of sets
of traces enjoy finite representations (by asynchronous automata [19] and NFAs,
resp.) that allow to decide membership, any recognizable set is rational but not
vice versa, any singleton is both, recognizable and rational, and inclusion of a
rational set (and therefore in particular of a recognizable set) in a recognizable
set is efficiently decidable (but not vice versa).

As our main results, we obtain that (1) backwards reachability efficiently pre-
serves the recognizability of sets of configurations while (2) forwards reachability
efficiently preserves the rationality.4 We also show that asynchronous multi-

4 The full version of this paper also shows that backwards (forwards) reachability does
not preserve rationality (recognizability, resp.)

Cooperating Multi-Pushdown Systems 3

pushdown systems (a slight generalization of our model) can model 2-pushdown
systems and therefore have an undecidable reachability relation.

From our positive results, we infer that the reachability relation as well as
certain safety and liveness properties are decidable in polynomial time. Further-
more, the first result implies that EF-model checking is decidable, although one
only obtains a non-elementary complexity bound.

Related work. Corresponding results for pushdown systems can be found in
[11] and [6] where rationality and recognizability coincide [14]; Finkel et al. gave
a simple algorithm proving that the forwards reachability relation preserves the
recognizability while this preservation under the backwards reachability relation
was shown by Bouajjani et al. Our proof of (1) generalizes the one by Bouajjani
et al. while the work by Finkel et al. inspired our proof of (2).

Other forms of multi-pushdown systems have been considered by different
groups of authors, e.g., [7, 8, 18, 15, 12, 4, 2, 1, 3, 5, 16]. These alternative models
may contain a central control or, similarly to our cooperating systems, local
control states. The models can have a fixed number of processes and pushdowns
or they are allowed to spawn or terminate other processes. Local processes can
differ in their communication mechanism, e.g., by rendevouz or FIFO-channels.
The decidability results concern logical formulas of some form or bounded model
checking problems.

Mazurkiewicz traces as a form of storage mechanism have been considered
by Hutagalung et al. in [13], where multi-buffer systems were studied.

2 Preliminaries

For R ⊆ S2 and s, t ∈ S, let sR := {t ∈ S | sR t} and R t := {s ∈ S | sR t}.
For n ∈ N, [n] = {1, . . . , n}. Let (Si)i∈[n] be a tuple of sets, I, J ⊆ [n]

be two disjoint sets, and s = (si)i∈[n] and t be tuples from
∏n

i=1 Si. We write
s�I = (si)i∈I ∈

∏
i∈I Si for the restriction of s to the components in I and

(s�I , t�J) for the joint tuple r ∈
∏

i∈I∪J Si with r�I = s�I and r�J = t�J .
For a word w ∈ A∗, we write Alph(w) for the set of letters occurring in w.
A non-deterministic finite automaton or NFA is a tuple A = (Q,A, I, δ, F)

where Q is a finite set of states, A is an alphabet, I, F ⊆ Q are sets of initial
and accepting states, respectively, and δ ⊆ Q × A × Q is a set of transitions;
its size ‖A‖ is |Q|+ |A|. We write Q1

w−→A Q2 if there is a run from some state

p ∈ Q1 to some state q ∈ Q2 labeled with w in A; {p} w−→A {q} is abbreviated

p
w−→A q. The language accepted by A is L(A) := {w ∈ A∗ | I w−→A F}.
We will model the contents of our multi-pushdown systems with the help

of Mazurkiewicz traces; for a comprehensive survey of this topic we refer to
[10]. Traces were first studied in [9] as “heaps of pieces” and later introduced
into computer science by Mazurkiewicz to model the behavior of a distributed
system [17]. The fundamental idea is that any letter a ∈ A is assigned a set of
locations or processes aL ⊆ P it operates on (where P is some set):

4 C. Köcher, D. Kuske

A distributed alphabet is a triple D = (A,P,L) where A and P are two
alphabets of letters and processes, respectively, and L ⊆ A×P associates letters
to processes such that aL 6= ∅ for each a ∈ A. In this paper, D will always
denote a distributed alphabet (A,P,L).

For a word w ∈ A∗ we denote the set of processes associated with w by
wL :=

⋃
a∈Alph(w) aL ⊆ P . In particular, we set εL := ∅. By πi : A∗ → A∗i we

denote the projection onto Ai := L i (the alphabet of all letters associated to
process i), i.e., the monoid morphism with πi(a) = a for a ∈ Ai and πi(b) = ε
for b ∈ A \Ai.

Since πi : A∗ → A∗i is a monoid morphism for all i ∈ [n], also the mapping

π : A∗ →
∏

i∈P
A∗i : w 7→ (πi(w))i∈P

is a monoid morphism. For w ∈ A∗, we call π(w) the (Mazurkiewicz) trace
induced by w. The trace monoid is the submonoid of

∏
i∈P A

∗
i with universe

M(D) = {π(w) | w ∈ A∗}; its elements are traces and its subsets are trace
languages.

We call two words v, w ∈ A∗ with vL∩wL = ∅ independent and denote this
fact by v ‖ w. We can see that v ‖ w implies π(vw) = π(wv).

Let A = (Q,A, I, δ, F) be an NFA. The accepted trace language of A is

T (A) := {π(w) | I w−→A F}. In other words, T (A) is the image of L(A) un-
der the morphism π. A trace language L ⊆M(D) is called rational if there is an
NFA A with T (A) = L, i.e., iff L is the image of some regular language in A∗

under the morphism π. A trace language L is recognizable iff its preimage under
the morphism π, i.e. {w ∈ A∗ | π(w) ∈ L}, is regular. Clearly, any recognizable
trace language is rational. The converse implication holds only in case any two
letters are dependent.

A finite automaton that reads letters of a distributed alphabet should consist
of components for all i ∈ P such that any letter a ∈ A acts only on the com-
ponents from aL. This idea leads to the following definition of an asynchronous
automaton. But first, we fix a particular notation: For a tuple (Qi)i∈P of finite
sets Qi, we write Q for the direct product

∏
i∈P Qi.

Definition 2.1. An asynchronous automaton or AA is an NFA A = (Q,A, I, δ, F)
where Q = Q is the product of finite sets Qi of local states and where, for every
(p, a, q) ∈ δ and r ∈

∏
i∈P\aLQi, we have

(i) p�P\aL = q�P\aL and (ii) ((p�aL, r), a, (q�aL, r)) ∈ δ .

Here, (i) ensures that any a-transition of A only modifies components from
aL while the other components are left untouched, and (ii) guarantees that
a-transitions are insensitive to the local states of the components in P \ aL.

Every asynchronous automaton accepts a recognizable trace language. Con-
versely, every recognizable trace language L ⊆M(D) is accepted by some deter-
ministic asynchronous automaton [19].

Cooperating Multi-Pushdown Systems 5

3 Introducing Cooperating Multi-Pushdown Systems

An AA consists of several NFAs that synchronize by joint actions. In a similar
manner, we will now consider several pushdown systems.

Recall that a pushdown system (or PDS) consists of a control unit (that can
be in any of finitely many control states) and a pushdown (that can hold words
over the pushdown alphabet A). Its transitions read the top letter a from the
pushdown, write a word w onto it, and change the control state. In our model,
we have a pushdown system Pi for every i ∈ P whose pushdown alphabet is Ai.
These systems synchronize by the letters read and written onto their pushdown.

Definition 3.1. An asynchronous multi-pushdown system or aPDS is a tuple
P = (Q,∆) where Q = Q holds for some finite sets Qi of local states and
∆ ⊆ Q×A×A∗ ×Q is a finite set of transitions such that, for each transition
(p, a, w, q) ∈ ∆ and r ∈

∏
i∈P\awLQi, we have

(i) p�P\awL = q�P\awL and (ii) ((p�awL, r), a, w, (q�awL, r)) ∈ ∆ .

Its size ‖P‖ is |Q|+ k · |∆| where k− 1 is the maximal length of a word written
by any of the transitions (i.e., ∆ ⊆ Q×A×A<k ×Q).

The set of configurations ConfP of P equals Q×M(D). For two configurations
(p, π(u)), (q, π(v)) ∈ ConfP we set (p, π(u)) ` (q, π(v)) if there is a transition
(p, a, w, q) ∈ ∆ and a word x ∈ A∗ with π(u) = π(ax) and π(v) = π(wx). The
reflexive and transitive closure of ` is the reachability relation `∗.

Let C and D be sets of configurations.

– We write C `∗ D if there are c ∈ C and d ∈ D with c `∗ d.
– The set C is rational (recognizable, resp.) if, for all q ∈ Q, the trace lan-

guage Cq := {π(u) | (q, π(u)) ∈ C} is rational (recognizable, resp.).
– preP(C) := {c ∈ ConfP | c ` C} and postP(C) := {d ∈ ConfP | C ` d} are

the sets of predecessors/successors of configurations from C, and

pre∗P(C) :=
⋃

k∈N
prekP(C) and post∗P(C) :=

⋃
k∈N

postkP(C) .

are the sets of configurations backwards (forwards, resp.) reachable from
some configuration in C.

The reachability relation for configurations of asynchronous multi-pushdown
systems is, in general, undecidable:

Theorem 3.2. There exists an aPDS with undecidable reachability relation `∗.

Proof. We start with a classical 2-pushdown system P with an undecidable
reachability relation (its set of states is Q and the two pushdowns use disjoint
alphabets A1 and A2). Let A = A1 ∪ A2 ∪ {>} and P = [2]. We consider the
distributed alphabet D with aL = {i} for a ∈ Ai and >L = {1, 2}.

We simulate P by an aPDS P′ over D as follows. The first process of P′

stores the state of the simulated system P together with a letter from A1 or

6 C. Köcher, D. Kuske

ε, i.e., Q1 = Q(A1 ∪ {ε}), the second process can store a letter from A2 or the
empty word, i.e., Q2 = A2 ∪ {ε}.

A transition (p, (a, b), (u, v), q) of P (that replaces a and b by u and v on the
two pushdowns) is simulated by three transitions of the aPDS: ((pε, .), a, ε, (pa, .))
reads a from the first pushdown and stores it in the first local state; ((., ε), b,>, (., b))
reads b from the second pushdown, stores it in the second local state, and puts
> onto both pushdowns; finally, ((pa, b),>, uv, (qε, ε)) replaces > by uv (i.e.,
π1(uv) = u is written onto the first pushdown and π2(uv) = v onto the sec-
ond).

To obtain a model with a decidable reachability relation, we therefore have
to restrict aPDS.5 To this aim, we require that any transition can only write
onto pushdowns it reads from.

Definition 3.3. A cooperating multi-pushdown system or cPDS is an aPDS
P = (Q, ∆) with wL ⊆ aL for each transition (p, a, w, q) ∈ ∆.

Example 3.4. Suppose D = ({a, b, c}, {1, 2}, {(a, 1), (a, 2), (b, 1), (c, 2)}). We con-
sider the cPDS P from Figure 1 where edges from global state p to global state
q labeled a | w visualize global transitions (p, a, w, q). The set of global states of
P is the product {p1, q1}×{p2, q2}. Additionally, the transitions reading b and c
only depend on process 1 and 2, resp. Since bL, cL ⊆ aL, any global transition
(p, x, w, q) satisfies wL ⊆ xL, i.e., P is, indeed, a cPDS.

The following sequence is a run of P from ((p1, p2), π(ac)) to ((q1, q2), π(bb)):

((p1, p2), π(ac)) ` ((q1, p2), π(abc)) ` ((q1, p2), π(abbc))

` ((q1, q2), π(bbc)) ` ((q1, q2), π(bb)) .

P :

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab

c | ε

a | ab, b | ε

a | ε, c | ε

c | ε

b | ε, c | ε

Fig. 1. The cPDS P from Example 3.4.

In order to decide the reachabil-
ity relation, we will compute, from
a set of configurations C, the set
pre∗P(C). To represent possibly in-
finite sets of configurations, we use
P-asynchronous automata (defined
next).

Definition 3.5. Let P = (Q, ∆) be a
cPDS. A P-asynchronous automaton
or P-AA is an AA A = (S, A, ∅, δ, F)
such that Qi ⊆ Si for all i ∈ P .

The P-AA A accepts the following
set C(A) of configurations of P:

{(q, π(w)) ∈ ConfP | q ∈ Q, q
w−→A F}

5 The proof of Theorem 3.2 shows that requiring aw to be connected for any transition
(p, a, w, q) does not yield decidability.

Cooperating Multi-Pushdown Systems 7

By the very definition, any set C(A) is a recognizable set of configurations.
Conversely, suppose C ⊆ ConfP is recognizable such that, by definition, all the
languages Cq are recognizable. Then we can represent each of the languages Cq

by an AA Aq. Since q is a P -tuple, we can assume, without loss of generality,
that q is the only initial state of the AA Aq. Following Bouajjani et al. [6], we
can further assume that all these AAs differ in their initial state, only. Thus, we
obtain the following result.

Observation 3.6. Let P = (Q, ∆) be a cPDS. A set of configurations C ⊆
ConfP is recognizable if, and only if, there is a P-AA A with C(A) = C.

4 Computing the Backwards Reachable Configurations

In this section we want to compute the backwards reachable configurations in a
cPDS P. The main result of this section states that the mapping pre∗P effectively
preserves the recognizability of sets of configurations.

Theorem 4.1. Let P = (Q, ∆) be a cPDS and C ⊆ ConfP be a recognizable
set of configurations. Then the set pre∗P(C) is recognizable.

Even more, from D, P, and a P-AA A(0), one can construct in polynomial
time a P-AA A that accepts the set pre∗P(C(A(0))).

The rest of this section is devoted to the proof of this result.
Adapting ideas by Bouajjani et al. [6] from NFAs to AA, we construct a P-AA

A that accepts the set pre∗P(C(A(0))) of configurations backwards reachable from

C(A(0)). To this aim, we will inductively add new transitions to the P-AA A(0) =
(S, A, ∅, δ(0), F), but leave the sets of states, initial states, and accepting states
unchanged. We can assume (and this assumption is crucial for the correctness of
the construction) that the automaton cannot enter a local state from the cPDS
P, i.e., we have qi ∈ Si \Qi for any (p, a, q) ∈ ∆ and any i ∈ aL.

p q q s

p

f
a | u u x

a

P : A(k+1) :

Fig. 2. Visualization of the construction of A(k+1).

Suppose that we already constructed the P-AA A(k). To obtain A(k+1) from
A(k), we just add all transitions (p, a, s) with (p, a, u, q) ∈ ∆ and q

u−→A(k) s for
some q ∈ Q and u ∈ A∗ (see Fig. 2). Note that (p, a, u, q) ∈ ∆ as well as the

8 C. Köcher, D. Kuske

run q
u−→A(k) s operate on components from aL ⊇ uL, only. Hence, the same

applies to the new transition (p, a, s) ensuring that A(k+1) is asynchronous (this
argument requires aL ⊇ uL and would therefore not work for aPDS).

The “limit” of this construction is the P-AA A(∞) = (S, A, ∅, δ(∞), F) with
δ(∞) =

⋃
k∈N δ

(k).

Example 4.2. Recall the cPDS P from Example 3.4. In Fig. 3 we depict our
algorithm on input P and the set of configurations C = {((q1, q2), ε)}. A P-AA
A(0) = (S1 × S2, A, ∅, δ, F) accepting this set is depicted in the left.

In A(1), we have (q1, p2)
ab−→A(1) (q1, q2) (depicted in bold and red) and, in P,

we have the transition ((p1, p2), a, ab, (q1, p2)) ∈ ∆. The definition of δ(2) implies
that ((p1, p2), a, (q1, q2)) is a new local transition.

The construction terminates with A(2) which is a P-AA that accepts the set
of configurations backwards reachable from C =

{
((q1, q2), ε)

}
.

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

c

c

b

a, c

b, c

c

a c

b

a, c

b, c

Fig. 3. The P-AA A(0), A(1), and A(2) (from left to right) from Example 4.2.

Now, we show C(A(∞)) = pre∗P(C(A(0))). First, by induction on k ∈ N, one

can easily prove prekP(C(A(0))) ⊆ C(A(k)) (which ensures the inclusion “⊇”).

On the other hand, Example 4.2 shows that the converse inclusion C(A(k)) ⊆
prekP(C(A(0))) does not necessarily hold. The following lemma is the central

argument in the proof of the inclusion “⊆” as it allows to infer C(A(k)) ⊆
pre∗P(C(A(0))) for all k ∈ N.

Lemma 4.3. Let k ∈ N, v ∈ A∗, p ∈ Q, and s ∈ S with p
v−→A(k) s. Then there

are a global state r ∈ Q and a word w ∈ A∗ with the following properties:

(a) (p, π(v)) `∗ (r, π(w)) and (b) r
w−→A(0) s.

Cooperating Multi-Pushdown Systems 9

Proof idea. We only indicate where our proof differs significantly from a similar
one from [6] for pushdown systems. In general, the lemma is shown by induction
on k, and the significant difference occurs in the induction step. So assume the
lemma holds for k. To prove it for k+1, one proceeds by induction on the length
of the word v. Again, the significant difference occurs in the induction step.
Hence, we assume that the lemma holds for k + 1 and any word of length at
most n and we will prove it for a word v = v′a ∈ An+1 with a ∈ A and v′ ∈ An.

p

q′

r

s′ s

t

k + 1 k + 1

k + 1

0

0

0

v′ a

w′

a

w′′

w′

Fig. 4.

So let p ∈ Q and s ∈ S such that p
v−→A(k+1)

s. Since p
v′a−−→A(k+1) s, there is some global

state s′ ∈ S with p
v′

−→A(k+1) s′
a−→A(k+1) s.

Since |v′| = n, the inductive hypothesis
provides a global state q′ ∈ Q and a word w′ ∈
A∗ with (p, π(v′)) `∗ (q′, π(w′)) and q′

w′

−→A(0)

s′. Note that the former implies in particu-
lar (p, π(v)) = (p, π(v′a)) `∗ (q′, π(w′a)). The

difficult case is if s′
a−→A(k) s does not hold

(see Figure 4 where edges
w−→A(`) are denoted

by
w−→`). Then (s′, a, s) is a new transition in

δ(k+1) which implies s′i ∈ Qi for all i ∈ aL.
Recall that the P-AA A(0) cannot enter a lo-
cal state of the pushdown system. Here, our argument differs from the one in
[6]), as we can only infer w′ L∩ aL = ∅. Setting t = (s�aL, q′�w′ L, s

′�P\w′aL),
one can nevertheless complete the picture.

The remaining arguments for Theorem 4.1 are those from [6].

5 Computing the Forwards Reachable Configurations

The main result of this section is that the mapping post∗P efficiently preserves
rationality. Here, we represent a rational set of configurations C ⊆ Q ×M(D)
by a tuple A of NFAs Aq for q ∈ Q that, for all global states q, accept the trace
language T (Aq) = Cq = {π(w) | (q, π(w)) ∈ C}. If this is the case, we say “the
tuple A accepts C”.

Theorem 5.1. Let P be a cPDS and C ⊆ ConfP be rational. Then post∗P(C) is
rational. In particular, we can compute a tuple of NFAs accepting post∗P(C) from
P and a tuple of NFAs accepting C. If D is fixed, this construction is possible
in polynomial time.

The proof of this theorem is inspired by the work by Finkel et al. [11]. To ex-
plain its idea and particularities, we first start with a classical pushdown system
P = (Q1, ∆). Suppose there are transitions (p, a, bv, q) and (q, b, ε, r) implying
(p, ax) ` (q, bvx) ` (r, vx) for any word x. If we add the transition (p, a, v, r) to
∆ that allows to go from (p, ax) to (r, vx) in one step, the reachability relation
does not change. We keep adding such “shortcuts” and call the resulting push-
down system P(∞). Then, any run of the original system P can be simulated by

10 C. Köcher, D. Kuske

a run of the system with shortcuts P(∞) that first shortens the pushdown and
then writes onto the pushdown. It follows that, for pushdown systems P, the
mapping post∗P preserves rationality.

The crucial point of the above construction is that any run of the system
P(∞) can be brought into some “simple form” by using shortcuts. Here, “simple
form” means that it consists of two phases: the pushdown decreases properly
in every step of the first phase and does not decrease in any step of the second
phase.

Our strategy in the proof of Theorem 5.1 will extend the above idea:

1. First, one demonstrates that Theorem 5.1 holds for “homogeneous” systems
that formalize and strengthen the two types of phases from above:
A cPDS P = (Q, ∆) is homogeneous if one of the following holds.
(1) All transitions (p, a, w, q) ∈ ∆ satisfy w = ε.
(2) There is X ⊆ P such that all transitions (p, a, w, q) ∈ ∆ satisfy aL = X

and w 6= ε.
This means, P is homogeneous if either no transition writes anything or if
all transitions read exactly from the same subset X ⊆ P of processes and
write at least one letter. In particular, in the second case we have aL = bL
for each pair of transitions (p, a, v, q), (r, b, w, s) ∈ ∆ (but not necessarily
a = b).

2. Using the result on homogeneous systems, one demonstrates Theorem 5.1 for
“saturated” systems, i.e., systems where no new “shortcuts” can be added:
A cPDS P = (Q, ∆) is saturated if (p, a, ubv, q), (q, b, ε, r) ∈ ∆ with u ‖ b
implies (p, a, uv, r) ∈ ∆.
This step differs significantly from the above arguments from [11] as the
main difficulty is to show that the number of “phases” can be bounded (the
bound is linear in the number of sets aL ⊆ P which is bounded by |A|).

3. Finally, Proposition 5.6 proves Theorem 5.1 in full generality by showing
that any system can be saturated by adding shortcuts.

5.1 Forwards Reachability in Homogeneous Systems

Let P = (Q, ∆) be a cPDS and let D be a rational set of configurations.
If ∆ ⊆ Q×A×{ε}×Q, then any transition shortens the pushdowns. Hence,

the effect of post∗P is a left quotient of Dq wrt. a recognizable trace language.
Now suppose X ⊆ P and aL = X as well as u 6= ε for all transitions

(p, a, u, q) ∈ ∆. Then, dually to the above case, the effect of post∗P is the con-
catenation of Dq and a rational (not necessarily recognizable) trace language.

It follows (in both cases), that post∗P(D) is rational. A closer analysis reveals
that also the remaining claims of Theorem 5.1 hold for homogeneous systems.

5.2 Forwards Reachability in Saturated Systems

Recall the constructed pushdown system with just one pushdown P(∞) from the
beginning of this section. This pushdown system is saturated. We learned that

Cooperating Multi-Pushdown Systems 11

any run in P(∞) can be simulated by a run consisting of two phases: first, the
pushdown shortens and then, it increases. The following example shows that this
is not possible in systems with more than one pushdown.

(0, 0, 0) (1, 0, 0) (2, 0, 0) (3, 0, 0)

a | abc

a | c

b | ε

b | ε

b | bde

b | e

d | ε

Fig. 5. The cPDS from Example 5.2.

Example 5.2. We consider the distributed alphabet D = (A,P,L) with A =
{a, b, c, d, e} and P = {1, 2, 3} where aL = P , bL = {1, 2}, cL = {3}, dL = {1},
and eL = {2}. Further, let P = (Q, ∆) be the saturated cPDS from Figure 5.
The following is the only run from the configuration (0, π(a)) to the configuration
(3, π(e4c4)) where we write n for the state (n, 0, 0):

(0, π(a)) `3 (0, π(abcbcbc)) ` (1, π(cbcbcbc)) = (1, π(b3c4))

`2 (2, π(bc4))

`3 (2, π(bdededec4)) ` (3, π(edededec4)) = (3, π(d3e4c4))

`3 (3, π(e4c4))

Note that this run splits into four phases (that correspond to the four lines
above); it increases its pushdowns in the first and third and decreases them in
the second and fourth.

So far, we used the term “phase” without defining it formally. To be a bit
more precise, a “phase” is a run of some maximal homogeneous subsystem of P.
These subsystems are defined next.

Definition 5.3. Let P = (Q, ∆) be a cPDS.

1. Let ∆ε = {(p, a, ε, q) ∈ ∆} and Pε = (Q, ∆ε).
2. For X ⊆ P , let ∆X = {(p, a, u, q) ∈ ∆ | aL = X and u 6= ε} and PX =

(Q, ∆X).

To simplify notation, we write `ε for `Pε and `X for `PX
for any X ⊆ P .

Since ∆ is the disjoint union of the subsets ∆ε and ∆X for X ⊆ P , any run of
P splits uniquely into maximal subruns of these subsystems and these subruns
are precisely what we called “phase”.

For X ⊆ P , set X = `∗ε ◦ `+X ⊆ ConfP × ConfP. In other words, c1 X

c2 means that the system P has a run from c1 to c2 that first shortens the

12 C. Köcher, D. Kuske

pushdowns and then, in the second phase, uses transitions from ∆X , only. Note
that the first (deleting) phase is allowed to be empty while the second (writing)
phase is required to be non-empty.

For X = (Xi)i∈[n] with Xi ⊆ P , set X = X1
◦ X2

◦ · · · ◦ Xn
.

The binary relation `∗ is the union of all relations X ◦ `∗ε for X a sequence
of subsets of P of arbitrary length. Our next aim is to show that we only need to
consider sequences X of bounded length. The central lemma proves that, under
certain conditions, X0

◦ X is contained in X , i.e., that we can shorten the
sequence X0X.

Lemma 5.4. Let P = (Q, ∆) be a saturated cPDS. Let X0, X1, . . . , Xn+1 ⊆ P
such that (i) X0 ⊆ Xn+1 and (ii) Xi 6⊆ Xn+1 for all 1 ≤ i ≤ n.

Then (X0,X1,...,Xn+1) ⊆ (X1,...,Xn+1).

Proof idea. The central argument of the proof goes as follows: Suppose we have

c0 ` c1 (X1,X2,...,Xn) ◦ `
∗
ε ◦ `Xn+1

d

and let (p, a, u, q) ∈ ∆ with aL = X0 denote the transition used in the first step.
The proof then proceeds by induction on the length of the word u. If u = ε, we
get c0 `ε c1 implying c0 (X1,...,Xn+1) d. Now let u 6= ε. By (i), the run from
c1 to d reads from its pushdowns, at least once, a letter b with bL∩X0 6= ∅;
we consider the first such transition t. If t ∈ ∆ε, the choice of t allows to prove
that it can be executed at the very beginning (i.e., in the configuration c1).
Using that P is saturated, the first two transitions can be combined into one
of the form (p, a, u′, q′) with |u′| < |u| such that the induction hypothesis is
applicable. If t /∈ ∆ε, property (ii) implies that it is the very last transition
(that leads to the configuration d) and that aL = bL. Using (ii), it follows that
the very first transition can be postponed to the last-but-one position implying
c0 (X1,...,Xn) ◦ `∗ε ◦ 2

Xn+1
d.

It follows from the above lemma that `∗ is the union of all relations X where
the sets in the sequence X are mutually distinct implying that the length of X
is bounded. Since the subsystems Pε and PX are homogenous, the arguments
from Section 5.1 ensure that Theorem 5.1 holds for saturated systems.

5.3 Saturating a System

It remains to transform an arbitrary system into an equivalent saturated one.
For a classical pushdown system (with just one pushdown), the idea is very
simple: If there are transitions (p, a, bw, q) and (q, b, ε, r), then adding the tran-
sition (p, a, w, r) does not change the behavior and transforms the system closer
to a saturated one. In the multi-pushdown setting, the technicalities are a bit
more involved: Suppose we have the transitions (p, a, cbw, q) and (q, b, ε, r) with
cL∩ bL = ∅, i.e., b ‖ c. Then π(cbw) = π(bcw), i.e., after doing the first transi-
tion (that writes the trace π(cbw) = π(bcw)), the second transition (eliminating

Cooperating Multi-Pushdown Systems 13

b) can be executed immediately. Therefore, also in this situation, we add the
transition (p, a, cw, r) to get closer to a saturated system.

Now, we construct cPDS P(k) = (Q, ∆(k)) for any k ∈ N as follows:

– we set ∆(0) := {(p, a, lnf(w), q) | (p, a, w, q) ∈ ∆}.6
– To obtain ∆(k+1), we add to the set ∆(k) all transitions (p, a, lnf(uv), r)

for which there are a letter b ∈ A and a global state q ∈ Q such that
(p, a, ubv, q), (q, b, ε, r) ∈ ∆(k) and u ‖ b.

Let ∆(∞) =
⋃

k≥0∆
(k) be the “limit” of the increasing sequence of sets ∆(k).

Note that the length of words written by transitions in ∆(∞) is bounded by the
length of words written by transitions in ∆(0); hence ∆(∞) is finite.

Example 5.5. Recall the cPDS P from Example 3.4. In Figure 6 we depict our
construction of the multi-pushdown systems P(k) for k ∈ {0, 1, 2}. It can be
verified that P(2) = P(3).

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab

c | ε

a | ab, b | ε

a|ε, c|ε

c | ε

b | ε, c | ε

a | ab

c | ε

a | b

a | ab, b | ε

a|ε, c|ε

a | b

c | ε

b | ε, c | ε

a | ab

c | ε

a | b,a | ε

a | ab, b | ε

a|ε, c|ε

a | b

c | ε

b | ε, c | ε

Fig. 6. The multi-pushdown system P = P(0), P(1), and P(2) = P(∞) (from left to
right). New transitions are marked in bold and red.

One can then show that the pair P(∞) = (Q, ∆(∞)) is a cPDS and that its
reachability relation coincides with that of the original system P.

Proposition 5.6. Let P be a cPDS. Then, in time polynomial in ‖P‖|P |, one
can construct an equivalent saturated system P(∞), i.e., a saturated cPDS with
`∗P = `∗

P(∞) .

6 lnf(w) denotes the lexicographic normal form of the trace π(w). The use of lnf(w)
instead of w allows to easily prove a polynomial upper bound for the number of
transitions.

14 C. Köcher, D. Kuske

6 Summary, Consequences, and Open Questions

We proved that the backwards reachability relation of communicating multi-
pushdown systems efficiently preserves the recognizability of a set of configura-
tions and that the forwards reachability relation efficiently preserves rationality.
Conversely, one can demonstrate that the backwards reachability relation does
not preserve rationality (i.e., there is a cPDS and a rational set C of configura-
tions such that pre∗(C) is not rational anymore). Similarly, one can demonstrate
that the forwards reachability relation does not preserve recognizability.

It is decidable whether a given rational set of traces is contained in a given
recognizable set of traces. Hence our positive results allow to decide, for C1

rational and C2 recognizable, the following questions.

– post∗(C1) ⊆ C2, or, since the class of recognizable trace languages is closed
under complementation, post∗(C1)∩C2 = ∅. This amounts to a safety prop-
erty.
Since singleton sets are both recognizable and rational, this also implies that
the reachability relation is decidable.

– post∗(C1) ∩ C2 6= ∅. Since the set C2 of configurations with a given global
state is recognizable, this implies that the control state reachability problem
is decidable for C1 rational.

– C1 ⊆ pre∗(C2).
– post∗(C1) ⊆ pre∗(C2) which amounts to a liveness property: From every

configuration reachable from C1, we can reach a configuration from C2. This
property can also by expressed by the EF-formula C1∧¬EF (¬EFC2). More
generally, EF-model checking is decidable for cPDS, although our results
allow to bound the running time only non-elementary.

The next and obvious open question regarding the verification of cPDS, one
would have to consider the recurrent reachability, i.e., the question whether,
starting from some configuration, there is an infinite run that visits some global
state infinitely often. This could then form the basis for algorithms deciding
properties that are given by formulas from linear time temporal logics.

Since we can see cPDS as a natural extension of pushdown systems from word
semantics to trace semantics, another open problem is to find some generalized
context-free grammars accepting the class of languages of cPDS. Additionally,
one could compare this new model with other known models for multi-pushdown
systems.

References

1. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Controllers for the verification of
communicating multi-pushdown systems. In: CONCUR’14. pp. 297–311. Lecture
Notes in Computer Science vol. 8704, Springer (2014)

2. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Verifying communicating multi-
pushdown systems via split-width. In: ATVA’14. pp. 1–17. Lecture Notes in Com-
puter Science vol. 8837, Springer (2014)

Cooperating Multi-Pushdown Systems 15

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of ordered multi-pushdown au-
tomata is 2etime-complete. Int. J. Found. Comput. Sci. 28(8), 945–976 (2017)

4. Babic, D., Rakamaric, Z.: Asynchronously communicating visibly pushdown sys-
tems. In: FMOODS/FORTE’13. pp. 225–241. Lecture Notes in Computer Science
vol. 7892, Springer (2013)

5. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. Theory of Computing Systems 60(4), 695–736 (2017)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) 8th In-
ternational Conference on Concurrency Theory. Lecture Notes in Computer Sci-
ence, vol. 1243, pp. 135–150. Springer (1997)

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551
(2003)

8. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular Symbolic Analysis of Dynamic
Networks of Pushdown Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005
– Concurrency Theory. pp. 473–487. Lecture Notes in Computer Science vo. 3653,
Springer (2005)

9. Cartier, P., Foata, D.: Problemes combinatoires de commutation et rearrange-
ments. Lecture Notes in Mathematics vol. 85, Springer, Berlin - Heidelberg - New
York (1969)

10. Diekert, V., Rozenberg, G.: The Book of Traces. World scientific (1995)
11. Finkel, A., Willems, B., Wolper, P.: A Direct Symbolic Approach to Model Check-

ing Pushdown Systems. Electronic Notes in Theoretical Computer Science 9, 27–37
(1997)

12. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. Log. Methods Comput. Sci. 8(3) (2012)

13. Hutagalung, M., Hundeshagen, N., Kuske, D., Lange, M., Lozes, É.: Multi-buffer
simulations: decidability and complexity. Information and Computation 262(2),
280–310 (2018)

14. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–40. Annals of Mathematics
Studies vol. 34, Princeton University Press (1956)

15. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS’07. pp. 161–170. IEEE Computer Society (2007)

16. La Torre, S., Napoli, M., Parlato, G.: Reachability of scope-bounded multistack
pushdown systems. Inf. Comput. 275, 104588 (2020)

17. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Report Series 6(78) (1977)

18. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS’05. pp. 93–107. Lecture Notes in Computer Science vol. 3440, Springer
(2005)

19. Zielonka, W.: Notes on finite asynchronous automata. RAIRO - Theoretical Infor-
matics and Applications 21(2), 99–135 (1987)

