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Abstract. Automata with concurrency relations A are labeled transi-
tion systems with a collection of binary relations describing when two
actions in a given state of the automaton can occur independently of each
other. The concurrency monoid M(A) comprises all finite computation
sequences of A, modulo a canonical congruence induced by the concur-
rency relations, with composition as monoid operation; its elements can
be represented by labeled partially ordered sets. Under suitable assump-
tions on A, we show that a language L in M(A) is recognizable iff it is
definable by a formula of monadic second order logic. We also investigate
the relationship between aperiodic and first-order definable languages in
M(A). This generalizes various recent results in trace theory.

1 Introduction

In the literature, classical logical definability results of recognizable word lan-
guages (Büchi [Bü60]) and aperiodic or starfree languages (McNaughton and
Papert [MP71]) have been generalized in various directions, including tree lan-
guages (cf., e.g., [T90a]) and, recently, languages in trace monoids. For the latter,
in particular, it was shown that a trace language is recognizable iff it is definable
by a sentence of monadic second order logic ([T90b]), and it is aperiodic iff it is
starfree ([GRS92]) iff it is definable by a first-order sentence ([T90b], cf. [EM93]).
It is the aim of this paper to extend these results to large classes of even more
general monoids, called concurrency monoids.

Trace theory (cf. [AR88, Di90, DR95] for surveys) provides a mathematical
model for the sequential behaviour of a parallel system in which the order of two
independent actions is regarded as irrelevant; one considers a set E of actions to-
gether with a single binary relation representing the concurrency of two actions.
Here, we will consider a more general model consisting of labeled transition sys-
tems in which the concurrency relation depends not only on the two arriving
actions, but also on the present state of the system. An automaton with concur-
rency relations is a tuple A = (Q,E, T, ‖) where Q is the set of states, E as before
the set of events or actions, T ⊆ Q × E × Q the transition relation (assumed
deterministic), and ‖= (‖q)q∈Q is a collection of concurrency relations ‖q for E,
indexed by the possible states q ∈ Q. Similarly as in trace theory, we declare two
sequences (p, a, q)(q, b, r) and (p, b, q′)(q′, a, r) equivalent, if a ‖p b. This induces
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a congruence ∼ on the set CS(A) of all finite computation sequences; thus, intu-
itively, two computation sequences are equivalent, if they represent ”interleaved
views” of a single computation. The quotient M(A) = CS(A) /∼∪ {0} is called
the concurrency monoid associated with A.

Automata with concurrency relations were introduced and studied in [Dr90,
Dr92, BD93, BD94]. Their domains of computation sequences are closely related
with event domains and dI–domains arising in denotational semantics of pro-
gramming languages. These automata also generalize asynchronous transition
systems ([Sh85, Be87, WN94]). Very recently, a formalization using several inde-
pendence relations of the operational semantics of Occam was given in [BR94].

Generalizing results of [Oc85, GRS92] in trace theory, a Kleene-type char-
acterization of the recognizable languages in concurrency monoids M(A) has
been given in [Dr94a], and aperiodic and starfree languages were investigated in
[Dr94b]. In [BDK96, BDK95], it was shown how to represent elements of M(A)
by certain labeled graphs, or labeled partially ordered sets. There is a multipli-
cation of (isomorphism classes of) such graphs, yielding a monoid which turns
out to be isomorphic to the concurrency monoid M(A). Therefore here we will
identify elements of M(A) with their graph-theoretical representation. The par-
tial order defined on the enumerated occurrences of actions in a computation
denotes that a ”smaller” event has to occur before a ”larger” one, or, in other
words, is a necessary condition for the larger event. Here, we introduce logical
languages that allow us to make statements on causal dependencies of events
and on the initial state of a computation. Because of the representation of com-
putations we can use the canonical logical languages for labeled partial orders.
The satisfaction relation is defined via the representation of a computation by
a labeled partially ordered set. We let MSO be the corresponding monadic sec-
ond order language. For the subsequent results, a useful (and almost necessary)
assumption is that A is stably concurrent (see Def. 4). This means that the
concurrency relations of A depend locally (but not globally) on each other. We
will show

Theorem1. Let A be a finite stably concurrent automaton and L ⊆ M(A).
Then L is recognizable if and only if it is definable in MSO.

Next we turn to aperiodic, starfree and first-order definable languages in M(A).
Aperiodic languages are starfree, and the converse was derived in [Dr94b] for a
large class of stably concurrent automata A (it fails in general). Here, we obtain
the following; for undefined notions we refer the reader to Sect. 5.

Theorem2. Let A be a finite stably concurrent automaton.
(a) If A is counter free, then each aperiodic language in M(A) is first-order
definable.
(b) If A has no commuting loops or is an automaton with global independence,
then each first-order definable language in M(A) is aperiodic.

Examples show that neither in (a) nor in (b) the additional assumptions on A
can be omitted. However, there are large classes of stably concurrent automata



satisfying these various assumptions, or even their conjunctions, and these the-
orems contain the corresponding results from trace theory as a special case.
Counter free automata have been well studied in the literature, cf. [MP71]. We
note that in an automaton with global independence the concurrency of actions
can be described by a single binary relation. These automata are only slight
variants of the full trace automata and the asynchronous transition systems of
Bednarczyk ([Be87]) and Shields ([Sh85]) and generalize trace alphabets; also,
see e.g. [S89a, S89b, BCS93, WN94] for further results on this well-studied class
of automata. Even in this class, there are proper inclusions between the classes
of first-order definable and aperiodic, and between aperiodic and starfree lan-
guages. As shown in [Dr94b], in an automaton without commuting loops the
aperiodic languages are precisely the starfree ones. However, these automata are
complementary to trace alphabets.

The proofs of Thms. 1 and 2 rest on a detailed analysis of the partial order
structure of the representation of elements of M(A) as well as on Büchi’s and
McNaughton and Papert’s classical results for (finite) words; the use of partic-
ular accepting devices sometimes employed in the trace theoretic setting (e.g.
asynchronous automata in [T90b]) is avoided. An extension of the present results
to monadically definable languages of infinite computations of stably concurrent
automata has recently been achieved in [DK96].

2 Preliminaries

Definition 3. An automaton with concurrency relations is a quadruple
A = (Q,E, T, ‖) such that

1. Q and E are finite sets of states and events or actions, respectively.
2. T ⊆ Q× E ×Q is a set of transitions assumed deterministic, i.e. whenever

(p, a, q), (p, a, r) ∈ T , then q = r.
3. ‖= (‖q)q∈Q is a collection of irreflexive, symmetric binary relations on E; it is

required that whenever a ‖p b, then there exist transitions (p, a, q), (p, b, q′),
(q, b, r) and (q′, a, r) in T .

Note that we consider only finite automata A. A transition τ = (p, a, q) intu-
itively represents a potential computation step in which event a happens in state
p of A and A changes from state p to state q. We write ev(τ) = a, the event of
τ . The concurrency relations ‖p describe the concurrency information for pairs
of events at state p. The last requirement can be seen as in the diagram:

bb bb�������I���I����pq q0ra bab ................................



The angle at p indicates that a ‖p b holds.
A computation sequence in A is either empty (denoted by ǫ), or a finite sequence

γ = σ1 . . . σn of transitions σi of the form σi = (qi−1, ai, qi) for i = 1 . . . n; it can
be depicted as

q0
a1−→ q1

a2−→ . . .
an−→ qn.

We call q0 the domain of γ, denoted by dom γ, qn the codomain, denoted by cod γ,
and n the length |γ| of γ. The sequence a1a2 . . . an is called event sequence of γ,
denoted by evseq γ. Also, for w ∈ E⋆ and q ∈ Q, we write q.w = r if there exists a
computation sequence γ with dom γ = q, evseq γ = w and cod γ = r. Otherwise,
q.w is undefined. We let CS(A) denote the set of all computation sequences of
A. The composition γδ is defined in the natural way by concatenating γ and δ
if cod γ = dom δ. Formally we put γǫ = ǫγ = γ.

Now we want the concurrency relations of A to induce an equivalence relation
on CS(A) so that equivalent computation sequences are not differentiated by
the order in which concurrent events appear. For this, we let ∼ be the small-
est congruence with respect to composition on CS(A) making all computation

sequences p
a

−→ q
b

−→ r and p
b

−→ q′
a

−→ r with a ‖p b equivalent.
We let [γ] denote the equivalence class of γ with respect to ∼. Also, we let
1 := [ǫ]. Defining M(A) = CS(A) /∼∪ {0}, we now obtain the monoid M(A) of
computations associated with A, where 0 is an additional symbol. That is, for
γ, δ ∈ CS(A) we have [γ] · [δ] = [γδ] if cod γ = dom δ and [γ] · [δ] = 0 otherwise.
Also, x · 0 = 0 · x = 0 and x · 1 = 1 · x = x for any x ∈ M(A). Clearly, with this
operation M(A) is a monoid with 1 as unit (and with 0 as zero).

Next we show why these automata and their monoids provide a generalization
of trace alphabets and trace monoids. A trace alphabet [Ma77, Ma86, Ma88]
is a pair (E,D) where E is a nonempty finite set and D ⊆ E × E a reflexive,
symmetric dependence relations on E. The congruence with respect to (E,D)
on the free monoid E⋆ is the smallest congruence ∼ that identifies ab and ba
whenever (a, b) 6∈ D. Then A = (Q,E, T, ‖) with Q = {q}, T = Q× E ×Q and
‖q = (E × E) \D is an automaton with concurrency relations. This automaton
will be called automaton induced by (E,D). Obviously, evseq : CS(A) −→ E⋆ is
a bijection. Moreover, for γ, δ ∈ CS(A) we have γ ∼ δ iff evseq γ ∼ evseq δ with
respect to (E,D). Hence, evseq induces a monoid-isomorphism from M(A) \{0}
onto M(E,D). Thus, automata with concurrency relations generalize trace al-
phabets.

Here, we will investigate recognizable and aperiodic languages in M(A). A
language L ⊆ M(A) is recognizable if there exists a finite M(A)-automaton that
recognizes L, or, equivalently, if there are only finitely many sets
x−1L := {y ∈ M(A) | x · y ∈ L} (x ∈ M(A)). Furthermore, a recognizable
language L ⊆ M(A) is aperiodic if there exists n ∈ N such that x · yn · z ∈ L
iff x · yn+1 · z ∈ L for any x, y, z ∈ M(A). The smallest natural number n that
meets this requirement is the index of L.

Now we recall basic definitions, constructions and results from [BDK95, BDK96].
Let A be an automaton with concurrency relations, and let γ ∈ CS(A). Analo-

gously to trace theory we define a dependence order on those events that appear



in γ. This order should reflect that a ”smaller” event has to appear before a
”larger” one, i.e. the ”smaller” event is a necessary condition for the ”larger”
one. If two events are incomparable they can appear in any order or even in
parallel. Since an event a can appear several times in γ we have to distin-
guish between the first, the second, . . . appearance of a. For a ∈ E let |γ|a
denote the number of transitions σ in γ with ev σ = a, i.e. the number of a’s
in the word evseq γ ∈ E⋆. We abbreviate ai = (a, i) for a ∈ E and i ∈ N.
The precise definition of the dependence order of γ can now be given as fol-
lows. Let O(γ) = {ai | a ∈ ev γ, 1 ≤ i ≤ |γ|a}. Then, obviously, |O(γ)| = |γ|.
For ai, bj ∈ O(γ) let ai ⊑γ bj iff the i–th appearance of a in γ occurs be-
fore the j–th appearance of b, i.e., formally, there are words u, v, w ∈ E⋆ with
evseq γ = uavbw, |u|a = i − 1 and |uav|b = j − 1. Then ⊑γ is a linear order
on O(γ). Since for equivalent computation sequences γ and δ we always have

O(γ) = O(δ), a partial order on O(γ) can be defined by:

⊑:=
⋂

{⊑δ| δ ∼ γ}.

Hence, ai ⊑ bj if and only if the i–th a appears before the j–th b in any computa-
tion sequence equivalent with γ. For a ∈ E, let Ea comprise all elements of O(γ)
of the form ai. Then DO(γ) = (O(γ),⊑, (Ea)a∈E , domγ) is a relational struc-
ture with one constant from Q. We call DO(γ) the dependence order associated
with γ. A sequence A = (x1, x2, . . . , xn) with xi ∈ O(γ) is an order-preserving
enumeration of DO(γ) if it is an enumeration of O(γ) and xi ⊑ xj implies i ≤ j.
Then a computation sequence δ is the linearisation of DO(γ) induced by A if
dom γ = dom δ and evseq δ = a1a2 . . . an with xi ∈ Eai for i = 1, 2, . . . , n.
There may exist order-preserving enumerations of DO(γ) that do not induce
any linearisation. But, since A is deterministic, any order-preserving enumera-
tion induces at most one linearisation. We call δ a linearisation of DO(γ) if it is
the linearisation induced by some order-preserving enumeration. Let Lin DO(γ)
comprise all linearisations of DO(γ). Then it is easy to see that [γ] ⊆ Lin DO(γ)
for any automaton with concurrency relations (cf. [BDK96, BDK95]). To prove
the converse of this inclusion, we need further assumptions on the underlying
automaton:

Definition 4. Let A be an automaton with concurrency relations. A is called
stably concurrent automaton, if for all q ∈ Q and all a, b, c ∈ E the following
equivalence holds:

a ‖q b, b ‖q c and a ‖q.b c ⇐⇒ a ‖q c, b ‖q.a c and a ‖q.c b

The equivalence in this definition is depicted by Fig. 1.
The requirement of the implication ”⇒” has also been called cube axiom,

and the implication ”⇐” is called the inverse cube axiom. In various forms,
these axioms arose several times in the literature, see e.g. [S89a, PSS90, Dr90,
Dr92, Ku94a, Ku94b, Dr94a, Dr94b]. In [Dr94a, Dr94b] the recognizable and the
aperiodic languages in M(A) for A stably concurrent have been characterized. In
[Ku94b] it has been shown that stably concurrent automata precisely generate
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dI-domains [Cu93] via their domains of finite and infinite computations. This
distributivity is the basis for the proofs in [BDK96, BDK95]

Observe that the automaton induced by a trace alphabet is always stably
concurrent.

Let (P,≤) be a partially ordered set and x ∈ P . Then x↑ denotes the subset
of P comprising all elements y with x ≤ y. Similarly, x↓= {y ∈ P | y ≤ x}. A
subset M ⊆ P is downward closed iff x↓⊆M for each x ∈M .

The following proposition is central in the proofs in [BDK96, BDK95] and will
be used here, too. Let A be an automaton with concurrency relations,
γ ∈ CS(A) and M = {an1

1 , an2
2 , . . . , ank

k } ⊆ O(γ) with ani

i ⊑γ (ai+1)
ni+1 . Then

γ(M) denotes the word a1a2 . . . ak ∈ E⋆.

Proposition5 [BDK96]. Let A be a stably concurrent automaton and
γ ∈ CS(A). Let M ⊆ O(γ) be downward closed in (O(γ),⊑).
Then q = (dom γ).γ(M) is defined.
Suppose furthermore x, y ∈ O(γ) with x ∈ Ea, y ∈ Eb and (x↓∪y↓ ) \ {x, y} ⊆
M ⊆ DO(γ) \ (x↑∪y↑ ) (where ↓ and ↑ are to be understood in (O(γ),⊑)). Then
x and y are incomparable with respect to ⊑ if and only if a ‖q b.

In [BDK95] the following is proved.

Theorem6 [BDK95]. Let A be a stably concurrent automaton and γ ∈ CS(A).
Then [γ] = Lin(DO(γ)). Furthermore, any order-preserving enumeration of
DO(γ) induces a linearisation of DO(γ).

Hence, we have the following equivalences for a stably concurrent automaton
A and computation sequences γ, δ ∈ CS(A):

DO(γ) = DO(δ) ⇐⇒ γ ∼ δ ⇐⇒ δ ∈ Lin(DO(γ)).

This result enables us to represent computations, i.e. elements of M(A) \{0, 1},
by dependence orders. To include 0 and 1, formally we put dom0 = ⊥ and
dom1 = ⊤ where ⊥ and ⊤ are additional symbols not belonging to Q, and,
using this, define DO(0) and DO(1) similarly as before. Since dependence orders
are relational structures, we can define a logical language to describe properties
of these dependence orders. The corresponding first-order language FO has vari-
ables x, y, . . . for elements of O(γ). The atomic formulas are x ≤ y, Ea(x) for



a ∈ E, and constants Dq for q ∈ Q ∪ {⊥,⊤}. Then formulas are built up from
atomic formulas by the connectives ¬ and ∨ and the quantor ∃. In the monadic
second-order language, also set variables X,Y, . . . , quantification of them and
atomic formulas X(x) are admitted. Also, we will use several abbreviations like
x < y, x = y, φ→ ψ, ∀x φ etc. with the usual interpretation. Additionally, x ‖ y
stands for ¬(x ≤ y) ∧ ¬(y ≤ x). This monadic second-order logic is denoted by
MSO. A sentence of MSO is a formula without free variables. The satisfaction
relation DO(γ) |= φ between dependence orders and sentences is defined as usu-
ally: x ≤ y is satisfied iff x ⊑ y, Ea(x) iff x is of the form ai, Dq iff domγ = q
and X(x) iff x ∈ X . Now let φ be a sentence of MSO. Then L(φ) denotes the set
of all [γ] ∈ M(A) such that DO(γ) |= φ. Since γ ∼ δ implies DO(γ) = DO(δ),
the language L(φ) is welldefined. For a language L ⊆ M(A) and a sentence φ of
MSO, we say φ defines L if L = L(φ). The language L is definable in MSO if
there exists a sentence φ in MSO that defines L. In the following two sections,
we will prove the two implications of
Theorem 1. Let A be a finite stably concurrent automaton and L ⊆ M(A).
Then L is recognizable if and only if it is definable in MSO.

Suppose, A is the automaton induced by the trace alphabet (E,D). Then the
monoids M(A) \{0} and M(E,D) are isomorphic. Hence, Thm. 1 generalizes the
result of [T90b].

3 Definability implies recognizability

In all of this section let A be a stably concurrent automaton. Furthermore, let φ
be a sentence of MSO and L = L(φ) ⊆ M(A) a definable language. We will show
that L is recognizable. To prove this, we show that LT := {γ ∈ CS(A) | [γ] ∈ L}
is definable in a monadic second-order language in T ⋆ where words are considered
as finite linear orders. Hence, by [Bü60], LT is recognizable in T ⋆. This implies
that L is recognizable in M(A).

Therefore, we need another monadic second-order language to describe prop-
erties of words over T . Let γ = σ1σ2 . . . σn be a word over T (not necessar-
ily a computation sequence). We will identify the word γ with the structure
(O(γ),⊑γ , (Tt)t∈T ) where x ∈ Tt iff for some i, x is the i-th element in the finite
linear order (O(γ),⊑γ) and σi = t. To describe properties of such structures
we use the monadic second-order language MSOT with atomic formulas x ≤ y,
X(x) and Tt(x) for t ∈ T where x and y are first-order variables and X is a
second-order variable. To become familiar with the language MSOT consider
the following sentence :

CompSeq = ∀x∀y
∧

t∈T

[(Tt(x) ∧ next(x, y)) →
∨

t′∈T
dom t′=cod t

Tt′(y))]

where next(x, y) denotes the formula (x < y) ∧ ∀z((x ≤ z ∧ z < y) → x = z).
Then γ ∈ T ⋆ satisfies CompSeq (denoted by γ |= CompSeq) iff γ ∈ CS(A), i.e.
CS(A) can be defined by a sentence of the first-order fragment of MSOT . This
sentence CompSeq will be used later again.



Lemma7. Let r ∈ Q. Then there exists a formula Codr in MSOT with a free
monadic variable such that for any γ ∈ CS(A) and any N ⊆ O(γ) the following
are equivalent:

1. (dom γ).γ(N) = r.
2. γ |= Codr(N).

Proof The idea behind the following formula is that Xq comprises all elements
x ∈ N for which the elements ofN before x change the state of A from domγ to q;
clearly, these sets Xq (q ∈ Q) are pairwise disjoint. We write ev(x) = a as abbre-

viation for
∨

t=(p,a,q)∈T

Tt(x) and dom(y) = q as abbreviation for
∨

t=(q,a,r)∈T

Tt(y).

For x, y ∈ N we say that y is the successor of x in N , if x < y and there is no
z ∈ N with x < z < y; in this case, if x ∈ Xp and ev(x) = a, then y ∈ Xp.a.
Now let Q = {q1, q2, . . . , qn} and Codr be the following (informally described)
formula:

∃Xq1 , . . . , Xqn [ (
∧

i6=j

Xqi and Xqj are disjoint)

∧
∧

q∈Q

(the minimal element y of (O(γ),⊑γ) satisfies dom(y) = q

−→ the minimal element x of N satisfies Xq(x))

∧ ∀x∀y(y is the successor of x in N

−→
∨

(p,a,q)∈T

(Xp(x) ∧ ev(x) = a ∧Xq(y)))

∧
∨

(p,a,r)∈T

(the maximal element x of N satisfies

Xp(x) ∧ ev(x) = a)]

This can be easily translated into the formal language MSOT , and the result
follows. ⊓⊔

The following lemma characterizes downward closed subsets of DO(γ). For
this characterization, if M ⊆ O(γ), x = ai ∈ M and y = bj ∈ O(γ) \M , let
M(x, y) := {z ∈ O(γ) | z ⊏γ y} ∪ {z ∈M | z ⊏γ x}.

Lemma8. Let γ ∈ CS(A) and M ⊆ O(γ). Then the following are equivalent:

1. M is downward closed in DO(γ).
2. Whenever x = ai ∈M , y = bj ∈ O(γ) \M , y ⊏γ x and

r = (dom γ).γ(M(x, y)), then a ‖r b.

Proof Let M be downward closed in DO(γ), x ∈ M and y ∈ O(γ) \M with
y ⊏γ x. Then x and y are incomparable in DO(γ). Hence, M(x, y) is downward



closed in DO(γ) with (x↓∪y↓ ) \ {x, y} ⊆ M(x, y) ⊆ DO(γ) \ (x↑∪y↑ ). This
implies a ‖r b by Prop. 5.

Conversely assume the second statement. Let x ∈M . We claim that x↓⊆M .
We may assume that x′↓⊆ M for all x′ ∈ M with x′ ⊏γ x. Suppose there
exists y′ ∈ O(γ) \ M with y′ ⊏ x. Then there exists an element x′ of O(γ)
with y′ ⊑ x′ ⊏ x such that there are no elements between x′ and x, i.e. x
is a direct cover of x′. If x′ ∈ M then y′ ∈ M by our assumption. Hence
Y = {x′ ∈ O(γ) \ M | x is a direct cover of x′} is not empty. Let y be the
maximum of Y with respect to the linear ordering ⊑γ . We show that this leads
to a contradiction.

First we show thatM(x, y) is downward closed in DO(γ): Suppose z ∈M(x, y),
z′ ∈ O(γ) and z′ ⊏ z. If z ⊏γ y, we obtain z′ ⊏γ y showing z′ ∈ M(x, y).
Otherwise, z ∈M and z ⊏γ x. By our assumption, this implies z′ ∈M showing
z′ ∈M(x, y).

Now suppose z ∈ O(γ) and z ⊏ x. For z ∈M we immediately have
z ∈M(x, y). Otherwise there exists x′ ∈ Y with z ⊑ x′ ⊑γ y since
y = max(Y,⊑γ). Hence z ∈M(x, y). Thus, we have (x↓∪y↓ )\{x, y} ⊆M(x, y).

The inclusion M(x, y) ⊆ DO(γ) \ (x↑∪y↑ ) follows from the construction of
M(x, y) by ⊑ ⊆ ⊑γ . Choose a, b ∈ E with x ∈ Ea, y ∈ Eb, and put
r = (dom γ).γ(M(x, y)). By Prop. 5 we can conclude that a ‖r b does not hold,
contradicting the assumption. ⊓⊔

Next we characterize the partial order relation of the dependence order DO(γ)
by an MSOT -formula for γ ∈ CS(A). In Sect. 5 we will see that this is, in general
and in contrast to trace theory, not possible using first-order formulas.

Proposition 9. There exists a formula LE (for ”Less or Equal”) in MSOT with
two free variables such that for any γ ∈ CS(A) and any x, y ∈ O(γ) the following
are equivalent:

1. x ⊑ y in DO(γ).
2. γ |= LE(x, y).

Proof By Lemmas 8 and 7 we find a formula DC in MSOT with one free monadic
variable such that M ⊆ O(γ) is downward closed in DO(γ) iff γ |= DC(M).
Now let LE = ∀M(M(y) ∧ DC(M) → M(x)). Clearly, this formula meets the
requirements. ⊓⊔

Now we are able to prove that any language definable in MSO is recognizable.

Theorem 10. Let φ be a sentence of MSO. Then L = L(φ) is recognizable in
M(A).

Proof We may assume that 0 6∈ L. In a first step we show that
LT = {γ ∈ CS(A) | [γ] ∈ L} is definable in MSOT . In the sentence φ replace all

subformulas ”x ≤ y” by ”LE(x, y)”, ”Ea(x)” by ”
∨

t∈T
ev(t)=a

Tt(x)” and ”Dq” (for



q ∈ Q) by ”∃x(∀y x ≤ y ∧
∨

t∈T
dom t=q

Tt(x))”. Also, replace ”D⊤” by

”¬∃x(x ≤ x)” and ”D⊥” by ”¬CompSeq”. Denote this new formula by φ̄.
Clearly, φ̄ is a sentence of MSOT . For γ ∈ CS(A) we have γ |= φ̄ iff DO(γ) |= φ,
i.e. iff γ ∈ LT . Hence, φT = φ̄∧CompSeq defines LT in T ⋆. Thus, LT is recogniz-
able in T ⋆ by [Bü60]. By 0 6∈ L, we have LT = [.]−1(L), and since the morphism
[.] : T ⋆ −→ M(A) has either M(A) or M(A) \{0} as its image, L is recognizable
in M(A). ⊓⊔

4 Recognizability implies definability

In this section, we need a monadic second order language to describe properties
of words over E. This language MSOE is defined similarly to MSOT . A word
w = a1a2 . . . an in E⋆ is identified with the structure (O(w),⊑w , (Ea)a∈E) where
x ∈ Ea iff for some i, x is the i-th element in the finite linear order (O(w),⊑w)
and a = ai. Therefore, the language MSOE has the following atomic formulas:
x ≤ y, X(x) and Ea(x) with first-order variables x and y, second-order variable
X and a ∈ E. The first-order fragment of MSOE is defined as usual and denoted
by FOE .

Also, we will use the lexicographic normal form of a computation sequence of
A. Throughout this section, let � be a fixed linear order on E. Let γ ∈ CS(A).
Then evseq([γ]) := {evseq δ | δ ∼ γ} contains a smallest element w with respect
to the lexicographic order on E⋆ induced by �. The lexicographic normal form
of γ is defined to be the computation sequence δ ∼ γ with evseq δ = w. Let
CSmin(A) comprise all computation sequences that are lexicographic normal
forms.

Again, let γ ∈ CS(A) and A = (x1, x2, . . . , xn) be the order-preserving enu-
meration of DO(γ) that induces γ. Let Xi comprise all minimal elements of

O(γ) \ {x1, x2, . . . , xi} with respect to ⊑ for i = 0, 1, . . . , n− 1. Then xi+1 ∈ Xi.
Since Xi is an antichain in DO(γ), the elements of Xi carry mutually different
actions, i.e. aj , ak ∈ Xi imply j = k, as can be derived from Prop. 5. Using
Thm. 6, it is easy to see that γ is a lexicographic normal form iff xi+1 carries
the smallest action with respect to � in Xi for any i = 0, 1, . . . , n − 1. This
observation will be used in this section.

Lemma11. For any γ ∈ CSmin(A) and any ai, bj ∈ O(γ), the following are
equivalent:

1. ai ⊑γ b
j.

2. ai ⊑ bj or there exists ck ∈ O(γ) with a ≺ c such that ai ⊑γ c
k ⊑ bj.

Proof The second statement implies in particular ai ⊑γ b
j .

Conversely suppose ai ⊑γ b
j . Let A = (x1, x2, . . . , xn) be the order-preserving

enumeration of DO(γ) that induces γ, i.e. xk ⊑γ xl ⇐⇒ k ≤ l. Then there
exists l with ai = xl. Let M denote the set of all minimal elements with respect



to ⊑ of O(γ) \ {x1, x2, . . . , xl−1}. Since A is order-preserving, ai is an element of
M . Since A induces γ which is the lexicographic normal form, a is the minimal
action occurring in M . Since ai ⊑γ bj and A induces γ, the event bj is not
contained in {x1, x2, . . . , xl−1}. Hence there exists ck in M with ck ⊑ bj . Since
M is an antichain with respect to ⊑ it contains events with mutually different
actions. So, if c = a we get ai = ck ⊑ bj. Otherwise we have a ≺ c since a is
minimal in M with respect to ≺. Hence ai ⊑γ c

k. ⊓⊔

To simplify the notation, let E = {1, 2, . . . , r} with � the usual linear order.
Now, we define inductively a class of first-order formulas for s = 1, 2, . . . , r − 1
with two free variables x and y as follows:

ψr = (x ≤ y)

ψs = (x ≤ y) ∨ ∃z







∨

d,c∈E
d≺c

(Ed(x) ∧ Ec(z)) ∧ ¬ψs+1(z, x) ∧ z ≤ y







Note that the formula ψ1 contains |E| − 1 quantifiers. Furthermore, since the
existential quantifier in ψs+1(z, x) occurs in the scope of the negation, the prenex
normal form has an alternating sequence of existential and universal quantifiers.
Hence ψ1 is a formula in Σ|E|−1.

Proposition 12. For any γ ∈ CSmin(A), any ai, bj ∈ O(γ) and any s ≤ a the
following are equivalent:

1. ai ⊑γ b
j

2. DO(γ) |= ψs(a
i, bj)

Proof The proof is done by induction on a.
So let a = r and s ≤ r. Then by Lemma 11 ai ⊑γ b

j iff ai ⊑ bj since a is the
maximal action with respect to �. Because of this maximality, the disjunction
in the scope of ”∃z” in the second part of ψs cannot hold for x = ai. Thus, for
a = r we showed the equivalence for any s ≤ r.

Now suppose we have ck ⊑γ d
l ⇐⇒ DO(γ) |= ψs(c

k, dl) for any ck, dl ∈ O(γ)
with a ≺ c and s ≤ c. Let ai, bj ∈ O(γ) and s ≤ a.

By Lemma 11, ai ⊑γ b
j implies ai ⊑ bj or there exists ck ∈ O(γ) with

a ≺ c such that ai ⊑γ ck ⊑ bj. Thus in case ai and bj are comparable we
have DO(γ) |= ψs(a

i, bj). Now let ai and bj be incomparable. Then there exists
ck ∈ O(γ) with a ≺ c such that ai ⊑γ c

k ⊑ bj . Since s ≤ a ≺ c we have s+1 ≤ c
and therefore the induction hypothesis yields DO(γ) |= ¬ψs+1(c

k, ai). Thus we
get DO(γ) |= ψs(a

i, bj). Conversely, suppose DO(γ) |= ψs(a
i, bj). If ai ⊑ bj

we have immediate ai ⊑γ bj. Otherwise there exists ck in O(γ) with a ≺ c,
DO(γ) |= ¬ψs+1(c

k, ai) and ck ≤ bj . By the induction hypothesis, we obtain
ai ⊑γ c

k and therefore ai ⊑γ b
j. ⊓⊔

Now we can prove that any recognizable language in M(A) is definable by a
sentence of MSO.



Theorem13. Let L be a recognizable language in M(A). Then there exists a
sentence φ of MSO such that L = L(φ).

Proof Since {0} and {1} are definable, we may assume that 0, 1 6∈ L. Let q ∈ Q,
LE

q = {evseq γ | [γ] ∈ L and domγ = q} and x ∈ E⋆. If x−1LE
q 6= ∅ then there

exists a uniquely determined computation sequence γ ∈ CS(A) with domγ = q
and evseq γ = x. Furthermore, z ∈ x−1LE

q iff there exists δ ∈ CS(A) with

evseq δ = z and [γδ] ∈ L. Hence, x−1LE
q = {evseq δ | [δ] ∈ [γ]−1L}. Since L is

recognizable, there are only finitely many sets [γ]−1L. Hence, {x−1LE
q | x ∈ E⋆}

is finite, i.e. LE
q is recognizable in the free monoid E⋆.

By [Bü60] there exists a sentence φE
q of MSOE such that

LE
q = {w ∈ E⋆ | w |= φE

q }. We construct a sentence φ1
q of MSO from φE

q by
replacing all subformulas of the form ”x ≤ y” by ”ψ1(x, y)”. Then put
φq = φ1

q ∧Dq.
We show that φq defines Lq = {[γ] ∈ L | dom γ = q}: Let γ′ ∈ CS(A) and γ be

the lexicographic normal form of γ′, i.e. γ ∼ γ′ and γ ∈ CSmin(A). Then, using
Prop. 12, we have the following equivalences:

DO(γ′) |= φq ⇐⇒ DO(γ) |= φq

⇐⇒ evseq γ |= φE
q and dom γ = q

⇐⇒ evseq γ ∈ LE
q and dom γ = q

⇐⇒ [γ] ∈ Lq ⇐⇒ [γ′] ∈ Lq.

Now clearly the sentence
∨

q∈Q φq of MSO defines L =
⋃

q∈Q

Lq. ⊓⊔

Now Thm. 1 is immediate by Thm. 10 and Thm. 13.

5 First-order definable and aperiodic languages

In [T90b, EM93] it has been shown that a language in a trace monoid is defin-
able by a first-order formula iff it is aperiodic. By [GRS92], it is aperiodic iff it is
starfree. As shown in [Dr94b], any aperiodic language in a concurrency monoid
is starfree, but not necessarily conversely. Here we give examples of concurrency
monoids that contain aperiodic languages which are not first-order definable,
and vice versa. Hence, the classes of aperiodic, starfree and first-order definable
languages are in general mutually different in a concurrency monoid. As a pos-
itive result, we formulate a sufficient condition on A such that any aperiodic
language in M(A) is first-order definable. Also, we describe two classes of au-
tomata where any first-order definable language is aperiodic. For one of these
classes, the aperiodic and the starfree languages coincide ([Dr94b]). Hence we
can describe a class of automata where aperiodic, starfree and first-order defin-
able languages coincide. This class contains, besides others, automata with only
one state. Since these are precisely the automata induced by a trace alphabet,
our result generalizes the result of [T90b] and that of [EM93] on finite traces.



We start with a simple example of a language that is aperiodic but not first-
order definable.

Example 1. Consider the stably concurrent automaton A with Q = {p, q},
E = {a} and transitions s = (p, a, q) and t = (q, a, p). The reader may check that
the language L = (s ·M(A) ·t∪ t ·M(A) ·s)\ {0} = {[γ] ∈ M(A) | dom γ = cod γ}
is aperiodic with index 2. Clearly, for any γ ∈ CS(A), (O(γ),≤) is a linear order
with |γ| elements. Hence, [γ] ∈ L iff O(γ) has an even number of elements. But
a first-order formula cannot distinguish between linear orders of even and of odd
length. Hence, L is not definable in FO.

The automaton of this example is not counter free as defined below.

Definition 14. An automaton with concurrency relations A is counter free if
q.wn = q implies q.w = q for any q ∈ Q, w ∈ E⋆ and any natural number n > 0.

Obviously, any automaton with precisely one state is counter free. Hence these
automata generalize trace alphabets. Now, let A be a counter free automaton,
w ∈ E⋆ and q ∈ Q. Since Q is finite, there exist natural numbers m and n > 0
with q.wm = q.wm+n. Suppose m is minimal with this property. Thus, the
elements of {q.wk | k ≤ m} are mutually different. Hence, m ≤ |Q|. Because of
(q.wm).wn = q.wm we obtain by the assumption on A q.wm+1 = q.wm. Thus,
we have q.w|Q| = q.w|Q|+1 for any q ∈ Q and w ∈ E⋆. Suppose conversely that
this holds in a stably concurrent automaton A. Let q ∈ Q, w ∈ E⋆ and n > 0
with q.wn = q. Then we have q = q.(wn)|Q| = q.wn|Q|. This equals q.wn|Q|+1

since n|Q| ≥ |Q|. Hence, q = (q.wn|Q|).w = q.w, i.e. A is counter free, too.
Thus, an automaton with concurrency relations is counter free iff

q.w|Q| = q.w|Q|+1 for any q ∈ Q and any w ∈ E⋆.

Proposition 15. Let A be a counter free stably concurrent automaton. Let
L ⊆ M(A) be an aperiodic language with index k. Then, for any state q ∈ Q,
LE

q = {evseq δ | [δ] ∈ L, dom δ = q} is aperiodic in E⋆ with index at most
2 · max(k, |Q|).

Proof Let n = max(k, |Q|). Suppose uv(2n)w ∈ LE
q . Then there exist γ, δ, η ∈

CS(A) with evseq γ = u, evseq δ = v2n, evseq η = w and [γδη] ∈ L. Also, δ can
be written as δ1δ2δ3 with evseq δ1 = vn, evseq δ2 = v and evseq δ3 = vn−1. Let
p denote the codomain of γ. Then we have cod δ1 = p.vn = p.vn+1 = cod δ2
since A is counter free and n ≥ |Q|. Hence dom δ2 = dom δ3 and therefore
δ2δ3 = δn

2 . This implies [γδ1δ
n+1
2 η] ∈ L since n ≥ k, the index of L. Now we

have uv2n+1w = uvnvn+1w ∈ LE
q .

Conversely suppose uv2n+1w ∈ LE
q . We find γ, δ1, δ2, η ∈ CS(A) with

evseq γ = u, domγ = q, evseq δ1 = vn, evseq δ2 = vn+1, evseq η = w and
[γδ1δ2η] ∈ L. Again, let p denote the codomain of γ. Since A is counter free,
we have cod δ1 = p.vn = p.vn+1 = p.vn+2 = . . . Therefore, we find δ ∈ CS(A)
with dom δ = cod δ = p.vn and evseq δ = v such that δ2 = δn+1. Because of



[γδ1δ
n+1η] ∈ L and n ≥ k, we obtain [γδ1δ

nη] ∈ L, i.e. uv2nw = uvnvnw ∈ LE
q .

⊓⊔
Now we can show that in this case all aperiodic languages are definable by FO.

Theorem16. Let A be a counter free stably concurrent automaton. Let L ⊆
M(A) be an aperiodic language. Then there exists a sentence φ of FO such that
L = L(φ).

Proof Let q ∈ Q. By Prop. 15, LE
q is aperiodic. By [MP71], there exists a

sentence φE
q of FOE with LE

q = L(φE
q ). Now, the proof proceeds similarly to the

proof of Thm. 13. ⊓⊔

Now, we give an example of a language that can be defined by FO but is not
aperiodic.

Example 2. Let A be the following stably concurrent automaton with a ‖p b and
b ‖q c.

bb bb b b�������I���I���� �������� ���I
ps qsb aba b p; a

................................ ................................
Note that s.a = s, p.a2n = p, p.ac = p and that b is concurrent with both a

and c in state q. We consider the following language

L = {[γ] | domγ = p and ∃n ∈ N : evseq γ = ba2nc}

that is not aperiodic. For w ∈ E⋆ let w@p denote the computation sequence δ
with dom δ = p and evseq δ = w (if it exists). Let γ = bac@p. Then
γ ∼ abc@p ∼ acb@p. Hence, b1 and c1 are incomparable in DO(γ). Now consider
γ = baac@p. Then we have [γ] = {baac@p, abac@p, aabc@p}. Hence b1 ⊑ c1 in
DO(γ). By induction we can show that a natural number k is even iff b1 ⊑ c1 in
DO(bakc@p). Hence, L can be defined by FO.

Additionally, the example shows that the dependence order DO(γ) cannot be
defined by a first-order formula from γ ∈ CS(A): Suppose there exists a formula
LE in FOT that satisfies Prop. 9. Then, in the example above, bakc@p satisfies
LE(b1, c1) iff k is even. Hence, by [MP71], the language {ba2nc@p | n ∈ N} ⊆ T ⋆

is aperiodic. But this is not the case.

Lemma17. Let A be a stably concurrent automaton such that a formula LE in
FOT exists with the properties of Prop. 9. Then any first-order definable language
in M(A) is aperiodic.



Proof Let φ be a sentence of FO and L = L(φ). Following the proof of Thm. 10
we find that LT can be defined by a sentence of FOT . By [MP71], LT is aperiodic
in T ⋆. Hence, L is aperiodic with the same index. ⊓⊔

Thus to show that any first-order definable language is aperiodic, it suffices to
show that there exists a formula LE of FOT that expresses the dependence order.
Therefore, we determine two classes of automata that meet this requirement
(Def. 18 and 20).

Definition 18. An automaton with concurrency relations A is an automaton
with global independence if whenever a ‖p b and q.ab is defined then a ‖q b for
any a, b ∈ E and p, q ∈ Q.

Note that any automaton induced by a trace alphabet has global independence.
It is possible to check that any automaton with global independence is stably
concurrent.

Together with Lemma 17, the following proposition implies that for an au-
tomaton A with global independence any first-order definable language in M(A)
is aperiodic.

Proposition 19. Let A be an automaton with global independence. Then there
exists a formula LE in FOT with two free variables such that for any γ ∈ CS(A)
and any x, y ∈ O(γ) the following are equivalent:

1. x ⊑ y in DO(γ).
2. γ |= LE(x, y).

Proof Let I :=
⋃

{‖q| q ∈ Q}. Then (E,E2 \ I) is a trace alphabet. Let
γ ∈ CS(A). One can show that, since A is an automaton with global inde-
pendence, the dependence graph of evseq γ with respect to (E,E2 \ I) and the
partially ordered set (O(γ),⊑) coincide. But it is well known that the dependence
graph can be defined by the following first-order formula LE:

∨

{a1,...,an}⊆E

(ai,ai+1)/∈I

∃x1, . . . , xn





∧

i≤n

Eai(xi) ∧
∧

i≤n−1

xi < xi+1 ∧ (x1 = x) ∧ (xn = y)



 .

⊓⊔

[Dr94b, Example 3.1] shows that there exists an automaton with global in-
dependence A and a starfree language in M(A) that is not aperiodic. In this
automaton, it is possible to define a language similar to that of Example 1 that
is aperiodic but not first-order definable. Now we define a class of automata
where a language is aperiodic iff it is starfree ([Dr94b]) and show that further-
more any first-order definable language is aperiodic.

Let A be a stably concurrent automaton, w = a1a2 . . . an ∈ E⋆, q ∈ Q and
a ∈ E. We say a and w commute in q (denoted by a ‖q w) if q.w is defined and
a ‖q.a1a2...ai ai+1 for i = 0, 1, . . . , n− 1.



Definition 20. A stably concurrent automaton A has no commuting loops if
a ‖q w implies q.w 6= q for any q ∈ Q, w ∈ E⋆ and a ∈ E.

Suppose a ∈ E, w ∈ E⋆, q ∈ Q such that a ‖q w and q.w = q. Then, there
exists a prefix uv of w of length at most |Q| such that q.uv = q.u. Let p := q.u.
Now a ‖p v is immediate. Hence, to check whether a stably concurrent automaton
has a commuting loop it suffices to consider words w of length at most |Q|. Note
that if A is the automaton induced by a trace alphabet (E,D), thus has only one
state, and has no commuting loops, then D = E×E. Thus the class of automata
without commuting loops forms a model for concurrent systems complementary
to trace alphabets.

To show that for a stably concurrent automaton without commuting loops
there exists a first-order formula describing the dependence order we need the
following lemma which describes when two elements of the dependence order
DO(γ) are incomparable. It is valid for any stably concurrent automaton.

Lemma21. Let A be a stably concurrent automaton, σx, σy ∈ T , γi ∈ CS(A)
for i = 1, 2, 3, γ = γ1σxγ2σyγ3 ∈ CS(A), evσx = a, ev σy = b, |γ1|a = i− 1 and
|γ1σxγ2|b = j − 1. Then x = ai and y = bj are incomparable in DO(γ) iff there
exist computation sequences δ1 and δ2 with γ2 ∼ δ1δ2, a ‖codγ1 (evseq δ1)b and
b ‖dom δ2 evseq δ2.

Proof Suppose that x and y are incomparable. Let wi = evseq γi for i = 1, 2, 3.
There exists an order-preserving enumeration

A = (x1, x2, . . . , xk, x, y1, y2, . . . , yl, y, z1, z2, . . . , zm)

of DO(γ) that induces γ. Let (y′1, y
′
2, . . . , y

′
n) denote the subsequence of

(y1, y2, . . . , yl) comprising all elements yi with yi ≤ y and let (y′n+1, . . . , y
′
l)

denote the remaining subsequence of (y1, y2, . . . , yl). For i ≤ n we have x ‖ y′i,
hence y′i 6∈ Ea. Similarly, for i > n, we have y ‖ y′i, implying y′i 6∈ Eb. Hence

B = (x1, x2, . . . , xk, x, y
′
1, y

′
2, . . . , y

′
l, y, z1, z2, . . . , zm),

C = (x1, x2, . . . , xk, x, y
′
1, y

′
2, . . . , y

′
n, y, y

′
n+1, . . . , y

′
l, z1, z2, . . . , zm) and

D = (x1, x2, . . . , xk, y
′
1, y

′
2, . . . , y

′
n, y, x, y

′
n+1, . . . , y

′
l, z1, z2, . . . , zm)

are order-preserving enumerations of DO(γ). Let u1 denote the sequence of ac-
tions of (y′1, y

′
2, . . . , y

′
n) and u2 that of (y′n+1, . . . , y

′
l). Then B induces a com-

putation sequence with event sequence w1au1u2bw3. Hence, there exist compu-
tation sequences δ1 and δ2 with evseq δi = ui and γ2 ∼ δ1δ2. The enumera-
tion C induces a computation sequence with event sequence w1au1bu2w3. Since
y′i 6∈ Eb for i > n, the word u2 does not contain any b. Therefore, b ‖p u2 with
p = (dom γ).w1au1 = dom δ2. Finally, D induces a computation sequence with
event sequence w1u1bau2w3. Since y′i 6∈ Ea for i ≤ n, and since a 6= b, the word
u1b does not contain any a. This implies a ‖q u1b with q = (dom γ).w1 = codγ1.

Suppose, conversely, there exist δ1 and δ2 with the properties described above.
Then γ ∼ γ1δ

′
1σ

′
yσ

′
xδ

′
2γ3 =: δ with evseq δi = evseq δ′i (i = 1, 2), ev σx = evσ′

x



and ev σy = ev σ′
y. By a ‖codγ1 (evseq δ1)b, we obtain |δ′1σ

′
y |a = |δ1|a + |σy |a = 0.

Similarly, b ‖dom δ2 evseq δ2 implies |δ′2|b = |δ2|b = 0. Hence |γ1δ
′
1σ

′
y|a = i−1 and

|γ1δ
′
1|b = |γ1|b + |δ1|b = |γ1σxδ1δ2|b = j − 1. Hence y ⊑δ x which implies that x

and y are incomparable in DO(γ). ⊓⊔

Now, the following proposition implies that for stably concurrent automata
without commuting loops any first-order definable language in M(A) is aperiodic.

Proposition 22. Let A be a stably concurrent automaton without commuting
loops. Then there exists a formula LE in FOT with two free variables such that
for any γ ∈ CS(A) and any x, y ∈ O(γ) the following are equivalent:

1. x ⊑ y in DO(γ).
2. γ |= LE(x, y).

Proof Let x = ai and y = bj . Clearly, x ⊑γ y is a necessary condition for x ⊑ y.
Therefore, suppose x ⊑γ y. Then there exist γ1, γ2, γ3 ∈ CS(A) and σx, σy ∈ T
satisfying the assumptions of Lemma 21. Hence, x and y are incomparable in
DO(γ) iff there exist δ1, δ2 ∈ CS(A) with the properties described in Lemma
21. Since A has no commuting loops, this implies |δ1| < |Q| − 1 and |δ2| < |Q|,
hence |γ2| < 2|Q|−1. Since A is finite, there are only finitely many computation
sequences of length less than 2|Q| − 1. Hence it is possible to express by a first-
order formula LE that x ⊑ y in DO(γ) holds. ⊓⊔

Summarizing Prop. 19 and 22 and Lemma 17, we obtain:

Theorem 23. Let A be either a stably concurrent automaton without commuting
loops, or an automaton with global independence. Then each first-order definable
language in M(A) is aperiodic.

Now Thm. 2 given in the introduction is immediate by Thms. 16 and 23.
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