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Abstract. We study the subtrace relation among Mazurkiewicz traces
which generalizes the much-studied subword order. Here, we consider
the 2-variable fragment of a counting extension of first-order logic with
regular predicates. It is shown that all definable trace languages are
effectively recognizable implying that validity of a sentence of this logic
is decidable (this problem is known to be undecidable for virtually all
stronger logics already for the subword relation).
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1 Introduction

The subword relation is one of the simplest nontrivial examples of a well-quasi
ordering [7] and can be used in the verification of infinite state systems [4]. It
can be understood as embeddability of one word into another. This embeddabil-
ity relation has been considered for other classes of structures like trees, posets,
semilattices, lattices, graphs etc. [11, 8, 21, 19]; this paper initiates its considera-
tion for the class of Mazurkiewicz traces. (The prefix order on the set of traces
has been studied extensively before, both order-theoretically (cf. [5]) and under
logical aspects (e.g. [15]).)

These traces were first investigated by Cartier and Foata [2] to study the com-
binatorics of free partially commutative or, equivalently, trace monoids. Later,
Mazurkiewicz [16] used them to relate the interleaving and the partial-order se-
mantics of a distributed system (see [3] for surveys on the many results on trace
monoids).

Many of the above mentioned papers on the embeddability relation study
its logical aspects. Regarding the subword relation, they provide a rather sharp
description of the border between decidable and undecidable fragments of first-
order logic: For the subword order alone, the ∃∗-theory is decidable [12] and
the ∃∗∀∗-theory is undecidable [9]. For the subword order together with regular
predicates, the two-variable theory is decidable [9] (this holds even for the two-
variable fragment of a counting extension of first-order logic [14]) and the three-
variable theory [9] as well as the ∃∗-theory are undecidable [6] (even if we only
consider singleton predicates, i.e., constants). If one restricts the universe from
all words to a particular language, an even more diverse picture appears [14].

All the undecidability results hold for the subtrace relation since it gener-
alizes the subword relation. The strongest decidability result for the subword
relation is the decidability of the 2-variable fragment of a counting extension



2 D. Kuske

of first-order logic [14]. The proof shows that every definable unary relation is
an effectively regular language. It proceeds by quantifier elimination and relies
crucially on the fact that the downwards closure, the upwards closure, and the
“incomparability language” (i.e., the set of words that are incomparable to some
element of the language) of a regular language is effectively regular. These three
preservation results hold since the subword relation and the incomparability
relation are unambiguous rational transductions [9].

Considering the subtrace relation, the main result of this paper shows the
decidability of the 2-variable fragment of the extension of first-order logic by
threshold-counting quantifiers. This extends results by Karandikar and Schnoe-
belen [9] and by Kuske and Zetzsche [14] from words to traces. As their proofs for
words, we proceed by quantifier elimination and rely on the preservation prop-
erties mentioned above, but this time for trace languages. Differently from the
study of subwords, here we cannot use rational relations for traces since they do
not preserve recognizability (and are not available for other classes of structures
at all).

To substitute the use of rational relations, we consider the internal structure
of a trace, i.e., we consider a trace not as an element of a monoid, but as a labeled
directed graph. Now monadic second order (abbreviated MSO) logic can be used
to make statements about such a graph. Generalizing Büchi’s result, Thomas [20]
showed that a set of traces is recognizable if, and only if, it is the set of models of
some MSO-sentence. With this shift of view, we have to prove the preservation
results not for recognizable, but for MSO-definable sets of traces. This is rather
straightforward for the upwards closure since a trace has a subtrace satisfying
some MSO-sentence σ if, and only if, some induced subgraph satisfies σ which
is easily expressible in MSO logic. Since we consider also threshold counting
quantifiers, we have to express, e.g., that there are two non-isomorphic induced
subgraphs satisfying σ. Since isomorphism is not expressible in MSO logic, the
solution relies on “leftmost” or “canonical” subgraphs. When talking about the
incomparability relation, we are interested in traces (i.e., graphs) that are neither
a sub- nor a supergraph. We base the solution on the largest prefix of one trace
that is a subtrace of the other trace as well as on the combinatorics of traces
and, in particular, on MSO logic.

Methodwise, we derive the decidability without the use of rational relations.
Instead, our arguments are based on the rich theory of traces and in particular
on the relation between recognizability and MSO-definability in this setting. It
remains to be explored whether these ideas can be transfered to other settings
where rational relations are not available.

2 Definitions and main result

2.1 Traces and subtraces

A dependence alphabet is a pair (Σ,D) where Σ is a finite alphabet and the
dependence relation D ⊆ Σ2 is symmetric and reflexive.
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A trace over (Σ,D) is (an isomorphism class of) a directed acyclic graph
t = (V,E, λ) with node-labels from Σ (i.e., λ : V → Σ) such that, for all x, y ∈ V ,

– (x, y) ∈ E =⇒ (λ(x), λ(y)) ∈ D and
– (λ(x), λ(y)) ∈ D =⇒ (x, y) ∈ E or x = y or (y, x) ∈ E.

The set of all traces is denoted M(Σ,D), 1 is the unique trace with empty set
of nodes. For two traces s = (Vs, Es, λs) and t = (Vt, Et, λt), we define their
product s · t = u = (Vu, Eu, λu) setting Vu = Vs ] Vt, λu = λs ∪ λt, and
Eu = Es ∪ Et ∪ {(x, y) ∈ Vs × Vt | (λs(x), λt(y)) ∈ D}.

This operation is easily seen to be associative with neutral element 1, i.e.,
M(Σ,D) forms a monoid that we call trace monoid (induced by (Σ,D)).

Let a ∈ Σ. Abusing notation, we denote the singleton trace ({x}, ∅, {(x, a)})
by a. Then the monoid M(Σ,D) is generated by the set Σ of singleton traces.

Note that M(Σ, {(a, a) | a ∈ Σ}) ∼= (N,+)|Σ| and M(Σ,Σ × Σ) ∼= Σ∗. Fur-
ther, the direct and the free product of two trace monoids is a trace monoid,
again. But there are also trace monoids not arising by free and direct prod-
ucts from free monoids (consider, e.g., the dependence alphabet with Σ =
{a1, a2, a3, a4} and (ai, aj) ∈ D ⇐⇒ |i − j| ≤ 1). See [3] for a collection of
surveys on the many results known for trace.

Let t = (V,E, λ) be a trace. To simplify notation, we write X ⊆ t for “X is
a set of nodes of t”, i.e., for X ⊆ V .

Now let X ⊆ t. Then t�X denotes the subgraph of t induced by X, i.e.,
(X,E∩X2, λ�X). Note that s = t�X is a trace that we call subtrace of t (induced
by X). We denote this fact by s vsub t and call t a supertrace of s.

It can be observed that s vsub t if, and only if, there are a natural number
n ≥ 0 and traces s1, s2, . . . , sn and t0, t1, . . . , tn such that s = s1s2 · · · sn and
t = t0s1t1s2t2 · · · sntn.

2.2 Recognizable sets

Let (M, ·, 1) be some monoid. A set S ⊆ M is recognizable if there exists a
monoid homomorphism η : (M, ·, 1)→M ′ into some finite monoid M ′ such that
η(s) = η(t) and s ∈ S imply t ∈ S for all s, t ∈M . We call the triple (M ′, η, η(S))
an automaton accepting S.

2.3 The logic C2 and the main result

Let (Σ,D) be some dependence alphabet and let R denote the class of recog-
nizable subsets of M(Σ,D). We consider the structure

S = (M(Σ,D),vsub,R)

whose universe is the set of traces, whose only binary relation is the subtrace
relation and that has a unary relation for each recognizable subset of M(Σ,D).
We will make statements about this structure using some variant of classical
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first-order logic. More precisely, the formulas of C2 are defined by the following
syntax:

ϕ := x1 vsub x2 | x1 = x2 | x1 ∈ S | ϕ ∨ ϕ | ¬ϕ | ∃≥kx1 ϕ

where x1, x2 are variables from {x, y}, S ∈ R is some recognizable set, and
k ∈ N. Note that we allow only two variables, namely x and y. The semantics of
these formulas is as expected with the understanding that ∃≥kx1 ϕ holds if there
are at least k mutually distinct traces t1, t2, · · · , tk ∈M(Σ,D) that all make the
formula ϕ true. Note that ∃≥1 is the usual existential quantifier and that ∃≥0xϕ
is always true. Now we can formulate the main result of this paper and sketch
its proof from results to be demonstrated in later sections:

Theorem 2.1. If ϕ(x) is a formula from C2 with a single free variable, then
the set of traces S(ϕ) = {t ∈M(Σ,D) | S |= ϕ(t)} is recognizable.

Even more, from the dependence alphabet (Σ,D) and the formula ϕ, one
can compute an automaton accepting this set. Consequently, the C2-theory of
(M(Σ,D),vsub,R) is decidable uniformly in (Σ,D).

Proof. The proof proceeds by induction on the construction of the formula ϕ, the
most interesting case being ϕ = ∃≥kxψ(x, y). Using arguments like de Morgan’s
laws and basic arithmetic, one can reduce this to the case that ψ(x, y) is a
conjunction of possibly negated formulas of the following form:

(a) x vsub y, x vsub x, y vsub x, y vsub y
(b) x ∈ S and y ∈ S for S ∈ R
(c) ∃≥`x : α(x, y) and ∃≥`y : α(x, y)

Since formulas of the form (c) have at most one free variable, we can apply the
induction hypothesis, i.e., replace them by formulas of the form (b). Since R is
closed under Boolean operations, there are Si, Ti ∈ R such that the formula ψ
is equivalent to the formula

y ∈ T1∨(x vsub y ∧ y 6vsub x ∧ x ∈ S2 ∧ y ∈ T2)

∨(x 6vsub y ∧ y vsub x ∧ x ∈ S3 ∧ y ∈ T3)

∨(x 6vsub y ∧ y 6vsub x ∧ x ∈ S4 ∧ y ∈ T4) .

Since the order relations between x and y in this formula are mutually exclusive,
the formule ϕ is equivalent to a Boolean combination of formulas of the form
y ∈ T and

∃≥`x : (x θ1 y ∧ y θ2 x ∧ x ∈ S ∧ y ∈ T )

with θ1, θ2 ∈ {vsub, 6vsub}, ` ≤ k and S, T ∈ R. Depending on θ1 and θ2, this
last formula defines a Boolean combination of T and sets of traces t satisfying

S contains ≥ ` traces s that are a proper subtrace of (a proper
supertrace of, are incomparable with, resp.) t.

Theorems 3.4, 4.5, and 5.13 demonstrate that these sets are effectively recogniz-
able which completes this proof. ut
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The proofs of the three results on recognizable trace languages (Theorems 3.4,
4.5, and 5.13) are the content of the remaining paper. But before, we formulate
a simple consequence that describes the expressive power of the logic C2.

Corollary 2.2. Let R ⊆M(Σ,D)2. Then the following are equivalent:

1. There is some ϕ(x, y) ∈ C2 such that R = {(s, t) ∈M(Σ,D)2 | S |= ϕ(s, t)}.
2. R is a finite union of relations of the form {(s, t) ∈ S×T | s θ1 t θ2 s} where

S and T are recognizable subsets of M(Σ,D) and θ1, θ2 ∈ {vsub, 6vsub}.

By Mezei’s theorem (cf. [1]), this can be reformulated as “R is a Boolean
combination of recognizable subsets of the monoid M(Σ,D)2 and the subtrace
relation.”

2.4 Auxiliary definitions

Let E ⊆ V 2 be a binary relation (e.g., a partial order or an acyclic relation).
Then vE = {w ∈ V | (v, w) ∈ E} and Ev = {w ∈ V | (w, v) ∈ E} for v ∈ V . A
set X ⊆ V is downwards closed wrt. E if Ex ⊆ X for all x ∈ X. By X↓E , we
denote the least downwards closed subset of V containing X. A node v ∈ V is
maximal in V if vE = ∅, max(V,E) denotes the set of maximal elements of V .
Dually, we define upwards closed sets, X↑E , and minimal elments of V .

Let t = (V,E, λ) ∈ M(Σ,D) be a trace. Then |t| = |V | denotes the size of t,
i.e., its number of nodes. We write |t|a for the number of nodes of t that are
labeled by a (for a ∈ Σ). By alphmin(t), we denote the set of letters λ(v) for
v ∈ min(t).

Let s, t ∈ M(Σ,D) be traces. We call s a prefix of t (denoted s vpref t) if
there exists a trace s′ with s · s′ = t. The set of all prefixes of t forms a finite
lattice under the relation vpref . Even more, any set L of traces that all are
prefixes of some trace t have a least upper bound that we denote sup(L) and
call the supremum of L.

Let, again, t = (V,E, λ) ∈ M(Σ,D) be a trace and A ⊆ Σ. Then X =
λ−1(A)↓E ⊆ V is the set of nodes of t that are dominated by some node whose
label belongs to A. We denote t�X by ∂A(t). This is the smallest prefix s of t
such that |s|a = |t|a for all letters a ∈ A. We write ∂b(t) for ∂{b}(t) for b ∈ Σ. In
this context, we also need the definition D(B) =

⋃
b∈B Db for B ⊆ Σ of letters

that are dependent from some letter in B.

3 Downward closure

Definition 3.1. Let S be a set of traces and k ∈ N. Then S↓≥k is the set of
traces t such that there are ≥ k traces s ∈ S with t vsub s.

Note that S↓≥1 is the usual downward closure S↓vsub
of S as defined above. It

is our aim to prove that S↓≥k is effectively recognizable if S is recognizable.
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Lemma 3.2. Let S ⊆M(Σ,D) be a recognizable trace language. Then the trace
language S↓≥1 is effectively recognizable.

Proof. The set S is effectively rational [17, Theorem 2]. By induction on the
rational expression denoting S, one can construct a starfree expression denot-
ing S↓≥1. Since R is effectively closed under Boolean operations and concatena-
tion (cf. [3]), the result follows. ut

Lemma 3.3. Let S ⊆M(Σ,D) be a recognizable set of traces and k ≥ 1. Then
the trace language S↓≥1 \ S↓≥k is effectively recognizable.

Proof. Let n be the size of some automaton accepting S. A pumping argument
shows that all traces from S↓≥1 of length ≥ n also belong to S↓≥k. Consequently,
the difference of these two sets is finite and therefore recognizable. ut

Now S↓≥k is effectively recognizable since it is the difference of the two sets
from the two lemmas above. Note that a trace t has ≥ k proper supertraces in
S if, and only if, it belongs to (S ∩ S↓≥k+1) ∪ (S↓≥k \ S). Thus, we showed the
following result:

Theorem 3.4. Let S ⊆ M(Σ,D) be recognizable and k ∈ N with k ≥ 1. Then
the set of traces t with at least k distinct proper supertraces from S is effectively
recognizable.

4 Upward closure

Definition 4.1. Let S be a set of traces and k ∈ N. Then S↑≥k is the set of
traces t such that there are ≥ k traces s ∈ S with s vsub t.

It is our aim to prove that S↑≥k is effectively recognizable if S is recognizable.
The main tool in this section (and also in the following one) is a logic that talks
about the internal structure of a trace t = (V,E, λ).

The logic C2 considers traces as elements of the structure (M(Σ,D),vsub,R)
such that it allows to describe “external” properties of traces (e.g., the existence
of at least two subtraces in a recognizable set S). We now shift our point of view
and look at traces as relational structures. Then logical formulas describe their
“internal” properties (e.g., the existence of two a-labeled nodes).

To define the set of MSO-formulas, we fix a set of first-order and a (disjoint)
set of monadic second-order variables (the former are usually denoted by small
letters, the latter by capital letters). Then MSO-formulas are defined by the
following syntax (where x and y are first-order variables, X is a second-order
variable, and a ∈ Σ):

ϕ := (x = y) | λ(x) = a | (x, y) ∈ E | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ .

Henceforth, we will speak of “formulas” when we actually mean “MSO-formulas”.
The satisfaction relation |= between a trace t = (V,E, λ) and a formula ϕ

is defined in the obvious way with the understanding that first-order variables
denote single nodes and second-order variables denote sets of nodes of the trace.
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Definition 4.2. Let S be a set of traces. Then S is definable if there exists a
sentence ϕ with S = {s ∈M(Σ,D) | s |= ϕ}.

Since the notions “definable” and “recognizable” are effectively equivalent for
sets of traces [20], we can reformulate the aim of this section as “if S ⊆M(Σ,D)
is definable, then so is S↑≥k”.

Consequently, we have to write down a formula that holds in a trace t if, and
only if, it has at least k subtraces from S. The idea is to express that there are
k distinct subsets of t that all induce traces from S. The problem we face here
is that distinct subsets can induce the same subtrace. This problem is solved by
choosing the “minimal”, “leftmost” or, as we call it, “canonical” set X.

Definition 4.3. Let t be some trace and Z ⊆ t. Then Z is canonical in t if
t |= canon(Z), where canon(Z) is the formula

∀x, z :

((
λ(x) = λ(z) ∧ x /∈ Z ∧ z ∈ Z ∧ (x, z) ∈ E

)
→ ∃y ∈ Z :

(
(x, y) ∈ E ∧ (y, z) ∈ E

)) .

Then we can show that every subtrace of t is induced by precisely one set
canonical in t:

Theorem 4.4. Let s vsub t be traces. Then there is a unique canonical set
X ⊆ t with s ∼= t�X .

Theorem 4.4 allows us to obtain the main result of this section:

Theorem 4.5. Let S ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then
the set S↑≥k is effectively definable. Similarly, the set of traces with ≥ k proper
subtraces from S is effectively definable.

Proof. Let σ be a sentence defining S and consider the sentence

∃X1, X2, . . . , Xk

 ∧
1≤i≤k

(
σ�Xi

∧ canon(Xi)
)
∧

∧
1≤i<j≤k

Xi 6= Xj


where σ�X arises from σ by restricting all quantifications to elements and subsets
ofX. By Theorem 4.4, it defines the set S(σ)↓≥k. To show the claim about proper
subtraces, we require the sets Xi to be different from the set of all nodes. ut

5 Incomparable traces

For two traces s and t, we write s ‖ t as abbreviation for t 6vsub s 6vsub t.

Definition 5.1. Let S be a set of traces and k ∈ N. Then S
‖
≥k is the set of

traces t such that there are ≥ k traces s ∈ S satisfying t ‖ s.

It is our aim to prove that S
‖
≥k is effectively definable if S is definable.

Two traces s and t are incomparable if, and only if, either |s| ≤ |t| and
s 6vsub t, or |s| > |t| and t 6vsub s. In the following two subsections, we will
consider these two cases separately.
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5.1 Short non-subtraces

Definition 5.2. Let S be a set of traces and k ∈ N. Then Sshort
≥k is the set of

traces t such that there are ≥ k traces s ∈ S with |s| ≤ |t| and s 6vsub t.

Let S be defined by the sentence σ. We have to formulate, as a property of
the labeled directed graph t = (V,E, λ), the existence of k models s of σ that all
are incomparable with t and have length at most |t|. The idea is to split a trace s
into a its largest prefix s1 that is a subtrace of t and the complementary suffix
(using Theorem 4.4, one first shows that s1 is uniquely defined for any pair of
traces (s, t)). Since s1 is a subtrace of t, Theorem 4.4 ensures that t ∈ Sshort

≥k if,
and only if, there are k pairs (X, s2) such that

(1) X ⊆ t is canonical and s2 ∈M(Σ,D),
(2) (t�X) · s2 |= σ,
(3) t�X = sup{s1 vpref (t�X) · s2 | s1 vsub t}, and
(4) 1 ≤ |s2| ≤ |t| − |X|.

From Shelah’s decomposition theorem [18, Theorem 2.4], we obtain a finite fam-
ily (τj , νj)j∈J of sentences such that Condition (2) is equivalent to

(2’) there exists j ∈ J with t�X |= τj (equivalently, (t,X) |= τj�X) and s2 |= νj .

Thus, we express Condition (2) as a Boolean combination of properties of (t,X)
and of s2. Our next aim is to also express Condition (3) in such a manner.

To this end, let t, s2 ∈M(Σ,D) andX ⊆ t. One first shows that Condition (3)
holds if, and only if, for all a ∈ alphmin(s2), the trace (t�X) · a is not a subtrace
ot t. Let U(t,X) denote the set of letters a ∈ Σ that violate this last condition,
i.e., that satisfy (t�X) · a vsub t. If X is canonical, we can express the statement
a ∈ U(t,X) by a formula:

Lemma 5.3. Let t = (V,E, λ) ∈ M(Σ,D) be a trace, X ⊆ t be canonical, and
a ∈ Σ. Then a ∈ U(t,X) if, and only if, there exists y ∈ V with λ(y) = a and
yE ∩X = ∅.

Hence, for A ⊆ Σ, there are formulas αA(X) and sentences βA such that

– (t,X) |= αA if, and only if, A ∩ U(t,X) = ∅ for all t ∈ M(Σ,D) and X ⊆ t
canonical and

– s2 |= βA if, and only if, A = alphmin(s2).

In summary, we found a family of formulas (αA(X), βA)A⊆Σ such that Con-
dition (3) is equivalent to

(3’) there exists A ⊆ Σ with (t,X) |= αA and s2 |= βA.

Thus, t ∈ Sshort
≥k if, and only if, there are k pairs (X, s2) all satisfying the

conditions (1), (2’), (3’), and (4). We group these pairs according to their first
component. Then t ∈ Sshort

≥k if, and only if, there exists ` ≤ k, a function
f : {1, . . . , `} → {0, 1, . . . , k} with

∑
1≤i≤` f(i) = k, and sets A1, A2, . . . , A` ⊆ Σ

such that there are mutually distinct canonical sets Xi ⊆ t satisfying, for all
i ∈ [`], the existence of some j ∈ J with
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– (t,Xi) |= τj ∧ αAi
,

– there are f(i) many traces s2 of length 1 ≤ |s2| ≤ |t| − |Xi| satisfying
s2 |= νj ∧ βAi .
From νj∧βAi

, one can compute a number N such that this holds if, and only
if, |t| − |Xi| ≥ N . Hence this is a property of (t,Xi) that can be expressed
by a formula.

All this can be translated into a sentence that only talks about the trace t.
Consequently, we obtain

Proposition 5.4. Let S ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then
Sshort
≥k is effectively definable.

5.2 Long non-supertraces

Definition 5.5. Let T be a set of traces and k ∈ N. Then T long
≥k is the set of

traces s such that there are ≥ k traces t ∈ T with |s| < |t| and s 6vsub t.

We have to formulate, as a property of the labeled directed graph s =
(V,E, λ), the existence of k traces t ∈ T that all are incomparable with s and
have length at least |s| + 1. The first idea is, again, to split the trace s into
its largest prefix s1 that is a subtrace of t and the complementary suffix. Since
this time, we have to formulate properties of s, we would then have to “fill” the
prefix s1 with arbitrarily many nodes to obtain the trace t (more precisely: the
minimal prefix of t that contains s1 as a subtrace). Since this cannot be done
with logical formulas, we have to bound this number of “missing pieces”. The
central notion here is the following:

Definition 5.6. Let t = (V,E, λ) be a trace and X ⊆ t. The number of holes
of X in t equals nh(X, t) = |X↓E \X|.

Now let s be a trace. If s vsub t, then nh(s, t) = nh(X, t) where X ⊆ t is
canonical with s = t�X . If s is not a subtrace of t, then nh(s, t) =∞.

The following lemma describes, in terms of the number of holes and the
length difference, when a trace is a subtrace of a longer trace:

Lemma 5.7. Let s, t be traces with |s| < |t|. Then s ‖ t if, and only if, s 6=
sup{s′ vpref s | nh(s′, t) ≤ |t| − |s|}.

Recall that we have to express, as a property of the labeled directed graph s =
(V,E, λ), the existence of k properly longer traces t ∈ T with s 6vsub t. In doing
so, the previous characterisation is particularly useful if the length difference of t
and s is fixed. The following lemma, whose proof uses a straightforward pumping
argument, allows to do precisely this:

Lemma 5.8. One can compute a number n ∈ N such that the following holds
for all k ∈ N and s ∈ T long

≥k : There exist k traces t ∈ T such that |s| < |t|,
s 6vsub t, and |t| ≤ |s|+ k · (n+ 1).
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Thus, it suffices to characterize, for all k ≥ 0 and all length differences N > 0,
those traces s that allow ≥ k traces t ∈ T with |t| = |s|+N and s 6= sup{s′ vpref

s | nh(s′, t) ≤ N}.
Grouping these traces t according to sup{s′ vpref s | nh(s′, t) ≤ N}, it

suffices to characterise those pairs (s1, s2) with s2 6= 1 (where we think of s1s2
as a factorisation of s) that allow ≥ k pairs (t1, t2) of traces such that

(a) t1t2 ∈ T and t1 is the minimal prefix of t1t2 with s1 vsub t1,
(b) |s1s2|+N = |t1t2|, and
(c) s1 = sup{s′ vpref s1s2 | nh(s′, t1t2) ≤ N}.

Note that t1 is the minimal prefix of t1t2 with s1 vsub t1 if, and only if,
s1 vsub t1 and, for all prefixes t′ vpref t1 with s1 vsub t

′, we have t′ = t1. This
allows to reformulate the second half of Condition (a) as a condition on the pair
(s1, t1), only. Since T is definable, Shelah’s decomposition theorem allows us to
compute a finite family (µj , νj)j∈J of pairs of sentences such that t1t2 ∈ T if,
and only if, there exists j ∈ J with t1 |= µj and t2 |= νj .

Consequently, for k ≥ 0, N > 1, and a fixed index j ∈ J , it suffices to
characterise those pairs (s1, s2) with s2 6= 1 that allow ≥ k pairs (t1, t2) of traces
such that, besides Conditions (b) and (c), also the following holds:

(aj) t1 |= µj , s1 vsub t1, and s1 vsub t
′ ⇒ t′ = t1 for all t′ vpref t1 and s2 |= νj .

Let (t1, t2) be a pair of traces with these properties. At this point, it comes in
handy that nh(s1, t1t2) ≤ N ·|Σ| (this holds for any traces s1, t1, and t2). Further,
since t1 is the smallest prefix of t1t2 with s1 vsub t1, we get nh(s1, t1t2) =
nh(s1, t1) = |t1| − |s1|.

Consequently, we can group these pairs (t1, t2) according to the length differ-
ence |t1|−|s1| (which can be bounded by N · |Σ| by the above). Hence, it suffices
to characterize, for k ≥ 0, N > 0, j ∈ J and for a fixed length difference `, those
pairs (s1, s2) of traces with s2 6= 1 that allow ≥ k pairs (t1, t2) of traces such
that, besides (aj) and (c), the following holds:

(b`) |s1|+ ` = |t1| and |t2| = |s2|+N − `.

Note that Conditions (aj) and (b`) form a Boolean combination of properties
of the pairs (s1, t1) and (s2, t2), respectively. Our next aim is to ensure that this
also holds for Condition (c) which forms the main work in this section.

Lemma 5.9. Let s1, s2, t1, and t2 be traces such that t1 is the minimal prefix
of t1t2 with s1 vsub t1. Then Condition (c) is equivalent to

(c1) For all a ∈ Σ, there exists a trace s′ with ∂a(s1) vpref s
′ vpref s1 and

nh(s′, t1) ≤ N and
(c2) For all b ∈ alphmin(s2) and all s′ with ∂D(b)(s1) vpref s

′ vpref s1, we have
nh(s′b, t1t2) > N .

Condition (c1) only depends on the pair (s1, t1). Since Σ is finite, Condi-
tion (c2) is a Boolean combination of properties of s2 and of properties of the
triple (s1, t1, t2). We now reformulate this last condition using the following
lemma.
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Lemma 5.10. Let b ∈ Σ, let s1, t1, t2, and s′ be traces such that t1 is the
minimal prefix of t1t2 with s1 vsub t1 and ∂b(s1) vpref s′ vpref s1. Then
nh(s′b, t1t2) > N if, and only if, one of the following hold:

– N < nh(s′b, t1) <∞ or
– nh(s′b, t1) = nh(b, t2) =∞ or
– nh(s′b, t1) = ∞, b vsub t2, and nh

(
sup(s′, ∂D(B)(s1), t1)

)
+ nh(b, t2) > N

where B ⊆ Σ is the set of letters appearing before the first b in t2.

Replacing nh(s′b, t1t2) > N in Condition (c2) by the properties from the above
lemma, it turns into a Boolean combination (c′2) of statements

(i) nh(b, t2) < h for h ∈ N ∪ {∞},
(ii) “A is the set of letters appearing in t2 before the first b” for A ⊆ Σ,
(iii) “for all traces s′ with ∂b(s1) vpref s

′ vpref s1” followed by a Boolean combi-
nation of statements of the form
– N ≥ nh(s′b, t1) and nh(s′b, t1) =∞ for b ∈ Σ, and
– nh(sup

(
sup(s′, ∂D(B)(s1)), t1)

)
< N1 for B ⊆ Σ and N1 ∈ N.

To finish, let k ∈ N, N > 0, j ∈ J , and ` ∈ N. Further, let H denote the
set of pairs (s1, s2) of traces such that conditions (aj), (b`), (c1), and (c′2) hold
for at least k pairs of traces (t1, t2). The conjunction of these four properties,
that talks about the quadruple (s1, s2, t1, t2), forms a Boolean combination of
properties that talk about the pairs (s1, t1) and (s2, t2), respectively.

Now we can transform the statement “(s1, s2) ∈ H” into a Boolean combi-
nation of statements of the following form:

(A) there are ≥ k1 traces t1 satisfying a Boolean combination of statements of
the form
– t1 |= µj ,
– s1 vsub t1 and s1 vsub t

′ ⇒ t′ = t1 for all t′ vpref t1,
– |s1|+ ` = |t1|,
– ∃s′ : ∂a(s1) vpref s

′ vpref s1 ∧ nh(s′, t1) ≤ N , and
– statements of the form (iii).

(B) there are ≥ k2 traces t2 satisfying a Boolean combination of statements of
the following forms:
– t2 |= νj ,
– |t2| = |s2|+N − `,
– b ∈ alphmin(s2),

– b vsub t2,
– nh(b, t2) < h,
– “A is the set of letters in t2 before the first b”

Regarding (B), we can formulate all the properties that do not mention s2
as a formula. This turns all of (B) into a condition on the minimal letters in s2
and the length of s2 which both can be expressed by a formula.

It remains to also express (A) as a property of the trace s1. As a first step,
we replace, in the Boolean combination, all references to s1 by t�X and add that
X is canonical. This gives a formula ϕ(X) talking about (t1, X) and we have to
express that there are ≥ k1 models (t1, X) of ϕ(X) all satisfying s1 = t1�X . This
is achieved by the following result:
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Lemma 5.11. Let ϕ(X) be a formula and k1, n ∈ N such that (t1, X) |= ϕ
implies |t| − |X| = n. Then one can construct (from ϕ, k1, and n) a sentence ψ
such that, for all traces s1 we have s1 |= ψ if, and only if, there are ≥ k1 pairs
(t1, X) with (t1, X) |= ϕ and s1 = t1�X .

In summary, we obtained the following:

Proposition 5.12. Let T ⊆M(Σ,D) be definable and k ∈ N with k ≥ 1. Then

the set T long
≥k is effectively definable.

Now the following result follows easily from Propositions 5.4 and 5.12:

Theorem 5.13. Let S ⊆M(Σ,D) be definable and k ∈ N with k ≥ 1. Then the

set S
‖
≥k of traces t with at least k distinct traces s ∈ S with s 6vsub t and t 6vsub s

is effectively definable.

Thus, we demonstrated how to prove Theorems 3.4, 4.5, and 5.13. This closes
the gaps left open in our proof of the main result (Theorem 2.1).

6 Concluding remarks

The C+MOD2-theory of (Σ∗,vsub,R) is decidable [14]. This logic has, in ad-
dition to the logic C2, modulo-counting quantifiers ∃q,r. It seems that the only
obstacle in proving the analogous result for the subtrace order is the use of
Lemma 5.8 in the proof of Proposition 5.12. Whether this lemma has an ana-
logue in the modulo-counting setting is not clear.

The decision algorithms in this paper (as well as those in [9, 14] for the
subword order) are nonelementary. Karandikar and Schnoebelen [10] prove that
the FO2-theory of the subword order can be decided in triply exponential space if
we only allow unary languages (instead of all languages fromR), current research
improves the upper bound to doubly exponential space and extends the result
to the C2-theory [13]. It is not clear whether such an elementary upper bound
also holds for the subtrace relation.

Finally, it remains to be explored whether the methods developed in this
paper can be applied in other settings where rational relations are not available.
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