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Abstract

We continue our study of the complexity of MSO-definable local temporal logics over concurrent systems
that can be described by Mazurkiewicz traces. In previous papers, we showed that the satisfiability problem
for any such logic is in PSPACE (provided the dependence alphabet is fixed [1]) and remains in PSPACE
for all classical local temporal logics even if the dependence alphabet is part of the input [2]. In this paper,
we consider the uniform satisfiability problem for arbitrary MSO-definable local temporal logics. For this
problem, we prove multi-exponential lower and upper bounds that depend on the number of alternations of
set quantifiers present in the chosen MSO-modalities.

1. Introduction

Executions of distributed systems can be modeled as Mazurkiewicz traces [3] where the architecture of
the system is mirrored by the dependence alphabet. Then a trace is a partial order execution of such a
system. Over the past fifteen years, a lot of papers have been devoted to the study of temporal logics over
partial orders and in particular over Mazurkiewicz traces (cf. [4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2]). This is
motivated by the need for specification languages that are suited for concurrent systems where a property
should not depend on the ordering between independent events. Hence logics over linearizations of behaviors
are not adequate and logics over partial orders were developed. In particular local temporal logics are of
interest here due to their good algorithmic properties (as opposed to global temporal logics [13]). The
common feature of these logics is that formulas are evaluated at single events corresponding to local views of
processes. In [1], we proposed a unified treatment of all those local temporal logics that can be presented in
the spirit of [14]. Basically, a local temporal logic is given by a finite set of modality names. The semantics
of any such modality name is described by a monadic second order (MSO) formula having a single individual
free variable. For any fixed dependence alphabet (i.e., architecture of a distributed system) we showed that
the satisfiability problem of any such logic is in PSPACE. For (almost) all temporal logics considered in the
literature so far, this was known before. Our contribution was a uniform proof that would also be applicable
for not-yet-defined temporal logics. This proof constructs a finite automaton from a formula of the temporal
logic such that a word is accepted iff its associated trace satisfies the formula. This construction is similar to
the one considered in [15]; it does not rely on alternating automata (a technique that goes back to [16]), but
on modality automata. The idea can be best explained in terms of transducers: given a formula, we aim at a
transducer that marks all positions in a word where the formula holds. Given two such transducers for the
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formulas ϕ and ψ and given a modality M(ϕ, ψ) of the temporal logic (e.g., until or any other MSO-definable
modality), a modality automaton is a transducer that takes as input the outputs of the transducers for ϕ
and ψ (i.e., it knows for each position in the word which of the two formulas hold) and produces the marking
for the combined formula M(ϕ, ψ). These modality automata depend on the architecture of the system, i.e.,
on the dependence alphabet (Σ, D). But if this dependence alphabet is fixed, their construction does not
contribute to the complexity of the satisfiability problem.

A more realistic setting is the uniform satisfiability problem where both, the temporal formula and the
architecture form the input. In other words, this uniform satisfiability problem for the local temporal logic
TL asks whether a given property ϕ ∈ TL can be satisfied in a given architecture (Σ, D) (described as a
trace alphabet). Differently from the non-uniform case, now the modality automata cannot be computed in
a preprocessing step, but their computation contributes to the complexity. In [2], we presented a sufficient
condition on the modalities (polynomial variance) that allowed an efficient construction of modality automata
and therefore an efficient solution of the uniform satisfiability problem. Since, as we also showed, all local
temporal logics considered in the literature satisfy our sufficient condition, we obtained that the uniform
satisfiability problem for any of them is in PSPACE (due to the compositionality of our method, this
applies even to the logic that features all modalities considered in the literature).

In this paper, we study the uniform satisfiability problem for arbitrary MSO-definable local temporal
logics. Recall that the semantics of the modality names of TL are given by MSO formulas. We prove lower
and upper bounds for the complexity of the associated uniform satisfiability problem that depend on the
number of alternation of set quantifiers in these modalities. To state our results more precisely, recall that

MΠ1
n is the set of MSO-formulas that can be written as ∀

−→
X1∃

−→
X2 · · · ∃/∀

−→
Xn ϕ where ϕ does not contain any

set quantifiers, and BoolMΣ1
n is the set of Boolean combinations of formulas from MΠ1

n. If the semantics
of every modality name in the local temporal logic TL belongs to BoolMΣ1

n, then the uniform satisfiability
problem can be solved in n-fold exponential space (Theorem 3.1 and Remark 2.6). This result is optimal
since, for every n > 0 we present a local temporal logic TL whose modalities belong to MΠ1

n and whose
uniform satisfiability problem is hard (and therefore complete) for n-fold exponential space (Theorem 4.1
and Remark 2.6).

Again, the decision procedure for the upper bound is based on modality automata. Schwentick and
Bartelmann [17] give a normal form for the first-order kernel of the MSO-formulas that describe the semantics
of modalities. This normal form allows to compute these automata more efficiently than expected (cf.
discussion before Prop. 3.4). The lower bound is shown by a reduction of the word problem from an
arbitrary Turing machine working in n-fold exponential space. The reduction is based on an adaptation of
Matz’ method [18, 19] of n-fold exponential counting by n monadic quantifier alternations.

An extended abstract presenting weaker results appeared as [20].

2. Preliminaries

Throughout this paper, we fix some countably infinite set N of action names. A dependence alphabet is
a pair (Σ, D) where Σ ⊂ N is a finite set of action names and the dependence relation D ⊆ Σ2 is symmetric
and reflexive. The independence relation is I = Σ2 \ D. For A ⊆ Σ, we let D(A) = {b ∈ Σ | (a, b) ∈
D for some a ∈ A} be the set of letters that depend on some letter in A, and we let I(A) = Σ \ D(A)
be the set of letters independent from all letters in A. A trace over (Σ, D) is a labeled at most countably
infinite partial order t = (V,≤, λ) such that (V,≤) is a partial order and λ : V → Σ is the labeling function
satisfying for all x, y ∈ V

• ↓x = {z ∈ V | z ≤ x} is finite

• (λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x

• x⋖ y implies (λ(x), λ(y)) ∈ D,

where ⋖ = < \ <2 is the immediate successor relation. The alphabet of the trace t is alph(t) = λ(V ) and
the set of letters occurring infinitely often in t is denoted alphinf(t). The set M(Σ, D) comprises all finite
traces while R(Σ, D) contains all finite or infinite traces over (Σ, D).
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Trace concatenation is an operation · : M(Σ, D)×R(Σ, D) → R(Σ, D) defined by (V,≤, λ) · (V ′,≤′, λ′) =
(V ⊎V ′, (≤∪≤′∪E)∗, λ∪λ′) with E = {(v, v′) ∈ V ×V ′ | (λ(v), λ′(v′)) ∈ D}. Its restriction to finite traces
is associative and the empty trace ε is a unit, i.e., (M(Σ, D), ·) is a monoid, called trace monoid.

We can identify a letter a ∈ Σ with the trace [a] = ({0},≤, λ) with λ(0) = a. In this sense, the trace
monoid M(Σ, D) is generated by the set of letters a ∈ Σ. The canonical homomorphism [.] : Σ∗ → M(Σ, D)
can be extended naturally to infinite words: for a (finite or infinite) word u = a0a1 . . . with ai ∈ Σ, the
trace [u] = (V,�, λ) is given by V = {i ∈ N | 0 ≤ i < |u|}, λ(i) = ai, and � = E∗ with (i, j) ∈ E iff i < j
and (ai, aj) ∈ D.

In the following, we are interested in the logic MSO(N,⋖) that speaks about nodes and sets of nodes of
a trace. The logic has individual and set variables. The syntax of MSO(N,⋖) is given by

ϕ ::= λ(x) = a | x⋖ y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ | ∃finX ϕ

where a ranges over N, x, y are individual variables, and X is a set variable.
Formulas of the logic MSO(N,⋖) will be interpreted over traces. Formally, the semantics is defined for

a trace t = (V,≤, λ) and an assignment σ that maps first order variables to positions in V and set variables
to subsets of V by:

t, σ |= λ(x) = a if λ(σ(x)) = a
t, σ |= x⋖ y if σ(x) ⋖ σ(y)
t, σ |= x = y if σ(x) = σ(y)
t, σ |= x ∈ X if σ(x) ∈ σ(X)
t, σ |= ¬ϕ if t, σ 6|= ϕ
t, σ |= ϕ ∨ ψ if t, σ |= ϕ or t, σ |= ψ
t, σ |= ∃x ϕ if there exists v ∈ V such that t, σ[x 7→ v] |= ϕ
t, σ |= ∃X ϕ if there exists U ⊆ V such that t, σ[X 7→ U ] |= ϕ
t, σ |= ∃finX ϕ if there exists U ⊆ V with U finite and t, σ[X 7→ U ] |= ϕ

where σ[x 7→ v] is the assignment that differs from σ only in the value of x that now equals v, and similarly
for σ[X 7→ U ]. To make formulas more readable, we will freely use abbreviations such as α ∧ β, X ⊆ Y ,
X ∩ Y 6= ∅, . . . whose obvious intended meaning can easily be expressed by formulas from MSO(N,⋖).

Sometimes, we write ϕ(X1, . . . , Xk, x1, . . . , xℓ) to stress the fact that the free variables in ϕ are among
{X1, . . . , Xk, x1, . . . , xℓ}. In this case, we may also write t |= ϕ(U1, . . . , Uk, v1, . . . , vℓ) instead of t, σ |= ϕ
where σ is an assignment satisfying σ(Xi) = Ui ⊆ V for 1 ≤ i ≤ k and σ(xj) = vj ∈ V for 1 ≤ j ≤ ℓ.

Usually, an MSO-logic over partial orders is defined with the atomic proposition x ≤ y instead of x⋖ y
and x = y. Clearly, the formulas x⋖ y and x = y can be expressed by first-order formulas using the partial
order ≤, only. Conversely, ≤ is the reflexive and transitive closure of ⋖, i.e., x ≤ y is equivalent to

∀X [(y ∈ X ∧ ∀y1, y2 (y1 ⋖ y2 ∧ y2 ∈ X → y1 ∈ X)) → x ∈ X ] .

Thus, using x ≤ y instead of x⋖ y and x = y does not change the expressive power of the logic. We have
chosen not to include the atomic proposition x ≤ y directly in the syntax of MSO(N,⋖) since our upper
bound proof relies on the fact that the number of nodes y that are directly related with a fixed node x is
bounded by some value which does not depend on the trace but depends on the dependence alphabet only.
This would not be the case if we included ≤ since the number of nodes dominated by a node x is arbitrary
large.

Example 2.1. Consider the following two formulas

upset(x,X) = ∀y (y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ z ⋖ y)) and

downset(x,X) = ∀y (y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ y ⋖ z)) .

of MSO(N,⋖). Let t = (V,≤, λ) be any trace and u ∈ V a vertex. Then, for any subset U ⊆ V we have
t |= upset(u, U) iff U = ↑u where ↑u = {v ∈ V | u ≤ v}. Similarly, for any finite subset U ⊆ V , we have
t |= downset(u, U) iff U = ↓u = {v ∈ V | v ≤ u}.
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Indeed, it is easy to see that t |= upset(u, ↑u). Conversely, assume that t |= upset(u, U). For v ∈ ↑u,
an easy induction on the length of a shortest ⋖-path from u to v shows that v ∈ U , i.e., ↑u ⊆ U . For the
converse inclusion, assume that U \ ↑u 6= ∅ and let v be minimal in U \ ↑u (since ↓w is finite for any w ∈ V ,
such a minimal node exists). Then, v 6= u and since t |= upset(u, U) we find w ∈ U with w⋖ v. Since v was
chosen minimal, we get w ∈ ↑u. Hence, v ∈ ↑u, a contradiction. Therefore, we obtain U = ↑u.

Now consider the formula downset(x,X) that is just the dual of upset(x,X) and let U be finite. Then
also the proof is dual to the one above. When one shows U ⊆ ↓u, one assumes v ∈ U \ ↓u maximal. Such a
maximal node exists since U is finite.

In the following, we will write X = ↓x and X = ↑x as a more intuitive abbreviation for the formulas
downset(x,X) and upset(x,X).

Definition 2.2. An MSO(N,⋖)-formula is an m-ary modality if it has m free set variables X1, . . . , Xm and
one free individual variable x.

Definition 2.3. An MSO(N,⋖)-definable temporal logic is given by

• a finite set B of modality names together with a mapping arity : B → N giving the arity of each
modality name and

• a mapping [[−]] : B → MSO(N,⋖) such that [[M ]] is an m-ary modality whenever arity(M) = m for
M ∈ B.

Then the syntax of the temporal logic TL(B) is defined by the grammar

ϕ ::= M(ϕ, . . . , ϕ
︸ ︷︷ ︸

arity(M)

) | a

where M ranges over B and a over N .
Let t = (V,≤, λ) be a trace over some finite dependence alphabet (Σ, D) and ϕ ∈ TL(B) a formula of

TL(B). The semantics ϕt of ϕ in t is the set of positions in V where ϕ holds. The inductive definition is as
follows. If ϕ = a ∈ N, then ϕt = {v ∈ V | λ(v) = a}. If ϕ = M(ϕ1, . . . , ϕm) where M ∈ B is of arity m ≥ 0,
then

ϕt = {v ∈ V | t |= [[M ]](ϕt
1, . . . , ϕ

t
m, v)}.

We also write t, v |= ϕ for v ∈ ϕt.

For notational convenience and consistency, we consider elements of N as modality names as well and
write [[a]] = (λ(x) = a) for a ∈ N.

This definition of an MSO(N,⋖)-definable temporal logic is very much in the style of [14]. It differs in
as far as we allow (finite) set quantifications in our modalities. On the other hand, we do not allow to use
the order relation ≤ explicitly (but implicitly using set quantification).

Example 2.4. First, the boolean connectives negation and conjunction can be expressed by [[¬]](X1, x) =
¬(x ∈ X1) and [[∨]](X1, X2, x) = (x ∈ X1) ∨ (x ∈ X2).

Existential next: EXϕ is one of the simplest temporal modalities. Intuitively, EXϕ means that there is an
immediate successor of the current vertex where ϕ holds. Formally, we can set [[EX]](X1, x) = ∃y (x⋖y∧y ∈
X1) which is even a first-order formula since it does not use set quantifications.

Concurrent: The unary modality Ecoϕ claims that ϕ holds for some vertex concurrent to the current vertex
x. Thus, its semantics can be defined as

[[Eco]](X1, x) = ∃X∃Z∃z (X = ↑x ∧ Z = ↑z ∧ z /∈ X ∧ x /∈ Z ∧ z ∈ X1) .

Universal strict until: ϕ SU ψ is a binary modality claiming the existence of a vertex y in the strict future
of the current one x such that ψ holds at y and ϕ holds for all vertices strictly between x and y. Since
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the partial order ≤ cannot be used directly, we cannot write a first-order formula for the semantics of SU.
Instead, the semantics [[SU]](X1, X2, x) can be written as an existential formula:

∃X∃finY ∃y (X = ↑x ∧ Y = ↓y ∧ y ∈ X ∩X2

∧ ∀z(z ∈ X ∩ Y \ {x, y} → z ∈ X1)) .

The classical non strict version of universal until is ϕ U ψ = ψ ∨ (ϕ ∧ (ϕ SU ψ)). Note also that EXϕ =
false SU ϕ.

Existential until: ϕEUψ is another binary modality. It claims the existence of some finite path x0⋖x1 · · ·⋖xn

starting at the current node x0 and such that ψ holds at xn and ϕ holds at xi for all 0 ≤ i < n. Formally,
we can define this modality by

[[EU]](X1, X2, x) = ∃P (P ∩X2 6= ∅ ∧ x ∈ P ∧ P ⊆ X1 ∪X2 ∧
∀z (z ∈ P → (z = x ∨ ∃y (y ∈ P ∧ y ⋖ z)))) .

Existential globally. The formula EGϕ claims the existence of a maximal ⋖-path in the trace, starting from
the current vertex, where ϕ always holds. The corresponding modality can be defined similarly to [[EU]] by

[[EG]](X1, x) = ∃P (x ∈ P ∧ P ⊆ X1 ∧
∀z (z ∈ P → (z = x ∨ ∃y (y ∈ P ∧ y ⋖ z))

∧ (∃y (y ∈ P ∧ z ⋖ y) ∨ ¬∃y (z ⋖ y)))) .

For more examples, see [1] where most modalities met in the literature on local temporal logics for traces
are expressed in terms of MSO(N,≤)-modalities. As ≤ can be expressed using ⋖, any of those formulas can
be transformed into an equivalent one from MSO(N,⋖).

In [1, Thm. 9], we showed that the following problem belongs to PSPACE where the size |ϕ| of a
temporal formula ϕ is the number of its subformulas.2

Non-uniform satisfiability problem for temporal logics..
Let TL(B) be an MSO(N,≤)-definable temporal logic and let (Σ, D) be a finite dependence alphabet.
input: a formula ϕ of TL(B)
question: Is there a trace t ∈ R(Σ, D) and an event v in t with t, v |= ϕ?

By the above discussion, any MSO(N,⋖)-definable temporal logic is also MSO(N,≤)-definable, i.e.,
the PSPACE upper bound holds for these logics as well. In this paper, we will also consider the finite
dependence alphabet as part of the input, i.e., we study the complexity of the following problem:

Uniform satisfiability problem for temporal logics..
Let TL(B) be an MSO(N,⋖)-definable temporal logic.
input: a finite dependence alphabet (Σ, D) and a formula ϕ of TL(B)
question: Is there a trace t ∈ R(Σ, D) and an event v in t with t, v |= ϕ?

Analyzing the proof of [1, Thm. 9], one obtains the following

Theorem 2.5 (cf. [1]). For any MSO(N,⋖)-definable temporal logic, the uniform satisfiability problem is
elementarily decidable.

Proof. The proof of [1, Thm. 9] is based on computing automata from the MSO-descriptions of the modalities
in a preprocessing step. These computations depend elementarily on the dependence alphabet. Hence the
remaining procedure from [1] can be applied and yields the result.

2In [1], we did not allow the restriction of set quantification to finite sets in the modalities [[M ]], but the necessary additions
are obvious.
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For temporal logics based on the classical modalities from Example 2.4 as well as on Thiagarajan’s
process-based modalities from [4], we solved the uniform satisfiability problem in PSPACE [2]. In this
paper, we present matching lower and upper bounds for the uniform satisfiability problem of arbitrary
MSO(N,⋖)-definable temporal logics. These bounds are expressed in terms of the number of monadic quan-
tifier alternations in the formulas [[M ]]. Following [21], MΣ1

n(N,⋖) comprises all MSO(N,⋖)-formulae that

are logically equivalent to one of the form ∃
−→
X1∀

−→
X2 . . . ∃/∀

−→
Xnϕ where ϕ does not contain any second-order

quantification. Here,
−→
Y stands for a tuple of set variables. For instance, all modalities from Example 2.4

have been defined by MΣ1
1(N,⋖)-formulae.

Dually, a formula belongs to MΠ1
n(N,⋖) if and only if its negation is an element of MΣ1

n(N,⋖). Finally,
BoolMΣ1

n(N,⋖) is the set of Boolean combinations of formulas from MΣ1
n(N,⋖). We write FO(N,⋖) for

MΣ1
0(N,⋖) = MΠ1

0(N,⋖), i.e., for those formulas that can be written without set quantification. When L is
a logic such as FO(N,⋖), MΠ1

n(N,⋖), . . . , we speak of an L-modality M if [[M ]] ∈ L, and of an L-definable
temporal logic TL(B) whenever all modalities are L-modalities.

Remark 2.6. Let TL(B) be some BoolMΣ1
n(N,⋖)-definable temporal logic. Then there is a finite set H of

MΣ1
n(N,⋖)-modalities such that, for every M ∈ B, [[M ]] is a Boolean combination of formulas from H . In

addition, we can assume ¬,∨ ∈ H . Now let ϕ be a TL(B)-formula. Replacing every occurrence in ϕ of a
modality M ∈ B with the equivalent Boolean combination of formulas from H yields an equivalent formula
ψ from TL(H). Recall that the size of ϕ is the number of its subformulas; hence |ψ| is linear in |ϕ|, i.e., we
reduced the uniform satisfiability problem for the BoolMΣ1

n(N,⋖)-definable temporal logic TL(B) to that
of the MΣ1

n(N,⋖)-definable temporal logic TL(H).
As a consequence, it will suffice to prove the upper complexity bound for MΣ1

n(N,⋖)-definable temporal
logics. Dually, the lower bound will be proved for MΠ1

n(N,⋖)-definable temporal logics, only. From the
same reduction, we obtain that it holds for MΣ1

n(N,⋖)-definable temporal logics as well.

3. n-EXPSPACE upper bound for MΣ1

n
-logics

It is the aim of this section to prove an upper bound for the uniform satisfiability problem sharper
than that given in Theorem 2.5. To state this upper bound, let poly(n) denote the set of polynomial
functions of one argument. The function tower : N

2 → N is defined inductively by tower(0,m) = m and by
tower(ℓ,m) = 2tower(ℓ−1,m) for ℓ > 0. Now we can state the main result of this section:

Theorem 3.1. Let TL be some MΣ1
n(N,⋖)-definable temporal logic. Then the uniform satisfiability problem

for TL can be solved in space poly(|ϕ|) · tower(n, poly(|Σ|)), i.e., it is in n-EXPSPACE.

Remark 3.2. To avoid unnecessary complications, we give the proof for infinite traces only. Hence, we use
Büchi automata over ω-words representing infinite traces. We can also deal with finite traces similarly, using
automata over finite words. This is left to the reader.

3.1. The decision procedure – proof of Theorem 3.1

The decision procedure we propose refines ideas from [1] that can also be found (although in a different
presentation) in [15]. The main ingredient of the decision procedure are modality automata defined below.
Let w = a0a1 · · · ∈ Σω be a word over Σ and Xi ⊆ N be sets for 1 ≤ i ≤ m. Then (w,X1, · · · , Xm) denotes
the word b0b1 . . . over Σ × {0, 1}m with bi = (ai, x

1
i , x

2
i , . . . , x

m
i ) and xj

i = 1 iff i ∈ Xj .

Definition 3.3. Let (Σ, D) be a finite dependence alphabet and α an m-ary MSO(N,⋖)-modality. A Büchi-
automaton A over Σ×{0, 1}m+1 is called modality automaton for α over (Σ, D) if a word (w,X0, X1, . . . , Xm)
is accepted by A iff [w] |= ∀x (x ∈ X0 ↔ α(X1, X2, . . . , Xm, x)) where [w] is the trace induced by w.

Our decision procedure will have to construct modality automata for all MΣ1
n(N,⋖)-modalities α in the

temporal logic. The modality automaton Aα for α over (Σ, D) is a Büchi automaton for the MΠ1
n+1(N,⋖)-

formula
α′ = ∀x (x ∈ X0 ↔ α(X1, . . . , Xm, x)) .
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In α we find atomic propositions of the form y ⋖ z. Reading a word w we can check whether two positions
i, j < |w| are consecutive (i.e., satisfy i ⋖ j) in the trace [w] by keeping a subset of Σ in the state. Then,
using classical constructions on automata (projection for existential quantification, complement for negation
and disjoint union for disjunction) we can construct a modality automaton for α over (Σ, D). Note that
a universal quantification ∀ = ¬∃¬ needs two complements and yields two exponentials. Hence, this näıve
approach yields an exponential tower whose height is the number of quantifier alternations in α′ (including
first-order quantifiers), even for FO(N,⋖)-modalities. Since the space bound in Theorem 3.1 mentions only
alternations of set quantifiers, we need the following more efficient construction.

Proposition 3.4. Let n ≥ 1 and α be an MΣ1
n(N,⋖)-modality. Then the following problem can be solved

in space tower(n, poly(|Σ|))
input: a finite dependence alphabet (Σ, D)
output: a modality automaton for α over (Σ, D).

The proof of this proposition will be presented in Section 3.4 and use the concepts and results from
Sections 3.2 and 3.3.

Before we explain how to use modality automata to solve the uniform satisfiability problem, we fix
some more notation. Let ϕ and ξ be TL(B)-formulas. Then topM(ξ) denotes the outermost modality
name of ξ. We write ξ ≤ ϕ if ξ is a subformula of ϕ (this includes the case ϕ = ξ). Furthermore
Sub(ϕ) = {ξ ∈ TL(B) | ξ ≤ ϕ} is the set of subformulas of ϕ. For an alphabet Σ, we will consider words of
the form (w, (Xξ)ξ≤ϕ) with w ∈ Σω andXξ ⊆ N, i.e., words over the extended alphabet Σϕ = Σ×{0, 1}Sub(ϕ).
For a subformula ξ = M(ξ1, . . . , ξm) ≤ ϕ and a letter a = (a, (xξ)ξ≤ϕ) ∈ Σϕ, let a↾ξ = (a, xξ, xξ1

, . . . , xξm
).

Similarly, for a word w = (w, (Xξ)ξ≤ϕ) ∈ Σω
ξ , let w↾ξ = (w,Xξ, Xξ1

, . . . , Xξm
).

Recall the following decision procedure from [2] that we repeat here for the sake of completeness. Let ϕ
be some TL(B)-formula and (Σ, D) some finite dependence alphabet. Furthermore, suppose that for each
M ∈ B, we are given a modality automaton AM for [[M ]] over (Σ, D) with set of states QM . From these
modality automata, we construct an automaton A over Σϕ. The set of states is Q =

∏

ξ≤ϕ QtopM(ξ). For

a letter a ∈ Σϕ and states p = (pξ)ξ≤ϕ and q = (qξ)ξ≤ϕ, we have a transition p
a
−→ q in A if and only if,

for all ξ ≤ ϕ, we have pξ
a↾ξ
−−→ qξ in the modality automaton AtopM(ξ). With this definition, a sequence of

states p0, p1, . . . is a run of A on a word w = (w, (Xξ)ξ≤ϕ) ∈ Σω
ϕ if and only if for each ξ ≤ ϕ, its projection

p0
ξ, p

1
ξ, . . . on ξ is a run of the modality automaton AtopM(ξ) for the word w↾ξ. A run p0, p1, . . . of A is

accepting if and only if for each ξ ≤ ϕ, its projection p0
ξ, p

1
ξ, . . . is accepting in the modality automaton

AtopM(ξ). So A is a generalized Büchi automaton which has the following useful property:

Proposition 3.5 ([2, Prop. 4.1]). The formula ϕ ∈ TL(B) is satisfiable by some trace over (Σ, D) if and
only if A accepts some word w = (w, (Xξ)ξ≤ϕ) ∈ Σϕ with Xϕ 6= ∅.

Sketch of proof.. Let w = (w, (Xξ)ξ≤ϕ) ∈ Σω
ϕ. Then one shows that w is accepted by A if and only if for each

ξ ≤ ϕ we have Xξ = ξ[w] = {p ∈ N | [w], p |= ξ} [2, Lemma 4.1]. This immediately implies the statement.

of Theorem 3.1. The satisfiability of ϕ is (essentially) equivalent to the non-emptiness problem for the
automaton A. To solve it non-deterministically, we only need to keep in memory a few |ϕ|-tuples of states of
our modality automata, and some counter (counting up to |ϕ|) to check the generalized Büchi condition. By
Proposition 3.4, modality automata can be computed in space tower(n, poly(|Σ|)). Hence, the transition
relation of the automaton A can be decided in space poly(|ϕ|)·tower(n, poly(|Σ|)). Thus, its non-emptiness
can be decided in space poly(|ϕ|) · tower(n, poly(|Σ|)) which finishes the proof of Theorem 3.1.

The still missing proof of Proposition 3.4 will be given in Section 3.4. It relies on a locality theorem by
Schwentick and Bartelmann [17] (cf. Proposition 3.15 below). In essence, it says that an FO(N,⋖)-formula is
effectively equivalent to the possibility of placing some pebbles such that any sphere in the structure extended
by these pebbles satisfies some first-order property. Therefore, the following section defines spheres in traces
and shows how they can be computed by an automaton.
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Figure 1: Update of TOP1(s)
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G(td)
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c
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d

Figure 2: Update of TOP1(t)

3.2. Spheres

Throughout this section, fix some dependence alphabet (Σ, D) and write M for M(Σ, D) and similarly
R for R(Σ, D). The trace graph of a trace t = (V,≤, λ) is the structure G(t) = (V,≤,⋖, λ). The restriction
of a structure M = (V,≤,⋖, λ) to U ⊆ V is the structure

M↾U = (U,≤ ∩ U2,⋖ ∩ U2, λ↾U) .

If M = G(t) is a trace graph, M↾U need not be a trace graph itself. In particular, the relation ⋖ ∩ U2

need not be the covering relation of ≤ ∩ U2. We let ⊲⊳ = (⋖ ∪ ⋗). A path of length n in M is a sequence
x0 ⊲⊳ x1 . . . ⊲⊳ xn with xi ∈ V , i.e., consecutive elements are related by ⋖ in any direction. For x, y ∈ V , the
distance dM(x, y) is the minimal length of a path from x to y. The distance is generalized to x ∈ V and U ⊆ V
by dM(x, U) = min{dM(x, y) | y ∈ U}. For r ∈ N and U ⊆ V , let sphr(M, U) = {x ∈ V | dM(x, U) ≤ r}
consist of all elements of V whose distance to U is at most r. Then the sphere SPHr(M, U) around U
denotes the substructure M↾sphr(M, U).

Let t = (V,≤, λ) be a finite trace. For a ∈ alph(t), let lasta(t) = max(λ−1(a)) be the ≤-maximal a-
labeled node occurring in t. Let last(t) = {lasta(t) | a ∈ alph(t)}. Then topr(t) denotes sphr(t, last(t)) and
TOPr(t) = SPHr(t, lastr(t)). Hence topr(t) = {x ∈ V | dG(t)(x, last(t)) ≤ r} and TOPr(t) = G(t)↾topr(t).
We will first show in Lemma 3.7 that the top spheres can be computed incrementally reading an arbitrary
linearization of a trace.

Example 3.6. Let Σ = {a, b, c, d} with independence relation I = {(b, d), (d, b), (a, c), (c, a)} and consider
the trace s = [aabbcccbbbb]. In Fig. 1, the trace graph of sd is depicted in the first line. There, solid edges
denote the covering relation ⋖. Furthermore, black nodes are those in last(sd). In the second line, the
structure TOP1(sd) is depicted. There, solid arrows have the same meaning as in the first picture, but the
partial order relation ≤ is the reflexive and transitive closure of all arrows (including the dashed ones). If, in
this second picture, we erase the d-labeled node, we obtain TOP1(s). Note the similarity of these pictures
with those of Fig. 2 with t = [ccbbaaabbbb]: In particular, the covering relation ⋖ restricted to TOP1(s)
and TOP1(t) are equal, but they differ in TOP1(sd) and TOP1(td). Thus, although we are only interested
in the relation ⋖, in order to update this information, we also have to keep the order ≤ in the top sphere.
Lemma 3.7 shows that this information is sufficient to compute TOPr(sd) from TOPr(s) and d.

Lemma 3.7. Let s be a finite trace, a ∈ Σ, and r ∈ N. Then TOPr(sa) can be computed from TOPr(s)
and the letter a in time polynomial in |TOPr(s)| + |Σ|.

8



Proof. Let G(sa) = (V ⊎ {x},≤,⋖, λ) with x = lasta(sa). Note that G(s) = G(sa)↾V . We first show that
for y ∈ V , we have y ⋖ x if and only if y ∈ last(s) and λ(y) ∈ D(a) and y < z implies λ(z) ∈ I(a) for all
z ∈ last(s). Note that this necessary and sufficient condition for y ⋖ x can be checked using TOPr(s) and
the letter a, only.

Assume y ⋖ x and let b = λ(y). Then, (a, b) ∈ D and y ≤ lastb(s) < x. We deduce that y = lastb(s).
Now, if y < z then z 6≤ x and it follows λ(z) ∈ I(a). Conversely, let y ∈ last(s) with λ(y) ∈ D(a) such that
y < z implies λ(z) ∈ I(a) for all z ∈ last(s). We have y < x because of (λ(y), a) ∈ D. Now, let z be such
that y ≤ z ⋖ x. Then, c = λ(z) ∈ D(a) and since z ≤ lastc(s) < x we get z = lastc(s) ∈ last(s). We deduce
that y = z and y ⋖ x.

Next we prove that a vertex is in topr(sa) if it is either x, or its distance from some y ⋖ x is at most
r − 1, or its distance from some lastb(s) for b 6= a is at most r, i.e.,

topr(sa) = {x} ∪ sphr−1(TOPr(s), {y | y ⋖ x})

∪ sphr(TOPr(s), {lastb(s) | b ∈ alph(s) \ {a}}) .

Note again that this set can be computed from TOPr(s) and a.
The inclusion ⊇ is clear. Conversely, let y ∈ topr(sa) \ {x} and let y = y0 ⊲⊳ · · · ⊲⊳ yp ∈ last(sa) be a

shortest path from y to last(sa). We have p ≤ r. If yp = x then p > 0, the path y = y0 ⊲⊳ · · · ⊲⊳ yp−1 is
in TOPr(s) and yp−1 ⋖ x. Therefore, y ∈ sphr−1(TOPr(s), {y | y ⋖ x}). If yp 6= x then the whole path
y = y0 ⊲⊳ · · · ⊲⊳ yp is in TOPr(s), yp ∈ last(s) and λ(yp) 6= a. Therefore, y ∈ sphr(TOPr(s), {lastb(s) | b ∈
alph(s) \ {a}}).

Finally, it remains to show that the relations ≤sa and ⋖
sa in TOPr(sa) can also be computed from the

relations ≤s and ⋖s in TOPr(s). Again, we use the fact that we know how to decide y ⋖ x from TOPr(s)
and a. For y, z ∈ topr(sa), we have

• y <sa z if and only if y, z ∈ topr(s) and y <s z or y ∈ topr(s), z = x and y ≤s y′ ⋖ x for some
y′ ∈ last(s).

• y ⋖
sa z if and only if y, z ∈ topr(s) and y ⋖

s z or y ⋖ x = z.

Let w = a0a1a2 · · · ∈ Σω and t = [w] = (V,�, λ) ∈ R(Σ, D) with V = N. Fix also some r ∈ N. A
modality automaton will have to check properties of spheres of the form SPHr(G(t), x). For each x ∈ V ,
we can find a finite prefix u of w such that SPHr(G(t), x) is contained in TOP2r([u]). Indeed, let j be
minimal with sphr(G(t), x) ⊆ {0, . . . , j} and let u = a0 · · · aj be the corresponding finite prefix of w. We
have j ∈ last([u]) and dG(t)(x, j) ≤ r, hence also dG([u])(x, j) ≤ r. Therefore, sphr(G(t), x) ⊆ top2r([u]).

From Lemma 3.7, the structures TOP2r([u]) for all finite prefixes of w can be computed by an automaton.
But, in order to check properties of spheres, we also need to determine when a vertex x in TOP2r([u]) is
such that SPHr(G(t), x) is contained in TOP2r([u]). This is the purpose of the following definitions and
lemmas. We give two sufficient conditions (r-critical and r-safe) ensuring the above containment. The first
one requires that the distance from x to last([u]) is r and will increase when we add a new letter to the
prefix u of w.

Definition 3.8. Let s ∈ M be a finite trace, x be a vertex in s and a ∈ Σ. Then, x is r-critical for (s, a) if
x ∈ topr(s) but x /∈ topr(sa).

Note that we can determine in polynomial time whether a vertex x ∈ topr(s) is r-critical for (s, a) just
knowing TOPr(s) and a since by Lemma 3.7, we can determine topr(sa) from TOPr(s) and a.

Lemma 3.9. Let s ∈ M be a finite trace, x be a vertex in s and a ∈ Σ. If x is r-critical for (s, a) then for
all t ∈ R, we have SPHr(sat, x) = SPHr(TOP2r(s), x).

Proof. We first show that sphr(sat, x) ⊆ top2r(s). Let y ∈ sphr(sat, x) and let x = x0 ⊲⊳ · · · ⊲⊳ xn = y be a
shortest path in G(sat) from x to y. We have n ≤ r. We show by contradiction that this path must be in
G(s). So assume that this is not the case and consider the least k with xk in G(s) and xk+1 not in G(s). We
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must have xk ⋖ xk+1. With b = λ(xk), we deduce that xk ≤ lastb(s) < xk+1 and by definition of ⋖ we get
xk = lastb(s). Now, if b 6= a then xk ∈ last(sa) and dG(sa)(x, xk) ≤ k < r since the path x = x0 ⊲⊳ · · · ⊲⊳ xk

is in G(s), hence also in G(sa). This is a contradiction with x being r-critical for (s, a). Assume now b = a.
Then xk ⋖ xk+1 implies (a, λ(xk+1)) ∈ D and xk+1 ∈ G(sat) \ G(s) implies xk+1 6< lasta(sa). Together,
we obtain lasta(sa) ≤ xk+1. From xk ∈ G(s) and λ(xk) = a, we infer xk < lasta(sa) ≤ xk+1 and using
xk ⋖ xk+1 again we deduce xk+1 = lasta(sa). But then dG(sa)(x, xk+1) ≤ k + 1 ≤ r, which is again a
contradiction with x being r-critical for (s, a). Therefore, the whole path x = x0 ⊲⊳ · · · ⊲⊳ xn = y is in G(s)
and dG(s)(x, y) = n ≤ r. Since x is r-critical for (s, a) we have x ∈ topr(s) and we deduce that y ∈ top2r(s)
as desired.

Next, for y, z ∈ sphr(sat, x) we have y ≤ z (resp. y ⋖ z) in SPHr(sat, x) iff the same holds in G(sat) iff
the same holds in G(s) iff the same holds in TOP2r(s). Therefore, SPHr(sat, x) = SPHr(TOP2r(s), x).

The above condition deals with vertices that will eventually leave the top r-sphere. But there are vertices
that may stay forever in the top r-sphere. This fact depends on the alphabet B of the trace that remains
to be read.

Definition 3.10. Let s ∈ M be a finite trace, x be a vertex in s and B ⊆ Σ. Then, x is r-safe for (s,B)
if x ∈ topr(s), B ⊆ alph(s) and for all b ∈ B, dG(s)(x, lastb(s)) > r and if lastb(s) ≤ lasta(s) for some
a ∈ alph(s) then a ∈ B.

Note that we can determine in polynomial time whether a vertex x ∈ topr(s) is r-safe for (s,B) just
knowing TOPr(s) and B.

Lemma 3.11. Let s ∈ M be a finite trace, x be a vertex in s and B ⊆ Σ. If x is r-safe for (s,B) then for
all t ∈ R such that alph(t) ⊆ B, we have SPHr(st, x) = SPHr(TOP2r(s), x).

Proof. As in the proof of Lemma 3.9, it is enough to show that sphr(st, x) ⊆ top2r(s). Let y ∈ sphr(st, x)
and let x = x0 ⊲⊳ · · · ⊲⊳ xn = y be a shortest path in G(st) from x to y. We have n ≤ r. We show by
contradiction that this path must be in G(s). First note that this will conclude the proof since in this case
we get dG(s)(x, y) = n ≤ r and using x ∈ topr(s) we obtain y ∈ top2r(s).

So assume that the path is not in G(s) and consider the least k with xk in G(s) and xk+1 not in G(s).
Then, the path x = x0 ⊲⊳ · · · ⊲⊳ xk is in G(s), k < r, and xk ⋖ xk+1. With a = λ(xk), we deduce that
xk ≤ lasta(s) < xk+1 and by definition of ⋖ we get xk = lasta(s). Hence, dG(s)(x, lasta(s)) = k < r, which
implies a /∈ B since x is r-safe for (s,B). Now, b = λ(xk+1) ∈ alph(t) ⊆ B. Since xk ⋖ xk+1, we have
(a, b) ∈ D and lasta(s) and lastb(s) must be ordered. Since lastb(s) < xk+1 and lasta(s) = xk ⋖ xk+1,
the ordering must be lastb(s) ≤ lasta(s). Using again the fact that x is r-safe for (s,B) we get a ∈ B, a
contradiction since we have already obtained a /∈ B.

Lemma 3.12. Let w ∈ Σω be an infinite word and let x be a vertex in the associated trace [w]. Then,

1. either we find a factorization w = uav such that x is r-critical for ([u], a),

2. or we find a factorization w = uv such that x is r-safe for ([u], alph(v)).

Proof. Write w = a0a1a2 · · · and [w] = (V,�, λ) with V = N. We have x ∈ topr([a0 · · · ax]). If there exists
i ≥ x such that x /∈ topr([a0 · · · ai+1]) then take the least such i and let u = a0 · · · ai. By definition, we have
x is r-critical for ([u], ai+1) and we are in the first case.

Assume now that x ∈ topr([a0 · · ·ai]) for all i ≥ x. Let B = alphinf(w). Since sphr([w], x) is finite, we
find a factorization w = u1u2v with sphr([w], x) contained in [u1] and alph(u2) = alph(v) = B. We show
that x is r-safe for ([u], B) with u = u1u2. We have x ∈ topr([u]) since by hypothesis, this is true of all
prefixes extending u1. Clearly, B = alph(u2) ⊆ alph([u]). Now let b ∈ B. The vertex lastb([u]) must be in
[u2] since alph(u2) = B. We deduce dG([u])(x, lastb([u])) > r since sphr([w], x) is contained in [u1]. Finally,
if lastb([u]) ≤ lasta([u]) for some a ∈ alph([u]) then lasta([u]) must be in [u2] and a ∈ alph([u2]) = B.
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3.3. Automata for ϕ and for ∀xϕ with ϕ ∈ MΣ1
n(N,⋖)

Recall that a modality automaton for the MΣ1
n(N,⋖)-modality α is an automaton for the formula

∀x (x ∈ X0 ↔ α(X1, . . . , Xm, x)) which can be rewritten into

∀x (x /∈ X0 ∨ α(X1, . . . , Xm, x)) ∧ ¬∃x (α(X1, . . . , Xm, x) ∧ x /∈ X0) .

This is a conjunction of formulas of the form ∀xϕ and ¬ϕ with ϕ ∈ MΣ1
n(N,⋖). Therefore, the following

two propositions will be beneficial in the construction of modality automata.

Proposition 3.13. Let ϕ(X1, . . . , Xm) be a formula from MΣ1
n(N,⋖) with n ≥ 1. Then the following

problem can be solved in space tower(n− 1, poly(|Σ|))
input: a finite dependence alphabet (Σ, D)
output: a Büchi-automaton Aϕ over Σ × {0, 1}m that accepts precisely the words (w,X1, . . . , Xm) with

[w] |= ϕ(X1, . . . , Xm).

Proposition 3.14. Let ϕ(X1, . . . , Xm, x) be a formula from MΣ1
n(N,⋖). Then the following problem can

be solved in space tower(n, poly(|Σ|))
input: a finite dependence alphabet (Σ, D)
output: a Büchi-automaton Bϕ over Σ × {0, 1}m that accepts precisely the words (w,X1, . . . , Xm) with

[w] |= ∀x ϕ(X1, . . . , Xm, x).

We first prove Proposition 3.14 using Proposition 3.13.

Proof. For n = 0, the formula ∀x ϕ belongs to FO(N,⋖) ⊆ MΣ1
1(N,⋖), hence the result follows from

Proposition 3.13.
Assume now n ≥ 1. Consider the MΣ1

n(N,⋖)-formula

ϕ′(X1, . . . , Xm+1) = ∃x (Xm+1 = {x} ∧ ϕ) .

From Proposition 3.13, we can construct in space tower(n − 1, poly(|Σ|)) a Büchi-automaton Aϕ′ for ϕ′.
Note that ∀xϕ(X1, . . . , Xm, x) is equivalent with ∀xϕ′(X1, . . . , Xm, {x}). Therefore, we have to construct
an automaton for the universal language of Aϕ′ :

L∀(Aϕ′) = {(w,X1, . . . , Xm) | ∀x (w,X1, . . . , Xm, {x}) ∈ L(Aϕ′ )} .

By [2, Prop. 7.3], we know that given Aϕ′ this problem can be solved in space O(|Q| log |Q|) where Q is the
set of states of Aϕ′

3. Since Aϕ′ can be constructed in space tower(n− 1, poly(|Σ|)), its number of states is
in tower(n, poly(|Σ|)). Therefore, the automaton for L∀(Aϕ′) can be constructed in space

poly(tower(n, poly(|Σ|))) = tower(n, poly(|Σ|)) .

The rest of this section is devoted to the proof of Proposition 3.13. Note that ϕ can be written as

∃(fin)−→Y1∀
(fin)−→Y2 · · · ∀

(fin)/∃(fin)−→Yn β′(X0, . . . , Xm,
−→
Y1, . . . ,

−→
Yn)

for some formula β′ ∈ FO(N,⋖) where ∃(fin)−→Y stands for a sequence of quantifications of the form ∃Yi and
∃finYj and similarly for ∀(fin).

Using ∀ = ¬∃¬ and ∀fin = ¬∃fin¬, this can further be rewritten as

∃(fin)−→Y1¬∃
(fin)−→Y2¬∃

(fin)−→Y3 · · · ¬∃
(fin)−→Yn β(X0, . . . , Xm,

−→
Y1, . . . ,

−→
Yn)

3Actually, [2, Prop. 7.3] gives a more precise space bound using the notion of special variance. Here, we only use the fact
that the special variance is always bounded by the number of states of the automaton.

11



where β = β′ if n is odd and β = ¬β′ if n is even. To simplify the notation, we let
−→
Z = (Z1, . . . , Zp) =

(X0, . . . , Xm,
−→
Y1, . . . ,

−→
Yn). We will show that we can construct an automaton for β(

−→
Z ) in space poly(|Σ|).

Then, Proposition 3.13 follows easily as shown at the end of this section.

We have β(
−→
Z ) ∈ FO(N,

−→
Z ,⋖). Considering Z1, . . . , Zp as new predicates, we use Schwentick and Bartel-

mann’s locality theorem [17, Theorem 3.3] that allows to reduce first-order formulae to local formulae.4 A
first-order formula γ is r-local around the variable y if it is obtained from some first-order formula δ by re-
placing any subformula of the form ∃z ϕ (resp. ∀z ϕ) with ∃z (d⊲⊳(y, z) < r∧ϕ) (resp. ∀z (d⊲⊳(y, z) < r → ϕ))
where d⊲⊳(y, z) < r is an abbreviation for the straightforward FO(⋖) formula which expresses that there is
some ⊲⊳-path from y to z of length at most r − 1 (recall that ⊲⊳ = ⋖ ∪ ⋗).

Proposition 3.15 (cf. [17, Thm. 3.3]). Let β ∈ FO(N,
−→
Z ,⋖). There exist integers ℓ ≥ 0, r ≥ 1

and a formula γ(x1, . . . , xℓ, y) ∈ FO(N,
−→
Z ,⋖) that is r-local around y such that for any structure t =

(V,⋖, (Pa)a∈N ,
−→
Z ), we have

t |= β iff t |= ∃x1 · · · ∃xℓ∀y γ .

Note that these two formulas are in particular equivalent for any trace t whatever the dependence
alphabet is.

Remark 3.16. Keisler and Lotfallah [22, Cor. 6.2] gave bounds for ℓ and r in the above proposition: Let r
be the minimal integer of the form n · 4n such that the quantifier rank of β is at most log(r) + 1. Then β is
equivalent to a finite conjunction of formulas ∃x1 · · · ∃xℓ∀y γ with ℓ ≤ n and γ r-local around y. This finite
conjunction can then be brought into the above form at the expense of a larger value of ℓ.

We will build an automaton for the formula ∀y γ in space poly(|Σ|). The idea is, reading a word w, to
compute the top 2r-spheres of all its prefixes with an automaton. Then, using the results in the previous
section, we are able to check all r-spheres in the trace [w]. Since γ is r-local around y, its truth value depends
on the r-sphere around y and also on the truth values of atomic propositions involving only variables that
are free in ∀y γ, such as xi ⋖ xj or xi = xj or xi ∈ Zj or λ(xi) = a. We will guess the truth values of
these atomic propositions so that we can check ∀y γ just knowing the r-spheres. Let H be the set of atomic
propositions in γ involving only variables that are free in ∀y γ. Then the formula ∀y γ is equivalent to a
disjunction

∨

E⊆H γ1
E ∧∀y γ2

E where γ1
E =

∧

δ∈E δ ∧
∧

δ∈H\E ¬δ and γ2
E is obtained from γ by replacing any

occurrence of δ ∈ E with true and δ ∈ H \E with false. Note that H does not depend on Σ so the number
of elements in the disjunction

∨

E⊆H γ1
E ∧ ∀y γ2

E is constant.

We fix some E ⊆ H and define the automaton AE for the formula γ1
E ∧ ∀y γ2

E . The free variables in

this formula are
−→
Z = (Z1, . . . , Zp) and −→x = (x1, . . . , xℓ) hence the automaton needs to read words over

the alphabet Σ′ = Σ × {0, 1}p+ℓ. As in the beginning of this section, we will write w = (w,
−→
Z ,−→x ) a word

over Σ′. Actually, the lines for the variables x1, . . . , xℓ define sets. The automaton AE will check that these
sets are singletons so that they define the assignment of the first order variables as usual.

A state of AE is a tuple q = (M, (Vi)1≤i≤p+ℓ, B, C, (εi)1≤i≤ℓ) satisfying the following conditions

(S1) M = TOP2r(s) = (W,≤,⋖, λ) for some finite trace s = (V,≤, λ) ∈ M(Σ, D) (the intuition is that

M = TOP2r([w]) if the automaton has read a finite word w = (w,
−→
Z ,−→x )),

(S2) Vi ⊆W for each 1 ≤ i ≤ p+ ℓ (the intuition is that Vi is the intersection of W with the set defined by
the i-th line of w), and |Vp+i| ≤ 1 for 1 ≤ i ≤ ℓ,

(S3) B,C ⊆ Σ (the intuition is that B is used to guess the alphabet of the word that remains to be read
and C is used to check the correctness of this guess),

(S4) εi ∈ {0, 1} is a flag signaling whether a one has already been seen on the line for the variable xi; it will
be used to check that these lines define singletons.

4[17, Thm. 3.3] presupposes a finite signature. But one can check that what is really needed is that there are only finitely
many non-unary predicates. Since ⋖ is the only such relation in our signature, the result can indeed be applied here.
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A state q = (M, (Vi)1≤i≤p+ℓ, B, C, (εi)1≤i≤ℓ) is initial if M = TOP2r(ε) is empty (which implies that each
Vi = ∅), and C is empty and εi = 0 for each 1 ≤ i ≤ ℓ. The state q is accepting if C = ∅ and εi = 1 for each
1 ≤ i ≤ ℓ.

Before defining the transitions of AE , we give two definitions keeping the notations as above, in particular,
q = (TOP2r(s), (Vi)1≤i≤p+ℓ, B, C, (εi)1≤i≤ℓ) is a state and a ∈ Σ is a letter. We say that a vertex v ∈ W is
r-safe for q if it is r-safe for (s,B) (recall that being r-safe for (s,B) only depends on B and TOPr(s) which
can be determined from q). Next, we say that a vertex v ∈W is r-critical for (q, a) if it is r-critical for (s, a)
(recall that being r-critical for (s, a) only depends on a and TOPr(s) which can be determined from q).

To define the transitions of AE , let a = (a, (bi)1≤i≤p+ℓ) ∈ Σ′ be a letter and consider two states
q = (M, (Vi)1≤i≤p+ℓ, B, C, (εi)1≤i≤ℓ) and q′ = (M′, (V ′

i )1≤i≤p+ℓ, B
′, C′, (ε′i)1≤i≤ℓ) of the automaton AE .

There is a transition q
a
−→ q′ in AE iff the following conditions hold:

(T1) M = (W,≤,⋖, λ) = TOP2r(s) and M′ = (W ′,≤,⋖, λ) = TOP2r(sa) for some finite trace s ∈ M(Σ, D)
(by Lemma 3.7, M′ is uniquely defined by M and the letter a),

(T2) V ′
i = Vi ∩W ′ if bi = 0 and V ′

i = (Vi ∩W ′)⊎ (W ′ \W ) if bi = 1 (note that, by the proof of Lemma 3.7,
W ′ \W is a singleton corresponding to the added letter a),

(T3) B = B′ ∪ {a} (thus, B′ can be chosen non-deterministically),

(T4) C′ = C \ {a} if C 6= ∅ and C′ = B′ otherwise,

(T5) ε′i = εi + bp+i (in particular, there is no transition q
a
−→ q′ if εi = bp+i = 1),

(T6) If v ∈ W is r-safe for q or r-critical for (q, a) and Vp+i = {v} for some 1 ≤ i ≤ ℓ, then for each δ ∈ H
in which xi occurs, we have δ ∈ E if and only if one of the following hold

• δ = (λ(xi) = b) and λ(v) = b

• δ = (xi ∈ Zn) and v ∈ Vn

• δ = (xi = xn) and Vp+n = {v}

• δ = (xi ⋖ xn), Vp+n = {vn} is a singleton, and v ⋖ vn in M.

Lemma 3.11 ensures that the r-sphere around v is contained in M, hence legitimates the last constraint.

(T7) If v ∈ W is r-safe for q or r-critical for (q, a), then M, V1, . . . , Vp+ℓ, v |= γ2
E . Here, V1, . . . , Vp and

v are the assignments for the free variables Z1, . . . , Zp and y. We have to explain how to evaluate
M, V1, . . . , Vp+ℓ, v |= γ2

E although some sets Vp+i may be empty and do not define a proper assignment
for the first order variable xi. Note that if Vp+i 6= ∅ then it is a singleton {vi} which encodes the
assignment for xi. Hence, the only difficulty is when Vp+i = ∅. In this case, we evaluate to false all
atomic propositions of γ2

E in which xi occurs. Note that such atomic propositions must be of the form
xi = z or xi ⋖ z or z ⋖ xi where z is either y or a variable that is bound in γ2

E . Also, since Vp+i = ∅,
the assignment of xi is not in the r-sphere of v and since γ2

E is r-local around y, the assignment u for
z satisfies d⊲⊳(u, v) < r. Hence, the evaluation of these atomic propositions to false is justified.

Let AE denote the Büchi-automaton (Q,Σ′, I, F,→) defined so far. Since the essential information in
a state is the first component, i.e., a sphere in a trace, we will speak of the sphere automaton. The only
non-determinism in the automaton AE comes from the component B of the state but in fact, the automaton
is unambiguous.

Proposition 3.17. Let w = (w, (Zi)1≤i≤p+ℓ) ∈ Σ′ω. Then w is accepted by AE if and only if each
Zp+i = {xi} is a singleton set for 1 ≤ i ≤ ℓ and

[w], Z1, . . . , Zp, x1, . . . , xℓ |= γ1
E ∧ ∀y γ2

E .
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Proof. Assume first that w is accepted by AE . Write w = a1a2 · · · and let [w] = (V,≤, λ) ∈ R(Σ, D). Con-

sider an accepting run q0
a1−→ q1

a2−→ q2 · · · for w in AE . Write qk = (Mk, (V k
i )1≤i≤p+ℓ, B

k, Ck, (εk
i )1≤i≤ℓ).

By definition of the transition function and the initial states we have Mk = TOP2r([a1 · · · ak]) = (W k,≤
,⋖, λ) and V k

i = Zi ∩W k. Since the run is accepting, the set Zp+i = {xi} is a singleton for 1 ≤ i ≤ ℓ.
Moreover, Bk = alph(ak+1ak+2 · · · ) for all k ≥ 0: Clearly, Bk must contain all letters that remain to be
read. Conversely, if for some k ≥ 0,the set Bk contains some additional letters then we can check that
Cj = ∅ for at most one j ≥ k, a contradiction. Therefore, AE is unambiguous.

For each vertex v of [w], we apply Lemma 3.12 and we find k ≥ 1 such that v is either r-critical for
([a1 · · · ak], ak+1) or r-safe for ([a1 · · · ak], alph(ak+1ak+2 . . .)). From (T7), we get Mk, V k

1 , . . . , V
k
p+ℓ, v |= γ2

E

(recall that atomic propositions of γ2
E in which xi occurs are evaluated to false if V k

p+i = ∅). We show that

this implies [w],
−→
Z ,−→x , v |= γ2

E . Indeed, the formula γ2
E is r-local around y and by Lemmas 3.9 and 3.11

we know that SPHr([w], v) = SPHr(TOP2r([a1 · · · ak]), v) = SPHr(Mk, v). Moreover, we have seen that
V k

i = Zi ∩W k. Finally, let 1 ≤ i ≤ ℓ and assume that V k
p+i = ∅. An atomic proposition of γ2

E in which xi

occurs must be of the form xi = z or xi ⋖ z or z ⋖ xi where z is either y or a variable that is bound in γ2
E .

Since Vp+i = ∅, we have dG([w])(v, xi) > r and because γ2
E is r-local around y we know that the assignment u

of z satisfies dG([w])(u, v) < r. Hence, these atomic propositions evaluate to false in the context [w],
−→
Z ,−→x , v.

We deduce that [w],
−→
Z ,−→x , v |= γ2

E . Since this holds for each vertex v of [w] we obtain [w],
−→
Z ,−→x |= ∀y γ2

E .
For each 1 ≤ i ≤ ℓ, we apply Lemma 3.12 to the vertex xi of [w] and we find k ≥ 1 such that xi is

either r-critical for ([a1 · · ·ak], ak+1) or r-safe for ([a1 · · ·ak], alph(ak+1ak+2 . . .)). We have SPHr([w], xi) =
SPHr(Mk, xi) in either case and in particular V k

p+i = {xi} ∩W k = {xi}. Therefore, by (T6), each conjunct

of γ1
E must evaluate to true. We deduce that [w],

−→
Z ,−→x |= γ1

E .

Conversely, assume that Zp+i = {xi} is a singleton set for 1 ≤ i ≤ ℓ and that [w],
−→
Z ,−→x |= γ1

E ∧ ∀y γ2
E .

Write w = a1a2 · · · and let [w] = (V,≤, λ) ∈ R(Σ, D). We show that w = (w, (Zi)1≤i≤p+ℓ) is accepted by
AE . We consider temporarily the automaton A′

E defined as AE without (T6,T7).
Let q0 be the unique initial state with B-component alph(w). By definition of the transition func-

tion, there is exactly one run q0
a1−→ q1

a2−→ q2 · · · for w in A′
E such that the B-component of qk is

alph(ak+1ak+2 · · · ). As above, we write qk = (Mk, (V k
i )1≤i≤p+ℓ, B

k, Ck, (εk
i )1≤i≤ℓ). By definition of

the transition function and the initial states we have Mk = TOP2r([a1 · · · ak]) = (W k,≤,⋖, λ) and
V k

i = Zi ∩ W k. Also, since the sets Zp+i are singletons, there is some K such that for each k > K
and 1 ≤ i ≤ ℓ we have εk

i = 1. Finally, since Bk = alph(ak+1ak+2 · · · ) we deduce from the definition of the
transition function that Ck = ∅ for infinitely many k’s. Therefore, the run is accepting in A′

E .
It remains to show that this run is actually in AE , i.e., that all transitions satisfy (T6,T7).

(T6) Let 1 ≤ i ≤ ℓ and assume that Vp+i = {vi} is a singleton and that vi is either r-critical for (qk, ak+1)
or r-safe for qk. We must have vi = xi. By Lemmas 3.9 and 3.11 we know that SPHr([w], xi) =

SPHr(Mk, xi). Since [w],
−→
Z ,−→x |= γ1

E , we deduce that (T6) is fulfilled.

(T7) Assume that v ∈ W k is either r-critical for (qk, ak+1) or r-safe for qk. By hypothesis, we have

[w],
−→
Z ,−→x , v |= γ2

E . We can show as in the first part of the proof that this implies Mk, V k
1 , . . . , V

k
p+ℓ, v |=

γ2
E (with atomic propositions of γ2

E in which xi occurs evaluated to false if V k
p+i = ∅). Therefore, (T7)

is fulfilled.

We deduce that w is accepted by AE as required.

Lemma 3.18. Given Σ, the sphere automaton AE can be constructed in space poly(|Σ|). Hence, the number
of states of AE is in 2poly(|Σ|).

Proof. Let s = (V,≤, λ) ∈ M(Σ, D). Any node v ∈ V has at most h many ⋖-successors and h many
⋖-predecessors, where h is the size of the largest independence clique that is contained in some D(a) for
a ∈ Σ. Clearly, h ≤ |Σ| though it is usually much smaller, e.g., h = 1 for words. Thus, the number
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of nodes at distance k from v is at most (2h)k. Hence, the number of nodes in TOP2r(s) is at most
K = |Σ|(1 + 2h+ · · ·+ (2h)2r). Since h ≤ |Σ|, we get K ≤ (2|Σ|)2r+1. We deduce that the Σ-labeled graph
TOP2r(s) with n ≤ K nodes and two edge relations ⋖ and ≤ can be stored in space poly(|Σ|). Therefore,
a state q = (M, (Vi)1≤i≤p+ℓ, B, C, (εi)1≤i≤ℓ) of the sphere automaton can also be stored in space poly(|Σ|)
(note that p and ℓ are constants which do not depend on Σ).

Now, from its definition, we can easily check that the transition relation of AE can be decided in space

poly(|Σ|), i.e., given states q, q′ ∈ Q and a letter a ∈ Σ′, we can check whether there is a transition q
a
−→ q′

in AE in space poly(|Σ|). Therefore, we can enumerate all transitions of AE in space poly(|Σ|) (simply
enumerate the triples (q, a, q′) and for each of them check whether it is a valid transition of AE).

We deduce that, given Σ, the sphere automaton AE can be constructed in space poly(|Σ|).

of Proposition 3.13. Recall that the formula ∀y γ is equivalent to a disjunction
∨

E⊆H γ1
E ∧ ∀y γ2

E and the
number of elements in this disjunction does not depend on Σ. From Proposition 3.17 we deduce that we
can construct an automaton Aγ over the alphabet Σ′ for the formula ∀y γ as a disjoint union of the sphere
automata AE . Using Lemma 3.18 we know that Aγ can be constructed in space poly(|Σ|). Projecting Aγ

to the subalphabet Σ × {0, 1}p of Σ′ we obtain an automaton B for the formula β which is equivalent to
∃x1 · · · ∃xℓ∀y γ. Again, B can be constructed in space poly(|Σ|).

Recall that ϕ(X1, . . . , Xm) is equivalent to

∃(fin)−→Y1¬∃
(fin)−→Y2¬∃

(fin)−→Y3 · · · ¬∃
(fin)−→Yn β(X0, . . . , Xm,

−→
Y1, . . . ,

−→
Yn) .

Using the following classical constructions on automata, we can construct the automaton Aϕ:

• projection for existential quantification ∃,

• intersection with (Σ×{0, 1}j)∗(Σ×{0, 1}j−1 ×{0})ω and projection for existential finite-set quantifi-
cation ∃fin, and

• complement for negation.

Note that each complement needs an exponential: as in the proof of Proposition 3.4, if a Büchi automa-
ton B can be constructed in space tower(k, poly(|Σ|)) then it has at most tower(k + 1, poly(|Σ|)) many
states and by Proposition 3.19 we can construct a Büchi automaton for the complement of L(B) in space
poly(tower(k+ 1, poly(|Σ|))) = tower(k+ 1, poly(|Σ|)). Therefore, the automaton Aϕ can be constructed
in space tower(n− 1, poly(|Σ|)).

3.4. Construction of modality automata

Now we have almost all ingredients for the proof of Proposition 3.4. The only one that is still missing
is the effective complementation of Büchi-automata from [23]. We also sketch its proof in order to state
precisely its complexity.

Proposition 3.19. Let B = (Q, ι, T, F ) be a Büchi-automaton over the alphabet Σ. Then, in space
poly(|Q|), one can compute a Büchi-automaton C over Σ such that L(C) = Σω \ L(B).

Proof. To obtain the automaton C, we consider B as an alternating Büchi-automaton, i.e., B = (Q, ι, δ, F )
with

δ(p, a) =
∨

(p,a,q)∈T

q

for all p ∈ Q and a ∈ Σ. From this alternating Büchi-automaton, we obtain an alternating co-Büchi-
automaton B1 = (Q, ι, δ1, F ) with L(B1) = Σω \ L(B) setting

δ1(p, a) =
∧

(p,a,q)∈T

q
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for all p ∈ Q and a ∈ Σ. Then, by [23], this alternating co-Büchi automaton can be transformed into an
equivalent weak alternating automaton B2 whose set of states equals Q× {0, 1, . . . , 2|Q|}. The transitions
of this automaton are given by

δ2((p, n), a) =

{∧

(p,a,q)∈T

∨

n′≤n(q, n′) if p ∈ F or n is even

false otherwise.

Adapting the proof from [24], one can construct an equivalent Büchi-automaton C whose states consist
of two subsets of Q′ = Q × {0, 1, . . . , 2|Q|}. To store one such state, space 2|Q′| ∈ poly(|Q|)) suffices.
Moreover, from the construction of [24], one can see that the transition function of C can be decided in space
O(|Q′|) = O(|Q|) from B. Finally, L(C) = L(B2) = L(B1) = Σω \ L(B).

We are now ready to close the main gap in the proof of Theorem 3.1.

of Proposition 3.4. First, the formula

α′(X0, X1, . . . , Xm) = ∀x (x ∈ X0 ↔ α(X1, . . . , Xm, x))

can be equivalently written as

∀x (x /∈ X0 ∨ α(X1, . . . , Xm, x)) ∧ ¬∃x (α(X1, . . . , Xm, x) ∧ x /∈ X0) .

Since α ∈ MΣ1
n(N,⋖), this is a conjunction of a formula of the form ∀xϕ and a formula of the form ¬ψ

with ϕ, ψ ∈ MΣ1
n(N,⋖). From Proposition 3.14 (page 11), we can construct a Büchi automaton Bϕ for

the first conjunct ∀xϕ in space tower(n, poly(|Σ|)). From Proposition 3.13 (page 11), we can construct a
Büchi automaton B for ψ in space tower(n− 1, poly(|Σ|)). We deduce that the number of states of B is in
tower(n, poly(|Σ|)). Using Propositions 3.19 we can construct a Büchi automaton for the second conjunct
¬ψ in space poly(tower(n, poly(|Σ|))) = tower(n, poly(|Σ|)). The final construction for the intersection
does not change the space bound.

4. n-EXPSPACE lower bound for MΠ1

n
(N, ⋖)-logics

This section is devoted to the proof of

Theorem 4.1. Let n ≥ 1. There is an MΠ1
n(N,⋖)-definable temporal logic TLn such that its uniform

satisfiability problem is n-EXPSPACE-hard (and therefore n-EXPSPACE-complete by Theorem 3.1).

Towards this aim, we will restrict ourselves to finite traces. Consider the MΠ1
1(N,⋖)-formula

[[finite]] = ∀X(X = ∅ ∨ ∃x(x ∈ X ∧ ∀y(x⋖ y → y /∈ X))) .

Since any infinite trace t over a finite dependence alphabet admits an infinite path x0 ⋖ x1 ⋖ x2 . . . , this
formula holds in t iff t is finite. Adding it as a constant modality to some MΠ1

n(N,⋖)-logic TL(B) reduces
the finite uniform satisfiability problem of TL(B) to the uniform satisfiability problem of the extended
temporal logic TL(B ∪ {finite}). Thus, restricting attention to finite traces is at least as complicated as the
general case.

We consider functions Fn : N → N that are defined inductively by F0(m) = m and Fn+1(m) = Fn(m) ·
2Fn(m) for n ≥ 0. For m ≥ 1 and n ≥ 0 we have tower(n,m) ≤ Fn(m). Hence, there is a Turing machine M
that runs in space Fn(m) − 3 (where m is the input-size) and accepts some n-EXPSPACE-hard problem.
Then, Theorem 4.1 can be proved by a polynomial reduction of the language of this Turing machine to the
satisfiability problem of some temporal logic TLn to be defined later.
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Notation. Let Γtape be the tape alphabet including the blank symbol � and the end-of-tape markers ⊲ and
⊳ and let Q be the set of states of the Turing machine M . We will write Γ = Γtape⊎Q for the alphabet of the
Turing machine M . For m ≥ 1 (m will be the length of the input word), an m-configuration is a word ⊲αqβ⊳
of length Fn(m) where αβ ∈ (Γtape \ {⊲, ⊳})

∗ is the tape content and q is the state of the Turing machine.
The intuition is that the head is on the first letter of β⊳. An m-computation is a word c0 c1 c2 . . . ck where
ci are m-configurations with ci ⊢M ci+1 for all 0 ≤ i < k. Note that there is a relation R ⊆ Γ6 such that a
word

w ∈
(

ΓFn(m) ∩
(
⊲(Γtape \ {⊲, ⊳})

∗Q(Γtape \ {⊲, ⊳})
∗⊳

))+

is an m-computation if and only if it satisfies

w ∈ Γ∗γ1γ2γ3Γ
Fn(m)−3δ1δ2δ3Γ

∗ ⇒ (γ1, γ2, γ3, δ1, δ2, δ3) ∈ R

for all γ1, γ2, γ3, δ1, δ2, δ3 ∈ Γ.
We will encode these computations by interspersing them with letters from another alphabet. So let A

be some countably infinite alphabet with A∩Γ = ∅. As abbreviation, we use the infinite alphabet Σ = Γ∪A
and denote by πΓ the projection from Σ∗ to Γ∗. Then, for m ≥ 1, we define the language

Lm =
⋃

(a1Γa2Γ · · · amΓ)∗a1Γa2Γ · · ·Γak

where the union ranges over all a1, . . . , am ∈ A which are pairwise distinct and all 1 ≤ k ≤ m. We also
define L =

⋃

m≥1 Lm and the set

C = {w ∈ L | πΓ(w) is an m-computation for some m ≥ 1}

which serves as encoding of the set of computations of M . The following Section 4.1 deals with this set
of words, Section 4.2 will give a further encoding into traces. The remaining procedure (to be found in
Section 4.3) is standard: from an input word v of length m, we will define a formula ϕ of the temporal logic
TLn (that we are going to construct from the Turing machine M) and a finite alphabet (Σm, D) of size
O(m) such that ϕ is satisfiable in M(Σm, D) iff M accepts the word v.

4.1. Encoding by words

In this section, we will consider formulas whose models are words over the alphabet Σ. The syntax of
our monadic second order logic MSO(Γ,⋖,≺) is given by

ϕ ::= x ∈ X | λ(x) = γ | x⋖ y | x ≺ y | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ

where x and y are individual variables, X is a set variable, and γ ∈ Γ is a letter from Γ. Individual
variables range over positions in a word and set variables over sets of positions in a word. Note that
formulas λ(x) = a for a ∈ A are not allowed. More formally, the set of positions of a finite word w ∈ Σ∗ is
pos(w) = {i | 0 ≤ i < |w|}. Let w = a0a1 . . . a|w|−1 with ai ∈ Σ and x, y ∈ pos(w). Then we define

w |= λ(x) = γ if ax = γ

w |= x⋖ y if y = x+ 1

w |= x ≺ y if ax = ay ∈ A and az 6= ax for all x < z < y

Note that x ≺ y cannot be expressed in FO(Γ, <) or in MSO(Γ,⋖) since we cannot express λ(x) = λ(y)
when λ(x) ∈ A. We will freely use formulas like λ(x) ∈ E for E ⊆ Γ meaning

∨

e∈E λ(x) = e.

Lemma 4.2. The set L ⊆ Σ∗ can be defined in FO(Γ,⋖,≺), i.e., there is a sentence α ∈ FO(Γ,⋖,≺) such
that L = {w ∈ Σ∗ | w |= α}.
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Proof. Let α be the following formula:

∃x, y (λ(x) /∈ Γ ∧ λ(y) /∈ Γ ∧ ¬∃z (z ⋖ x ∨ y ⋖ z))

∧ ∀x, y (x⋖ y → (λ(x) ∈ Γ ↔ λ(y) /∈ Γ)

∧ ∀x, y, x′, y′, x′′, y′′(x⋖ x′ ⋖ x′′ ∧ y ⋖ y′ ⋖ y′′ → (x ≺ y ↔ x′′ ≺ y′′))

The first line of the formula expresses that the first and last letters of a word from Σ∗ belong to A, i.e., it
defines the language AΣ∗A ∪ A. The second line expresses that letters from Γ and A alternate, together
with the first line, it defines the language (AΓ)∗A. So let w = a1γ1a2γ2 . . . ak−1γk−1ak be a word from this
set with ai ∈ A and γi ∈ Γ. Then the premise in the last line expresses x′′ = x + 2 and y′′ = y + 2. Hence
the last formula is satisfied by w iff the projection of w to A∗ is the prefix of some word vℓ where no letter
in v occurs twice. In summary, this FO(Γ,⋖,≺)-formula is satisfied by w iff w ∈ L.

Lemma 4.3. There is a formula interval(x, y,X) in FO(Γ,⋖,≺) such that, for any finite word w ∈ Σ∗,
any x, y ∈ pos(w) and X ⊆ pos(w), we have w |= interval(x, y,X) iff x ≤ y and X = {x, x+ 1, . . . , y}.

Proof. Let interval(x, y,X) denote the following formula

x ∈ X ∧ ∀x′(x′ ∈ X → x′ = x ∨ ∃y′(y′ ⋖ x′ ∧ y′ ∈ X))

∧ y ∈ X ∧ ∀x′(x′ ∈ X → x′ = y ∨ ∃y′(x′ ⋖ y′ ∧ y′ ∈ X)) .

Suppose w |= interval(x, y,X). The first line expresses that the set X is a nonempty downwards closed
subset of {x, x+1, . . . , |w| − 1} while the second line expresses that X is a nonempty upwards closed subset
of {0, 1, . . . , y}. In other words, X = {x, x+ 1, . . . , y} as required.

Lemma 4.4. For all n ≥ 0, there exists a formula ϕn(x, y) ∈ MΣ1
n(Γ,⋖,≺) with two free individual

variables x and y such that, for all m ≥ 1, w ∈ Lm and k, ℓ ∈ pos(w), we have w |= ϕn(k, ℓ) iff k is even
and ℓ = k + 2Fn(m).

The idea of the inductive proof is to split the interval [k, ℓ) into blocks of length 2Fn−1(m) and to encode,
in these blocks, the binary representations of the numbers 0, 1, . . . 2Fn−1(m) − 1. This idea was first used
by Matz [18] (cf. also [19]) for pictures and is significantly different from Walukiewicz’s method of nested
counters [13].5

Proof. For n = 0, we set
ϕ0(x, y) = (x ≺ y) .

Let w = a0a1 . . . a|w|−1 ∈ Lm and k, ℓ ∈ pos(w). Then w |= ϕ0(k, ℓ) iff k ≺ ℓ, i.e., iff ak = aℓ ∈ A, k < ℓ, and
there is no occurrence of ak in between. Since w ∈ Lm, this is equivalent to saying k is even and ℓ = k+2m,
i.e., ℓ = k + 2F0(m).

For n ≥ 0, let ϕn+1(x, y) denote the following formula (we advise to read the explanations below and

5Using Walukiewicz’s method in a previous version of this paper, we needed one more quantifier alternation resulting in an
exponentially weaker lower bound in Theorem 4.1.
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look at Fig. 3 and 4 simultaneously with each line of the formula):

∃X,X0, Y0, Z,B, x
′, y′ :

interval(x, y,X) (1)

∧ interval(x, x′, X0) ∧ ϕn(x, x′) ∧X0 ⊆ X (2)

∧ interval(y′, y, Y0) ∧ ϕn(y′, y) (3)

∧ Z ∩X0 = {x, x′} ∧ ∀z, z′ ∈ X : ϕn(z, z′) → (Z(z) ↔ Z(z′)) (4)

∧ Z(y) (5)

∧B ∩ (X0 \ {x
′}) = ∅ (6)

∧ Y0 \ (λ−1(Γ) ∪ {y}) ⊆ B (7)

∧ ∀z, z′ ∈ Z : ϕn(z, z′) → (B(z) ↔ ¬B(z′)) (8)

∧ ∀z1, z2, z3, z
′
1, z

′
2, z

′
3 ∈ X :

(ϕn(z1, z
′
1) ∧ λ(z1) /∈ Γ ∧ z1 ⋖ z2 ⋖ z3 ∧ z

′
1 ⋖ z′2 ⋖ z′3 ∧ ¬Z(z3))

→ ((B(z1) ∧ ¬B(z′1)) ↔ (¬B(z3) ↔ B(z′3))) (9)

∧ ∀z1, z2, z3, z
′
1 ∈ X :

(ϕn(z1, z
′
1) ∧ z1 ⋖ z2 ⋖ z3 ∧ Z(z3) ∧B(z1)) → B(z′1) (10)

Let m ≥ 1 and w ∈ Lm. Furthermore, assume X,X0, Y0, Z,B ⊆ pos(w) and x′, y′ ∈ pos(w). Then (1)
expresses x ≤ y and X = {x, x+ 1, . . . , y}. By the induction hypothesis for ϕn, (2) says that x is even, x′ =
x+2Fn(m), X0 = {x, x+1, . . . , x+2Fn(m)}, and, because of X0 ⊆ X , also x′ = x+2Fn(m) ≤ y. Similarly,
(3) expresses y′ = y−2Fn(m) and Y0 = {y′, y′ +1, . . . , y}. From (4), we obtain Z ∩X = (x+2Fn(m)N)∩X
which, together with (5) ensures y = x + 2kFn(m) for some k > 0. In other words, the set Z divides
the interval X into blocks of length 2Fn(m) each. The first block starts at position x and the last one at
position y′. With any such block, we can associate a natural number depending on the set B: if the block
starts at position z ∈ Z and H = {i < Fn(m) | z + 2i ∈ B}, then the associated number is

∑

i∈H 2i. In
other words, we understand each block as a binary number (least significant bit first) where B contains
those bits set to 1. Recalling that X0 \ {x′} is the first block, (6) expresses that its associated number
is 0. Dually, using (7) we deduce that

∑

0≤i<Fn(m) 2i = 2Fn(m) − 1 is the number associated with the final

block Y0 \ {y}. We show that the blocks “count” from 0 to 2Fn(m) − 1. By (8) the least significant bits of
consecutive blocks alternate. Consider (9). The premise expresses that z1 and z′1 mark the same position i
in consecutive blocks and that this position is not the last one. Then the conclusion says that the ith bit
drops from 1 to 0 if and only if the (i + 1)th bit changes. Hence (9) expresses that the number associated
with the following block is obtained by adding one modulo 2Fn(m). The final formula (10) ensures that the
last (most significant) bit never drops from 1 to 0. Hence the number of blocks must be 2Fn(m). Since each
of them is of length 2Fn(m), we obtain y = x+ 2Fn(m)2Fn(m) = x+ 2Fn+1(m).

By induction, ϕn ∈ MΣ1
n(Γ,⋖,≺). Note that this formula occurs in (2), (3), (4), (8), (9), and (10).

At all these places, it occurs either positively under the existential quantification in the very first line, or
negatively under an additional universal quantification. Hence ϕn+1 ∈ MΣ1

n+1(Γ,⋖,≺) as required.

We can now prove the main result of this section:

Proposition 4.5. The set C ⊆ Σ∗ of encodings of computations of the Turing machine M can be defined
with a sentence ψ ∈ MΠ1

n(Γ,⋖,≺), i.e., such that C = {w ∈ Σ∗ | w |= ψ}.

Proof. By Lemma 4.2, there is a formula ψ0 ∈ FO(Γ,⋖,≺) which defines the language L =
⋃

m≥1 Lm ⊆
(AΓ)∗A. So we restrict below our attention to words w ∈ Lm for some m ≥ 1. We use the abbreviations

(λr(x) = γ) = (∃x′ : (x⋖ x′ ∧ λ(x′) = γ) and

(λℓ(x) = γ) = (∃x′ : (x′ ⋖ x ∧ λ(x′) = γ) .
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x x′ yy′
X0 Y0

0 1 0 1 0101

2Fn(m) 2Fn(m) 2Fn(m) 2Fn(m)2Fn(m)2Fn(m)

This picture visualizes some word with positions x, x′, y′, and y. There are sets X0 and Y0 that contain all
the positions between x and x′ and y′ and y, resp. The nodes drawn (including x, x′ etc) form the set Z.
Furthermore, there is a set B (“B” stands for “bit”): it contains all positions marked 1, none marked 0, and
possibly some positions in between. Finally, the top line indicates that successive elements of Z (i.e., drawn
positions) have distance 2Fn(m). Conjuncts (1-8) ensure this situation (as well as the fact that X contains
all the positions between x and y).

Figure 3: conjuncts (1-8)

z1z2z3 z′1z
′
2z

′
3

2Fn(m)

1 0
1/0 0/1

This picture is a zoomed version of Fig. 3. The solid positions are consecutive positions from Z, z1, z2, and
z3 are consecutive positions and similarly for z′1, z

′
2, and z′3 where the distance between z1 and z′1 equals

2Fn(m). Again, the bottom lines denote membership in B, one line for each side of the equivalence in (9).

Figure 4: conjunct (9)

Consider the formula

ψ1 = ∃x, y : λr(x) = ⊲ ∧ λℓ(y) = ⊳ ∧ ¬∃z : (z ⋖ x ∨ y ⋖ z)

∧ ∀x, y, z : (x⋖ y ⋖ z) → (λ(x) = ⊳↔ λ(z) = ⊲) .

Then, w |= ψ1 if and only if its projection πΓ(w) is in (⊲(Γ \ {⊲, ⊳})∗⊳)+. Next, we have to make sure that
each factor in ⊲(Γ \ {⊲, ⊳})∗⊳ is of length Fn(m). For this, we introduce for n ≥ 1 a formula ϕ<

n (x, y) defined
as ϕn(x, y) in the proof of Lemma 4.4 except that (7) is replaced by its negation Y0 \ {y} 6⊆ λ−1(Γ) ∪B so
that the value associated with the last block is strictly less than 2Fn−1(m) − 1. Therefore, w |= ϕ<

n (x, y) if
and only if x is even and y = x+ 2kFn−1(m) for some 0 < k < 2Fn−1(m). We define

ψ2 = ∀x : (λr(x) = ⊲) →

∃x′, X : (ϕn−1(x, x
′) ∧ interval(x, x′, X) ∧X ∩ λ−1(⊳) = ∅)

∧ ∀x, x′, X, y, y′, Y : (λr(x) = ⊲ ∧ ϕ<
n (x, x′) ∧ interval(x, x′, X) ∧

λℓ(y) = ⊳ ∧ ϕn−1(y
′, y) ∧ interval(y′, y, Y )) → X ∩ Y ⊆ {x, x′}

∧ ∀x, y : (ϕn(x, y) ∧ λr(x) = ⊲) → (λℓ(y) = ⊳)

and we show that a word w ∈ Lm with m ≥ 1 satisfies ψ1 ∧ ψ2 if and only if its projection πΓ(w) is in
(ΓFn(m) ∩ ⊲(Γ \ {⊲, ⊳})∗⊳)+.

First, assume that w |= ψ1 ∧ ψ2 for some w ∈ Lm with m ≥ 1. From ψ1, we already know that
πΓ(w) ∈ (⊲(Γ \ {⊲, ⊳})∗⊳)+ and we have to show that each factor is of length Fn(m). So let x ∈ pos(w)
be such that λr(x) = ⊲ and let y ∈ pos(w) be minimal with y > x and λℓ(y) = ⊳. By the first conjunct
of ψ2 we deduce that y > x + 2Fn−1(m). Let k be maximal with x + 2kFn−1(m) ≤ y. We have seen that
k ≥ 1. Towards a contradiction, assume that k < 2Fn−1(m) and let x′ = x + 2kFn−1(m) so that ϕ<

n (x, x′)
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holds. Further, let y′ = y − 2Fn−1(m), X = {x, x+ 1, . . . , x′} and Y = {y′, y′ + 1, . . . , y}. Using the second
conjunct of ψ2 we get y′ ≥ x′ which contradicts the maximality of k. Therefore, y ≥ x + 2Fn(m). Finally,
using the third conjunct of ψ2, we get y = x+ 2Fn(m) as desired.

Conversely, let w ∈ Lm be such that πΓ(w) ∈ (ΓFn(m)∩⊲(Γ\{⊲, ⊳})∗⊳)+. We already know that w |= ψ1.
It is easy to see that w satisfies the first and last conjuncts of ψ2. Finally, let x, x′, y, y′ ∈ pos(w) and
X,Y ⊆ pos(w) satisfying the premise of the second conjunct of ψ2. Then, x′ = x + 2kFn−1(m) for some
0 < k < 2Fn−1(m) and X = {x, x + 1, . . . , x′}. Also, y′ = y − 2Fn−1(m) and Y = {y′, y′ + 1, . . . , y}. Now,
either y ≤ x and we get X ∩ Y ⊆ {x}. Or else y ≥ x + 2Fn(m) and we obtain X ∩ Y ⊆ {x′}. Therefore,
w |= ψ2 as required.

Next, we consider

ψ3 = ∀x, y,X : (λr(x) = ⊲ ∧ ϕn(x, y) ∧ interval(x, y,X)) → |X ∩ λ−1(Q)| = 1

so that w |= ψ1 ∧ ψ2 ∧ ψ3 if and only if its projection πΓ(w) is in

(

ΓFn(m) ∩
(
⊲(Γtape \ {⊲, ⊳})

∗Q(Γtape \ {⊲, ⊳})
∗⊳

))+

.

The last formula is

ψ4 = ∀x0, . . . , x5, y0, . . . , y5 :
(

ϕn(x0, y0) ∧
∧

0≤i<5

xi ⋖ xi+1 ∧ yi ⋖ yi+1

)

→
(
λ(x1), λ(x3), λ(x5), λ(y1), λ(y3), λ(y5)

)
∈ R

Now, w |=
∧

1≤i≤4 ψi if and only if its projection is anm-computation. Therefore, the formula ψ =
∧

0≤i≤4 ψi

defines the language C.
Moreover, ψ ∈ MΠ1

n(Γ,⋖,≺). Indeed, ψ0 and ψ1 are first-order. In the first conjunct of ψ2, the conclusion
is in MΣ1

n−1 and is under a universal quantification. Finally, in all remaining conjuncts of ψ, the formulas
ϕn, ϕ<

n and ϕn−1 occur negatively under some universal quantifications.

4.2. From words to traces

In this section, we will extend the infinite alphabet Σ to a dependence alphabet (Σ′, D) such that letters
from Σ are mutually dependent6. For a dependence clique ∆ ⊆ Σ′ and a trace t ∈ M(Σ, D), the ∆-labeled
nodes form a chain in t and therefore define a word from ∆∗ that we denote π∆(t). The main task will be
the construction of a set of finite traces C′ ⊆ M(Σ′, D) definable in MΠ1

n(N,⋖) such that πΣ(C′) = C, the
language from Lemma 4.5. For the construction of C′, we consider a disjoint copy A = {a | a ∈ A} of A
and we let

Σ′ = Σ ⊎A ⊎ {†} = Γ ⊎A ⊎A ⊎ {†} .

The dependence relation is given by

D = (Σ ∪ {†})2 ∪ {(a, a), (a, a), (a, a) | a ∈ A} .

For simplicity, we write M for the trace monoid M(Σ′, D).
Define a homomorphism η : Σ∗ → M by

η(σ) =

{

aa † a if σ = a ∈ A

γ† if σ = γ ∈ Γ.

The traces η(a) and η(γ) for a ∈ A and γ ∈ Γ are depicted in Figure 5. Note that, for σ ∈ Σ we have
πΣ(η(σ)) = σ. Since the letters from Σ are mutually dependent, we get πΣ(η(w)) = w for all words w ∈ Σ∗.
Note also that for any w ∈ Σ∗, we have πΣ∪{†}(η(w)) ∈ (Σ†)∗. The language C′ that we will define here is
precisely †η(C) so that πΣ(C′) = C as claimed.

6Since Σ is infinite, also the set Σ′ is infinite. Although we only defined traces over finite dependence alphabets, the
definitions go through for infinite ones as well.
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a †

aa

γ †

Figure 5: The traces η(a) and η(γ)

As in the previous section, we will not allow formulae λ(x) = σ for arbitrary letters σ ∈ Σ′ since we
do not want our formulae to depend on A ∪A. Hence these atomic propositions are restricted to letters in
Γ ∪ {†} ⊆ N.

Lemma 4.6. There is a formula ϕ ∈ FO(N,⋖) such that for any trace t ∈ M, we have t |= ϕ iff t ∈ †η(Σ∗).

Proof. We will define ϕ as a conjunction ϕ1∧ϕ2∧ϕ3∧ϕ4. The formula ϕ1 will be satisfied by a trace t ∈ M

iff πΣ∪{†}(t) ∈ †(Σ†)∗. It is defined by

ϕ1 = ∃x (x minimal ∧ λ(x) = †)

∧ ∀x (λ(x) = † → (x maximal ∨ ∃y∃z (x ⋖ y ⋖ z ∧ λ(y) 6= † ∧ λ(z) = †))) .

Let t = (V,≤, λ) ∈ M be a trace. If t |= ϕ1, then t contains a minimal node that is †-labeled, and from any
non-maximal †-labeled node, we reach another one in just two ⋖-steps. Hence t contains a maximal ⋖-chain
labeled in †((Σ′ \ {†})†)∗. Since consecutive nodes in a maximal ⋖-chain carry dependent letters, this chain
actually belongs to †(Σ†)∗. Since Σ∪ {†} forms a dependence clique, all (Σ∪ {†})-labeled nodes must be in
the chain. We deduce that πΣ∪{†}(t) ∈ †(Σ†)∗.

Let, conversely, πΣ∪{†}(t) ∈ †(Σ†)∗. Let x be the minimal †-labeled node of t. Since the projection starts
with †, this node x does not dominate any Σ-labeled node. Since only letters from Σ ∪ {†} are dependent
from †, the node x is minimal in t. Now let x and z be two consecutive †-labeled nodes of t. Then, in
between them, there is a unique node y with λ(y) ∈ Σ. Since all neighbors of x and z have to carry labels
in Σ ∪ {†}, this implies x⋖ y ⋖ z. Since the last letter of the projection is †, we showed that t |= ϕ1.

We restrict our attention below to traces t that satisfy ϕ1, i.e., such that πΣ∪{†}(t) ∈ †(Σ†)∗. In
particular, a node x of t is labeled in Σ if and only if ∃y (x ⋖ y ∧ λ(y) = †). We will simply write λ(x) ∈ Σ
for this formula. We also use the abbreviations λ(x) ∈ A for λ(x) ∈ Σ \Γ, and λ(x) ∈ A for λ(x) /∈ Σ∪ {†}.

The formula ϕ2 will ensure that any Σ-labeled node is the center of some factor η(σ). For Γ-labeled
nodes, this is already implied by ϕ1. For σ ∈ A, it turns out to be sufficient to require the existence of at
least two upper and two lower neighbors. Formally we define

ϕ2 = ∀y (λ(y) ∈ A→ ∃x∃z : x⋖ y ⋖ z ∧ λ(x) 6= † ∧ λ(z) 6= †)

Formula ϕ2 expresses that any a-labeled node y (with a ∈ A) has at least one lower and one upper neighbor
x, z that are not labeled †. Because of the structure of the dependence relation D, the only possibility is
that λ(y) = λ(z) = a. Note that D(a) ⊆ D(a). Hence, y is the only upper neighbor of x and the only lower
neighbor of z. Thus, the neighborhood of y excluding the †-labeled lower neighbor forms a factor of the
form η(a).

Next, we express that any node in the trace t belongs to one of the factors η(σ) with σ ∈ Σ:

ϕ3 = ∀y (λ(y) ∈ A→ ∃z (λ(z) ∈ A ∧ (y ⋖ z ∨ z ⋖ y))) .

It remains to express that the factors considered above are mutually disjoint:

ϕ4 = ∀y (λ(y) ∈ A→ ¬∃x∃z : (x⋖ y ⋖ z ∧ λ(x) ∈ A ∧ λ(z) ∈ A)) .

The only possibility for a node y of t to belong to two factors is that λ(y) = a for some a ∈ A and the two
factors are of the form η(a). But then y would have two a-labeled neighbors x and z – this is excluded by
formula ϕ4.

Let †σ1†σ2† . . . σn† be the projection of t to Σ ∪ {†}. Then, by what we showed so far, we deduce that
t = †η(σ1)η(σ2) . . . η(σn).
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For any word w ∈ Σ∗ we have w = πΣ(t) where t = †η(w). Thus, the word w can be seen as a chain
in the trace t = †η(w). Note that the predicate λ(x) ∈ A can be expressed in t = †η(w) by λ(x) 6=
† ∧¬∃y (x⋖ y ∧ λ(y) = †). We use it as a macro below. We will next prove that the relations ⋖ and ≺ of w
can be expressed by first-order formulas in t = †η(w). To this aim, we define

cover(x, y) = ∃z (λ(z) = † ∧ x⋖ z ⋖ y),

nx(x, y) = ∃x′∃y′ (λ(x′) ∈ A ∧ λ(y′) ∈ A ∧ x⋖ x′ ⋖ y′ ⋖ y) .

Lemma 4.7. Let w ∈ Σ∗ and t = †η(w) = (V,≤, λ). Suppose furthermore x, y ∈ V with λ(x), λ(y) ∈ Σ.
Then we have

1. w |= x⋖ y iff t |= cover(x, y).

2. w |= x ≺ y iff t |= nx(x, y).

Proof. Let w = a1a2 . . . an with ai ∈ Σ. Note that those nodes that are labelled in Σ ∪ {†} form a maximal
chain in t corresponding to a word in †(Σ†)∗. This ensures the first statement.

Suppose x ≺ y in the word w. Then, by the definition of ≺, we have λ(x) = λ(y) = a ∈ A, x < y, and
there is no z with x < z < y and a = λ(z). The definition of η implies the existence of x′ and y′ with x⋖x′,
y′ ⋖ y, and λ(x′) = λ(y′) = a. Since no a occurs in between x and y, we obtain x′ ⋖ y′. Thus t |= nx(x, y).

Conversely, suppose t |= nx(x, y). Then there are x′ and y′ with x ⋖ x′ ⋖ y′ ⋖ y and λ(x′), λ(y′) ∈ A.
Since (λ(x′), λ(y′)) ∈ D, the construction of η ensures λ(x′) = λ(y′) = a for some a ∈ A. For the same
reason, we obtain λ(x) = a = λ(y) and there cannot be a further occurrence of a in between x and y. Hence
x ≺ y in the word w.

This allows immediately to derive the following consequence since C is definable in MΠ1
n(Γ,⋖,≺):

Proposition 4.8. The language †η(C) is MΠ1
n(N,⋖)-definable, i.e., there is a sentence ψ′ ∈ MΠ1

n(N,⋖)
such that C′ = †η(C) = {t ∈ M | t |= ψ′}.

Proof. By Lemma 4.5, there is a sentence ψ in MΠ1
n(Γ,⋖,≺) such that C = {w ∈ Σ∗ | w |= ψ}. For

ξ ∈ MSO(Γ,⋖,≺), we construct recursively ξ as follows

(λ(x) = e) = (λ(x) = e)

x⋖ y = cover(x, y)

x ≺ y = nx(x, y)

¬ϕ = ¬ϕ

ϕ ∨ ψ = ϕ ∨ ψ

∃xϕ = ∃x (ϕ ∧ λ(x) ∈ Σ)

∃Xϕ = ∃X (ϕ ∧ ∀x (x ∈ X → λ(x) ∈ Σ))

Then, by Lemma 4.7, we deduce that for w ∈ Σ∗ we have w |= ξ iff †η(w) |= ξ. Then, we let ψ′ = ϕ ∧ ψ
where ϕ is the FO(N,⋖)-sentence from Lemma 4.6. Now the result follows immediately from Lemmas 4.5,
4.6 and 4.7.

4.3. The lower bound

Now we can prove the main theorem of this section.

of Theorem 4.1. Recall that the deterministic Turing machine M works in space Fn(m)− 3 where m is the
length of the input word.

Consider the MΠ1
n(N,⋖)-definable temporal logic TLn based on the modality SU, the usual boolean

connectives, and the constant COMPUTATION with [[COMPUTATION]] = ψ′, the formula from Proposi-
tion 4.8 defining †η(C).
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We denote by q0 and q1 the initial state and the accepting state of M respectively. Recall that � is the
blank symbol of the tape. Let v = v1 · · · vm be an input word of the Turing machine M and consider the
formula

INITv = ¬Γ SU (⊲ ∧ ¬Γ SU (q0 ∧ ¬Γ SU (v1 ∧ · · · ¬Γ SU (vm ∧ (¬Γ ∨ �) SU ⊳) · · · )))

which intuitively expresses the fact that the first configuration is actually the initial configuration of M on
the input word v. Consider also the alphabets Σm = Am∪Γ ⊆ Σ and Σ′

m = Σm∪{†}∪Am where |Am| = m,
Am = {a | a ∈ Am} and the dependence relation D defined as in Section 4.2. We claim that v is accepted by
M if and only if there is a trace in M(Σm, D) satisfying the formula COMPUTATION∧INITv∧⊤SUq1. Note
that this formula can be constructed from v in linear time. Therefore, the uniform satisfiability problem for
TLn is n-EXPSPACE-hard.

Remark 4.9. Note that, apart from the boolean connectives, the logic TLn contains only the constant
COMPUTATION and the binary modality SU. In our hardness proof, the binary SU is only used in the
context ¬Γ SU −, (¬Γ ∨ �) SU − and ⊤ SU −. Thus, we could have replaced the binary modality SU with
these three unary filter modalities in the style of [9]. Furthermore, the temporal logic could be deprived of
constant formulas a for a /∈ Γ ∪ {†} since they are not used in the hardness proof.
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